]> git.proxmox.com Git - rustc.git/blob - src/librustc/ty/relate.rs
New upstream version 1.43.0+dfsg1
[rustc.git] / src / librustc / ty / relate.rs
1 //! Generalized type relating mechanism.
2 //!
3 //! A type relation `R` relates a pair of values `(A, B)`. `A and B` are usually
4 //! types or regions but can be other things. Examples of type relations are
5 //! subtyping, type equality, etc.
6
7 use crate::mir::interpret::{get_slice_bytes, ConstValue};
8 use crate::traits;
9 use crate::ty::error::{ExpectedFound, TypeError};
10 use crate::ty::subst::{GenericArg, GenericArgKind, SubstsRef};
11 use crate::ty::{self, Ty, TyCtxt, TypeFoldable};
12 use rustc_hir as ast;
13 use rustc_hir::def_id::DefId;
14 use rustc_target::spec::abi;
15 use std::iter;
16 use std::rc::Rc;
17
18 pub type RelateResult<'tcx, T> = Result<T, TypeError<'tcx>>;
19
20 #[derive(Clone, Debug)]
21 pub enum Cause {
22 ExistentialRegionBound, // relating an existential region bound
23 }
24
25 pub trait TypeRelation<'tcx>: Sized {
26 fn tcx(&self) -> TyCtxt<'tcx>;
27
28 fn param_env(&self) -> ty::ParamEnv<'tcx>;
29
30 /// Returns a static string we can use for printouts.
31 fn tag(&self) -> &'static str;
32
33 /// Returns `true` if the value `a` is the "expected" type in the
34 /// relation. Just affects error messages.
35 fn a_is_expected(&self) -> bool;
36
37 fn with_cause<F, R>(&mut self, _cause: Cause, f: F) -> R
38 where
39 F: FnOnce(&mut Self) -> R,
40 {
41 f(self)
42 }
43
44 /// Generic relation routine suitable for most anything.
45 fn relate<T: Relate<'tcx>>(&mut self, a: &T, b: &T) -> RelateResult<'tcx, T> {
46 Relate::relate(self, a, b)
47 }
48
49 /// Relate the two substitutions for the given item. The default
50 /// is to look up the variance for the item and proceed
51 /// accordingly.
52 fn relate_item_substs(
53 &mut self,
54 item_def_id: DefId,
55 a_subst: SubstsRef<'tcx>,
56 b_subst: SubstsRef<'tcx>,
57 ) -> RelateResult<'tcx, SubstsRef<'tcx>> {
58 debug!(
59 "relate_item_substs(item_def_id={:?}, a_subst={:?}, b_subst={:?})",
60 item_def_id, a_subst, b_subst
61 );
62
63 let opt_variances = self.tcx().variances_of(item_def_id);
64 relate_substs(self, Some(opt_variances), a_subst, b_subst)
65 }
66
67 /// Switch variance for the purpose of relating `a` and `b`.
68 fn relate_with_variance<T: Relate<'tcx>>(
69 &mut self,
70 variance: ty::Variance,
71 a: &T,
72 b: &T,
73 ) -> RelateResult<'tcx, T>;
74
75 // Overridable relations. You shouldn't typically call these
76 // directly, instead call `relate()`, which in turn calls
77 // these. This is both more uniform but also allows us to add
78 // additional hooks for other types in the future if needed
79 // without making older code, which called `relate`, obsolete.
80
81 fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>>;
82
83 fn regