]> git.proxmox.com Git - rustc.git/blob - src/librustc/ty/fold.rs
New upstream version 1.40.0+dfsg1
[rustc.git] / src / librustc / ty / fold.rs
1 //! Generalized type folding mechanism. The setup is a bit convoluted
2 //! but allows for convenient usage. Let T be an instance of some
3 //! "foldable type" (one which implements `TypeFoldable`) and F be an
4 //! instance of a "folder" (a type which implements `TypeFolder`). Then
5 //! the setup is intended to be:
6 //!
7 //! T.fold_with(F) --calls--> F.fold_T(T) --calls--> T.super_fold_with(F)
8 //!
9 //! This way, when you define a new folder F, you can override
10 //! `fold_T()` to customize the behavior, and invoke `T.super_fold_with()`
11 //! to get the original behavior. Meanwhile, to actually fold
12 //! something, you can just write `T.fold_with(F)`, which is
13 //! convenient. (Note that `fold_with` will also transparently handle
14 //! things like a `Vec<T>` where T is foldable and so on.)
15 //!
16 //! In this ideal setup, the only function that actually *does*
17 //! anything is `T.super_fold_with()`, which traverses the type `T`.
18 //! Moreover, `T.super_fold_with()` should only ever call `T.fold_with()`.
19 //!
20 //! In some cases, we follow a degenerate pattern where we do not have
21 //! a `fold_T` method. Instead, `T.fold_with` traverses the structure directly.
22 //! This is suboptimal because the behavior cannot be overridden, but it's
23 //! much less work to implement. If you ever *do* need an override that
24 //! doesn't exist, it's not hard to convert the degenerate pattern into the
25 //! proper thing.
26 //!
27 //! A `TypeFoldable` T can also be visited by a `TypeVisitor` V using similar setup:
28 //!
29 //! T.visit_with(V) --calls--> V.visit_T(T) --calls--> T.super_visit_with(V).
30 //!
31 //! These methods return true to indicate that the visitor has found what it is
32 //! looking for, and does not need to visit anything else.
33
34 use crate::hir::def_id::DefId;
35 use crate::mir::interpret::ConstValue;
36 use crate::ty::{self, Binder, Ty, TyCtxt, TypeFlags, flags::FlagComputation};
37
38 use std::collections::BTreeMap;
39 use std::fmt;
40 use crate::util::nodemap::FxHashSet;
41
42 /// This trait is implemented for every type that can be folded.
43 /// Basically, every type that has a corresponding method in `TypeFolder`.
44 ///
45 /// To implement this conveniently, use the
46 /// `BraceStructTypeFoldableImpl` etc macros found in `macros.rs`.
47 pub trait TypeFoldable<'tcx>: fmt::Debug + Clone {
48 fn super_fold_with<F: TypeFolder<'tcx>>(&self, folder: &mut F) -> Self;
49 fn fold_with<F: TypeFolder<'tcx>>(&self, folder: &mut F) -> Self {
50 self.super_fold_with(folder)
51 }
52
53 fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool;
54 fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool {
55 self.super_visit_with(visitor)
56 }
57
58 /// Returns `true` if `self` has any late-bound regions that are either
59 /// bound by `binder` or bound by some binder outside of `binder`.
60 /// If `binder` is `ty::INNERMOST`, this indicates whether
61 /// there are any late-bound regions that appear free.
62 fn has_vars_bound_at_or_above(&self, binder: ty::DebruijnIndex) -> bool {
63 self.visit_with(&mut HasEscapingVarsVisitor { outer_index: binder })
64 }
65
66 /// Returns `true` if this `self` has any regions that escape `binder` (and
67 /// hence are not bound by it).
68 fn has_vars_bound_above(&self, binder: ty::DebruijnIndex) -> bool {
69 self.has_vars_bound_at_or_above(binder.shifted_in(1))
70 }
71
72 fn has_escaping_bound_vars(&self) -> bool {
73 self.has_vars_bound_at_or_above(ty::INNERMOST)
74 }
75
76 fn has_type_flags(&self, flags: TypeFlags) -> bool {
77 self.visit_with(&mut HasTypeFlagsVisitor { flags })
78 }
79 fn has_projections(&self) -> bool {
80 self.has_type_flags(TypeFlags::HAS_PROJECTION)
81 }
82 fn references_error(&self) -> bool {
83 self.has_type_flags(TypeFlags::HAS_TY_ERR)
84 }
85 fn has_param_types(&self) -> bool {
86 self.has_type_flags(TypeFlags::HAS_PARAMS)
87 }
88 fn has_infer_types(&self) -> bool {
89 self.has_type_flags(TypeFlags::HAS_TY_INFER)
90 }
91 fn has_infer_consts(&self) -> bool {
92 self.has_type_flags(TypeFlags::HAS_CT_INFER)
93 }
94 fn has_local_value(&self) -> bool {
95 self.has_type_flags(TypeFlags::KEEP_IN_LOCAL_TCX)
96 }
97 fn needs_infer(&self) -> bool {
98 self.has_type_flags(
99 TypeFlags::HAS_TY_INFER | TypeFlags::HAS_RE_INFER | TypeFlags::HAS_CT_INFER
100 )
101 }
102 fn has_placeholders(&self) -> bool {
103 self.has_type_flags(
104 TypeFlags::HAS_RE_PLACEHOLDER |
105 TypeFlags::HAS_TY_PLACEHOLDER |
106 TypeFlags::HAS_CT_PLACEHOLDER
107 )
108 }
109 fn needs_subst(&self) -> bool {
110 self.has_type_flags(TypeFlags::NEEDS_SUBST)
111 }
112 fn has_re_placeholders(&self) -> bool {
113 self.has_type_flags(TypeFlags::HAS_RE_PLACEHOLDER)
114 }
115 fn has_closure_types(&self) -> bool {
116 self.has_type_flags(TypeFlags::HAS_TY_CLOSURE)
117 }
118 /// "Free" regions in this context means that it has any region
119 /// that is not (a) erased or (b) late-bound.
120 fn has_free_regions(&self) -> bool {
121 self.has_type_flags(TypeFlags::HAS_FREE_REGIONS)
122 }
123
124 /// True if there are any un-erased free regions.
125 fn has_erasable_regions(&self) -> bool {
126 self.has_type_flags(TypeFlags::HAS_FREE_REGIONS)
127 }
128
129 /// Indicates whether this value references only 'global'
130 /// generic parameters that are the same regardless of what fn we are
131 /// in. This is used for caching.
132 fn is_global(&self) -> bool {
133 !self.has_type_flags(TypeFlags::HAS_FREE_LOCAL_NAMES)
134 }
135
136 /// True if there are any late-bound regions
137 fn has_late_bound_regions(&self) -> bool {
138 self.has_type_flags(TypeFlags::HAS_RE_LATE_BOUND)
139 }
140
141 /// A visitor that does not recurse into types, works like `fn walk_shallow` in `Ty`.
142 fn visit_tys_shallow(&self, visit: impl FnMut(Ty<'tcx>) -> bool) -> bool {
143
144 pub struct Visitor<F>(F);
145
146 impl<'tcx, F: FnMut(Ty<'tcx>) -> bool> TypeVisitor<'tcx> for Visitor<F> {
147 fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
148 self.0(ty)
149 }
150 }
151
152 self.visit_with(&mut Visitor(visit))
153 }
154 }
155
156 /// The `TypeFolder` trait defines the actual *folding*. There is a
157 /// method defined for every foldable type. Each of these has a
158 /// default implementation that does an "identity" fold. Within each
159 /// identity fold, it should invoke `foo.fold_with(self)` to fold each
160 /// sub-item.
161 pub trait TypeFolder<'tcx>: Sized {
162 fn tcx<'a>(&'a self) -> TyCtxt<'tcx>;
163
164 fn fold_binder<T>(&mut self, t: &Binder<T>) -> Binder<T>
165 where T : TypeFoldable<'tcx>
166 {
167 t.super_fold_with(self)
168 }
169
170 fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
171 t.super_fold_with(self)
172 }
173
174 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
175 r.super_fold_with(self)
176 }
177
178 fn fold_const(&mut self, c: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
179 c.super_fold_with(self)
180 }
181 }
182
183 pub trait TypeVisitor<'tcx> : Sized {
184 fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
185 t.super_visit_with(self)
186 }
187
188 fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
189 t.super_visit_with(self)
190 }
191
192 fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
193 r.super_visit_with(self)
194 }
195
196 fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> bool {
197 c.super_visit_with(self)
198 }
199 }
200
201 ///////////////////////////////////////////////////////////////////////////
202 // Some sample folders
203
204 pub struct BottomUpFolder<'tcx, F, G, H>
205 where
206 F: FnMut(Ty<'tcx>) -> Ty<'tcx>,
207 G: FnMut(ty::Region<'tcx>) -> ty::Region<'tcx>,
208 H: FnMut(&'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx>,
209 {
210 pub tcx: TyCtxt<'tcx>,
211 pub ty_op: F,
212 pub lt_op: G,
213 pub ct_op: H,
214 }
215
216 impl<'tcx, F, G, H> TypeFolder<'tcx> for BottomUpFolder<'tcx, F, G, H>
217 where
218 F: FnMut(Ty<'tcx>) -> Ty<'tcx>,
219 G: FnMut(ty::Region<'tcx>) -> ty::Region<'tcx>,
220 H: FnMut(&'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx>,
221 {
222 fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
223 self.tcx
224 }
225
226 fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
227 let t = ty.super_fold_with(self);
228 (self.ty_op)(t)
229 }
230
231 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
232 let r = r.super_fold_with(self);
233 (self.lt_op)(r)
234 }
235
236 fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
237 let ct = ct.super_fold_with(self);
238 (self.ct_op)(ct)
239 }
240 }
241
242 ///////////////////////////////////////////////////////////////////////////
243 // Region folder
244
245 impl<'tcx> TyCtxt<'tcx> {
246 /// Collects the free and escaping regions in `value` into `region_set`. Returns
247 /// whether any late-bound regions were skipped
248 pub fn collect_regions<T>(self,
249 value: &T,
250 region_set: &mut FxHashSet<ty::Region<'tcx>>)
251 -> bool
252 where T : TypeFoldable<'tcx>
253 {
254 let mut have_bound_regions = false;
255 self.fold_regions(value, &mut have_bound_regions, |r, d| {
256 region_set.insert(self.mk_region(r.shifted_out_to_binder(d)));
257 r
258 });
259 have_bound_regions
260 }
261
262 /// Folds the escaping and free regions in `value` using `f`, and
263 /// sets `skipped_regions` to true if any late-bound region was found
264 /// and skipped.
265 pub fn fold_regions<T>(
266 self,
267 value: &T,
268 skipped_regions: &mut bool,
269 mut f: impl FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx>,
270 ) -> T
271 where
272 T : TypeFoldable<'tcx>,
273 {
274 value.fold_with(&mut RegionFolder::new(self, skipped_regions, &mut f))
275 }
276
277 /// Invoke `callback` on every region appearing free in `value`.
278 pub fn for_each_free_region(
279 self,
280 value: &impl TypeFoldable<'tcx>,
281 mut callback: impl FnMut(ty::Region<'tcx>),
282 ) {
283 self.any_free_region_meets(value, |r| {
284 callback(r);
285 false
286 });
287 }
288
289 /// Returns `true` if `callback` returns true for every region appearing free in `value`.
290 pub fn all_free_regions_meet(
291 self,
292 value: &impl TypeFoldable<'tcx>,
293 mut callback: impl FnMut(ty::Region<'tcx>) -> bool,
294 ) -> bool {
295 !self.any_free_region_meets(value, |r| !callback(r))
296 }
297
298 /// Returns `true` if `callback` returns true for some region appearing free in `value`.
299 pub fn any_free_region_meets(
300 self,
301 value: &impl TypeFoldable<'tcx>,
302 callback: impl FnMut(ty::Region<'tcx>) -> bool,
303 ) -> bool {
304 return value.visit_with(&mut RegionVisitor {
305 outer_index: ty::INNERMOST,
306 callback
307 });
308
309 struct RegionVisitor<F> {
310 /// The index of a binder *just outside* the things we have
311 /// traversed. If we encounter a bound region bound by this
312 /// binder or one outer to it, it appears free. Example:
313 ///
314 /// ```
315 /// for<'a> fn(for<'b> fn(), T)
316 /// ^ ^ ^ ^
317 /// | | | | here, would be shifted in 1
318 /// | | | here, would be shifted in 2
319 /// | | here, would be `INNERMOST` shifted in by 1
320 /// | here, initially, binder would be `INNERMOST`
321 /// ```
322 ///
323 /// You see that, initially, *any* bound value is free,
324 /// because we've not traversed any binders. As we pass
325 /// through a binder, we shift the `outer_index` by 1 to
326 /// account for the new binder that encloses us.
327 outer_index: ty::DebruijnIndex,
328 callback: F,
329 }
330
331 impl<'tcx, F> TypeVisitor<'tcx> for RegionVisitor<F>
332 where F: FnMut(ty::Region<'tcx>) -> bool
333 {
334 fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
335 self.outer_index.shift_in(1);
336 let result = t.skip_binder().visit_with(self);
337 self.outer_index.shift_out(1);
338 result
339 }
340
341 fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
342 match *r {
343 ty::ReLateBound(debruijn, _) if debruijn < self.outer_index => {
344 false // ignore bound regions, keep visiting
345 }
346 _ => (self.callback)(r),
347 }
348 }
349
350 fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
351 // We're only interested in types involving regions
352 if ty.flags.intersects(TypeFlags::HAS_FREE_REGIONS) {
353 ty.super_visit_with(self)
354 } else {
355 false // keep visiting
356 }
357 }
358 }
359 }
360 }
361
362 /// Folds over the substructure of a type, visiting its component
363 /// types and all regions that occur *free* within it.
364 ///
365 /// That is, `Ty` can contain function or method types that bind
366 /// regions at the call site (`ReLateBound`), and occurrences of
367 /// regions (aka "lifetimes") that are bound within a type are not
368 /// visited by this folder; only regions that occur free will be
369 /// visited by `fld_r`.
370
371 pub struct RegionFolder<'a, 'tcx> {
372 tcx: TyCtxt<'tcx>,
373 skipped_regions: &'a mut bool,
374
375 /// Stores the index of a binder *just outside* the stuff we have
376 /// visited. So this begins as INNERMOST; when we pass through a
377 /// binder, it is incremented (via `shift_in`).
378 current_index: ty::DebruijnIndex,
379
380 /// Callback invokes for each free region. The `DebruijnIndex`
381 /// points to the binder *just outside* the ones we have passed
382 /// through.
383 fold_region_fn:
384 &'a mut (dyn FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx> + 'a),
385 }
386
387 impl<'a, 'tcx> RegionFolder<'a, 'tcx> {
388 #[inline]
389 pub fn new(
390 tcx: TyCtxt<'tcx>,
391 skipped_regions: &'a mut bool,
392 fold_region_fn: &'a mut dyn FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx>,
393 ) -> RegionFolder<'a, 'tcx> {
394 RegionFolder {
395 tcx,
396 skipped_regions,
397 current_index: ty::INNERMOST,
398 fold_region_fn,
399 }
400 }
401 }
402
403 impl<'a, 'tcx> TypeFolder<'tcx> for RegionFolder<'a, 'tcx> {
404 fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
405 self.tcx
406 }
407
408 fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: &ty::Binder<T>) -> ty::Binder<T> {
409 self.current_index.shift_in(1);
410 let t = t.super_fold_with(self);
411 self.current_index.shift_out(1);
412 t
413 }
414
415 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
416 match *r {
417 ty::ReLateBound(debruijn, _) if debruijn < self.current_index => {
418 debug!("RegionFolder.fold_region({:?}) skipped bound region (current index={:?})",
419 r, self.current_index);
420 *self.skipped_regions = true;
421 r
422 }
423 _ => {
424 debug!("RegionFolder.fold_region({:?}) folding free region (current_index={:?})",
425 r, self.current_index);
426 (self.fold_region_fn)(r, self.current_index)
427 }
428 }
429 }
430 }
431
432 ///////////////////////////////////////////////////////////////////////////
433 // Bound vars replacer
434
435 /// Replaces the escaping bound vars (late bound regions or bound types) in a type.
436 struct BoundVarReplacer<'a, 'tcx> {
437 tcx: TyCtxt<'tcx>,
438
439 /// As with `RegionFolder`, represents the index of a binder *just outside*
440 /// the ones we have visited.
441 current_index: ty::DebruijnIndex,
442
443 fld_r: &'a mut (dyn FnMut(ty::BoundRegion) -> ty::Region<'tcx> + 'a),
444 fld_t: &'a mut (dyn FnMut(ty::BoundTy) -> Ty<'tcx> + 'a),
445 fld_c: &'a mut (dyn FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx> + 'a),
446 }
447
448 impl<'a, 'tcx> BoundVarReplacer<'a, 'tcx> {
449 fn new<F, G, H>(tcx: TyCtxt<'tcx>, fld_r: &'a mut F, fld_t: &'a mut G, fld_c: &'a mut H) -> Self
450 where
451 F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
452 G: FnMut(ty::BoundTy) -> Ty<'tcx>,
453 H: FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx>,
454 {
455 BoundVarReplacer {
456 tcx,
457 current_index: ty::INNERMOST,
458 fld_r,
459 fld_t,
460 fld_c,
461 }
462 }
463 }
464
465 impl<'a, 'tcx> TypeFolder<'tcx> for BoundVarReplacer<'a, 'tcx> {
466 fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
467 self.tcx
468 }
469
470 fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: &ty::Binder<T>) -> ty::Binder<T> {
471 self.current_index.shift_in(1);
472 let t = t.super_fold_with(self);
473 self.current_index.shift_out(1);
474 t
475 }
476
477 fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
478 match t.kind {
479 ty::Bound(debruijn, bound_ty) => {
480 if debruijn == self.current_index {
481 let fld_t = &mut self.fld_t;
482 let ty = fld_t(bound_ty);
483 ty::fold::shift_vars(
484 self.tcx,
485 &ty,
486 self.current_index.as_u32()
487 )
488 } else {
489 t
490 }
491 }
492 _ => {
493 if !t.has_vars_bound_at_or_above(self.current_index) {
494 // Nothing more to substitute.
495 t
496 } else {
497 t.super_fold_with(self)
498 }
499 }
500 }
501 }
502
503 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
504 match *r {
505 ty::ReLateBound(debruijn, br) if debruijn == self.current_index => {
506 let fld_r = &mut self.fld_r;
507 let region = fld_r(br);
508 if let ty::ReLateBound(debruijn1, br) = *region {
509 // If the callback returns a late-bound region,
510 // that region should always use the INNERMOST
511 // debruijn index. Then we adjust it to the
512 // correct depth.
513 assert_eq!(debruijn1, ty::INNERMOST);
514 self.tcx.mk_region(ty::ReLateBound(debruijn, br))
515 } else {
516 region
517 }
518 }
519 _ => r
520 }
521 }
522
523 fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
524 if let ty::Const { val: ConstValue::Bound(debruijn, bound_const), ty } = *ct {
525 if debruijn == self.current_index {
526 let fld_c = &mut self.fld_c;
527 let ct = fld_c(bound_const, ty);
528 ty::fold::shift_vars(
529 self.tcx,
530 &ct,
531 self.current_index.as_u32()
532 )
533 } else {
534 ct
535 }
536 } else {
537 if !ct.has_vars_bound_at_or_above(self.current_index) {
538 // Nothing more to substitute.
539 ct
540 } else {
541 ct.super_fold_with(self)
542 }
543 }
544 }
545 }
546
547 impl<'tcx> TyCtxt<'tcx> {
548 /// Replaces all regions bound by the given `Binder` with the
549 /// results returned by the closure; the closure is expected to
550 /// return a free region (relative to this binder), and hence the
551 /// binder is removed in the return type. The closure is invoked
552 /// once for each unique `BoundRegion`; multiple references to the
553 /// same `BoundRegion` will reuse the previous result. A map is
554 /// returned at the end with each bound region and the free region
555 /// that replaced it.
556 ///
557 /// This method only replaces late bound regions and the result may still
558 /// contain escaping bound types.
559 pub fn replace_late_bound_regions<T, F>(
560 self,
561 value: &Binder<T>,
562 fld_r: F
563 ) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
564 where F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
565 T: TypeFoldable<'tcx>
566 {
567 // identity for bound types and consts
568 let fld_t = |bound_ty| self.mk_ty(ty::Bound(ty::INNERMOST, bound_ty));
569 let fld_c = |bound_ct, ty| {
570 self.mk_const(ty::Const {
571 val: ConstValue::Bound(ty::INNERMOST, bound_ct),
572 ty,
573 })
574 };
575 self.replace_escaping_bound_vars(value.skip_binder(), fld_r, fld_t, fld_c)
576 }
577
578 /// Replaces all escaping bound vars. The `fld_r` closure replaces escaping
579 /// bound regions; the `fld_t` closure replaces escaping bound types and the `fld_c`
580 /// closure replaces escaping bound consts.
581 pub fn replace_escaping_bound_vars<T, F, G, H>(
582 self,
583 value: &T,
584 mut fld_r: F,
585 mut fld_t: G,
586 mut fld_c: H,
587 ) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
588 where F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
589 G: FnMut(ty::BoundTy) -> Ty<'tcx>,
590 H: FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx>,
591 T: TypeFoldable<'tcx>,
592 {
593 use rustc_data_structures::fx::FxHashMap;
594
595 let mut region_map = BTreeMap::new();
596 let mut type_map = FxHashMap::default();
597 let mut const_map = FxHashMap::default();
598
599 if !value.has_escaping_bound_vars() {
600 (value.clone(), region_map)
601 } else {
602 let mut real_fld_r = |br| {
603 *region_map.entry(br).or_insert_with(|| fld_r(br))
604 };
605
606 let mut real_fld_t = |bound_ty| {
607 *type_map.entry(bound_ty).or_insert_with(|| fld_t(bound_ty))
608 };
609
610 let mut real_fld_c = |bound_ct, ty| {
611 *const_map.entry(bound_ct).or_insert_with(|| fld_c(bound_ct, ty))
612 };
613
614 let mut replacer = BoundVarReplacer::new(
615 self,
616 &mut real_fld_r,
617 &mut real_fld_t,
618 &mut real_fld_c,
619 );
620 let result = value.fold_with(&mut replacer);
621 (result, region_map)
622 }
623 }
624
625 /// Replaces all types or regions bound by the given `Binder`. The `fld_r`
626 /// closure replaces bound regions while the `fld_t` closure replaces bound
627 /// types.
628 pub fn replace_bound_vars<T, F, G, H>(
629 self,
630 value: &Binder<T>,
631 fld_r: F,
632 fld_t: G,
633 fld_c: H,
634 ) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
635 where F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
636 G: FnMut(ty::BoundTy) -> Ty<'tcx>,
637 H: FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx>,
638 T: TypeFoldable<'tcx>
639 {
640 self.replace_escaping_bound_vars(value.skip_binder(), fld_r, fld_t, fld_c)
641 }
642
643 /// Replaces any late-bound regions bound in `value` with
644 /// free variants attached to `all_outlive_scope`.
645 pub fn liberate_late_bound_regions<T>(
646 &self,
647 all_outlive_scope: DefId,
648 value: &ty::Binder<T>
649 ) -> T
650 where T: TypeFoldable<'tcx> {
651 self.replace_late_bound_regions(value, |br| {
652 self.mk_region(ty::ReFree(ty::FreeRegion {
653 scope: all_outlive_scope,
654 bound_region: br
655 }))
656 }).0
657 }
658
659 /// Returns a set of all late-bound regions that are constrained
660 /// by `value`, meaning that if we instantiate those LBR with
661 /// variables and equate `value` with something else, those
662 /// variables will also be equated.
663 pub fn collect_constrained_late_bound_regions<T>(&self, value: &Binder<T>)
664 -> FxHashSet<ty::BoundRegion>
665 where T : TypeFoldable<'tcx>
666 {
667 self.collect_late_bound_regions(value, true)
668 }
669
670 /// Returns a set of all late-bound regions that appear in `value` anywhere.
671 pub fn collect_referenced_late_bound_regions<T>(&self, value: &Binder<T>)
672 -> FxHashSet<ty::BoundRegion>
673 where T : TypeFoldable<'tcx>
674 {
675 self.collect_late_bound_regions(value, false)
676 }
677
678 fn collect_late_bound_regions<T>(&self, value: &Binder<T>, just_constraint: bool)
679 -> FxHashSet<ty::BoundRegion>
680 where T : TypeFoldable<'tcx>
681 {
682 let mut collector = LateBoundRegionsCollector::new(just_constraint);
683 let result = value.skip_binder().visit_with(&mut collector);
684 assert!(!result); // should never have stopped early
685 collector.regions
686 }
687
688 /// Replaces any late-bound regions bound in `value` with `'erased`. Useful in codegen but also
689 /// method lookup and a few other places where precise region relationships are not required.
690 pub fn erase_late_bound_regions<T>(self, value: &Binder<T>) -> T
691 where T : TypeFoldable<'tcx>
692 {
693 self.replace_late_bound_regions(value, |_| self.lifetimes.re_erased).0
694 }
695
696 /// Rewrite any late-bound regions so that they are anonymous. Region numbers are
697 /// assigned starting at 1 and increasing monotonically in the order traversed
698 /// by the fold operation.
699 ///
700 /// The chief purpose of this function is to canonicalize regions so that two
701 /// `FnSig`s or `TraitRef`s which are equivalent up to region naming will become
702 /// structurally identical. For example, `for<'a, 'b> fn(&'a isize, &'b isize)` and
703 /// `for<'a, 'b> fn(&'b isize, &'a isize)` will become identical after anonymization.
704 pub fn anonymize_late_bound_regions<T>(self, sig: &Binder<T>) -> Binder<T>
705 where T : TypeFoldable<'tcx>,
706 {
707 let mut counter = 0;
708 Binder::bind(self.replace_late_bound_regions(sig, |_| {
709 counter += 1;
710 self.mk_region(ty::ReLateBound(ty::INNERMOST, ty::BrAnon(counter)))
711 }).0)
712 }
713 }
714
715 ///////////////////////////////////////////////////////////////////////////
716 // Shifter
717 //
718 // Shifts the De Bruijn indices on all escaping bound vars by a
719 // fixed amount. Useful in substitution or when otherwise introducing
720 // a binding level that is not intended to capture the existing bound
721 // vars. See comment on `shift_vars_through_binders` method in
722 // `subst.rs` for more details.
723
724 enum Direction {
725 In,
726 Out,
727 }
728
729 struct Shifter<'tcx> {
730 tcx: TyCtxt<'tcx>,
731 current_index: ty::DebruijnIndex,
732 amount: u32,
733 direction: Direction,
734 }
735
736 impl Shifter<'tcx> {
737 pub fn new(tcx: TyCtxt<'tcx>, amount: u32, direction: Direction) -> Self {
738 Shifter {
739 tcx,
740 current_index: ty::INNERMOST,
741 amount,
742 direction,
743 }
744 }
745 }
746
747 impl TypeFolder<'tcx> for Shifter<'tcx> {
748 fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
749 self.tcx
750 }
751
752 fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: &ty::Binder<T>) -> ty::Binder<T> {
753 self.current_index.shift_in(1);
754 let t = t.super_fold_with(self);
755 self.current_index.shift_out(1);
756 t
757 }
758
759 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
760 match *r {
761 ty::ReLateBound(debruijn, br) => {
762 if self.amount == 0 || debruijn < self.current_index {
763 r
764 } else {
765 let debruijn = match self.direction {
766 Direction::In => debruijn.shifted_in(self.amount),
767 Direction::Out => {
768 assert!(debruijn.as_u32() >= self.amount);
769 debruijn.shifted_out(self.amount)
770 }
771 };
772 let shifted = ty::ReLateBound(debruijn, br);
773 self.tcx.mk_region(shifted)
774 }
775 }
776 _ => r
777 }
778 }
779
780 fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
781 match ty.kind {
782 ty::Bound(debruijn, bound_ty) => {
783 if self.amount == 0 || debruijn < self.current_index {
784 ty
785 } else {
786 let debruijn = match self.direction {
787 Direction::In => debruijn.shifted_in(self.amount),
788 Direction::Out => {
789 assert!(debruijn.as_u32() >= self.amount);
790 debruijn.shifted_out(self.amount)
791 }
792 };
793 self.tcx.mk_ty(
794 ty::Bound(debruijn, bound_ty)
795 )
796 }
797 }
798
799 _ => ty.super_fold_with(self),
800 }
801 }
802
803 fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
804 if let ty::Const { val: ConstValue::Bound(debruijn, bound_ct), ty } = *ct {
805 if self.amount == 0 || debruijn < self.current_index {
806 ct
807 } else {
808 let debruijn = match self.direction {
809 Direction::In => debruijn.shifted_in(self.amount),
810 Direction::Out => {
811 assert!(debruijn.as_u32() >= self.amount);
812 debruijn.shifted_out(self.amount)
813 }
814 };
815 self.tcx.mk_const(ty::Const {
816 val: ConstValue::Bound(debruijn, bound_ct),
817 ty,
818 })
819 }
820 } else {
821 ct.super_fold_with(self)
822 }
823 }
824 }
825
826 pub fn shift_region<'tcx>(
827 tcx: TyCtxt<'tcx>,
828 region: ty::Region<'tcx>,
829 amount: u32,
830 ) -> ty::Region<'tcx> {
831 match region {
832 ty::ReLateBound(debruijn, br) if amount > 0 => {
833 tcx.mk_region(ty::ReLateBound(debruijn.shifted_in(amount), *br))
834 }
835 _ => {
836 region
837 }
838 }
839 }
840
841 pub fn shift_vars<'tcx, T>(tcx: TyCtxt<'tcx>, value: &T, amount: u32) -> T
842 where
843 T: TypeFoldable<'tcx>,
844 {
845 debug!("shift_vars(value={:?}, amount={})",
846 value, amount);
847
848 value.fold_with(&mut Shifter::new(tcx, amount, Direction::In))
849 }
850
851 pub fn shift_out_vars<'tcx, T>(tcx: TyCtxt<'tcx>, value: &T, amount: u32) -> T
852 where
853 T: TypeFoldable<'tcx>,
854 {
855 debug!("shift_out_vars(value={:?}, amount={})",
856 value, amount);
857
858 value.fold_with(&mut Shifter::new(tcx, amount, Direction::Out))
859 }
860
861 /// An "escaping var" is a bound var whose binder is not part of `t`. A bound var can be a
862 /// bound region or a bound type.
863 ///
864 /// So, for example, consider a type like the following, which has two binders:
865 ///
866 /// for<'a> fn(x: for<'b> fn(&'a isize, &'b isize))
867 /// ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ outer scope
868 /// ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ inner scope
869 ///
870 /// This type has *bound regions* (`'a`, `'b`), but it does not have escaping regions, because the
871 /// binders of both `'a` and `'b` are part of the type itself. However, if we consider the *inner
872 /// fn type*, that type has an escaping region: `'a`.
873 ///
874 /// Note that what I'm calling an "escaping var" is often just called a "free var". However,
875 /// we already use the term "free var". It refers to the regions or types that we use to represent
876 /// bound regions or type params on a fn definition while we are type checking its body.
877 ///
878 /// To clarify, conceptually there is no particular difference between
879 /// an "escaping" var and a "free" var. However, there is a big
880 /// difference in practice. Basically, when "entering" a binding
881 /// level, one is generally required to do some sort of processing to
882 /// a bound var, such as replacing it with a fresh/placeholder
883 /// var, or making an entry in the environment to represent the
884 /// scope to which it is attached, etc. An escaping var represents
885 /// a bound var for which this processing has not yet been done.
886 struct HasEscapingVarsVisitor {
887 /// Anything bound by `outer_index` or "above" is escaping.
888 outer_index: ty::DebruijnIndex,
889 }
890
891 impl<'tcx> TypeVisitor<'tcx> for HasEscapingVarsVisitor {
892 fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
893 self.outer_index.shift_in(1);
894 let result = t.super_visit_with(self);
895 self.outer_index.shift_out(1);
896 result
897 }
898
899 fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
900 // If the outer-exclusive-binder is *strictly greater* than
901 // `outer_index`, that means that `t` contains some content
902 // bound at `outer_index` or above (because
903 // `outer_exclusive_binder` is always 1 higher than the
904 // content in `t`). Therefore, `t` has some escaping vars.
905 t.outer_exclusive_binder > self.outer_index
906 }
907
908 fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
909 // If the region is bound by `outer_index` or anything outside
910 // of outer index, then it escapes the binders we have
911 // visited.
912 r.bound_at_or_above_binder(self.outer_index)
913 }
914
915 fn visit_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> bool {
916 // we don't have a `visit_infer_const` callback, so we have to
917 // hook in here to catch this case (annoying...), but
918 // otherwise we do want to remember to visit the rest of the
919 // const, as it has types/regions embedded in a lot of other
920 // places.
921 match ct.val {
922 ConstValue::Bound(debruijn, _) if debruijn >= self.outer_index => true,
923 _ => ct.super_visit_with(self),
924 }
925 }
926 }
927
928 // FIXME: Optimize for checking for infer flags
929 struct HasTypeFlagsVisitor {
930 flags: ty::TypeFlags,
931 }
932
933 impl<'tcx> TypeVisitor<'tcx> for HasTypeFlagsVisitor {
934 fn visit_ty(&mut self, t: Ty<'_>) -> bool {
935 debug!("HasTypeFlagsVisitor: t={:?} t.flags={:?} self.flags={:?}", t, t.flags, self.flags);
936 t.flags.intersects(self.flags)
937 }
938
939 fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
940 let flags = r.type_flags();
941 debug!("HasTypeFlagsVisitor: r={:?} r.flags={:?} self.flags={:?}", r, flags, self.flags);
942 flags.intersects(self.flags)
943 }
944
945 fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> bool {
946 let flags = FlagComputation::for_const(c);
947 debug!("HasTypeFlagsVisitor: c={:?} c.flags={:?} self.flags={:?}", c, flags, self.flags);
948 flags.intersects(self.flags)
949 }
950 }
951
952 /// Collects all the late-bound regions at the innermost binding level
953 /// into a hash set.
954 struct LateBoundRegionsCollector {
955 current_index: ty::DebruijnIndex,
956 regions: FxHashSet<ty::BoundRegion>,
957
958 /// `true` if we only want regions that are known to be
959 /// "constrained" when you equate this type with another type. In
960 /// particular, if you have e.g., `&'a u32` and `&'b u32`, equating
961 /// them constraints `'a == 'b`. But if you have `<&'a u32 as
962 /// Trait>::Foo` and `<&'b u32 as Trait>::Foo`, normalizing those
963 /// types may mean that `'a` and `'b` don't appear in the results,
964 /// so they are not considered *constrained*.
965 just_constrained: bool,
966 }
967
968 impl LateBoundRegionsCollector {
969 fn new(just_constrained: bool) -> Self {
970 LateBoundRegionsCollector {
971 current_index: ty::INNERMOST,
972 regions: Default::default(),
973 just_constrained,
974 }
975 }
976 }
977
978 impl<'tcx> TypeVisitor<'tcx> for LateBoundRegionsCollector {
979 fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
980 self.current_index.shift_in(1);
981 let result = t.super_visit_with(self);
982 self.current_index.shift_out(1);
983 result
984 }
985
986 fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
987 // if we are only looking for "constrained" region, we have to
988 // ignore the inputs to a projection, as they may not appear
989 // in the normalized form
990 if self.just_constrained {
991 match t.kind {
992 ty::Projection(..) | ty::Opaque(..) => { return false; }
993 _ => { }
994 }
995 }
996
997 t.super_visit_with(self)
998 }
999
1000 fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
1001 if let ty::ReLateBound(debruijn, br) = *r {
1002 if debruijn == self.current_index {
1003 self.regions.insert(br);
1004 }
1005 }
1006 false
1007 }
1008 }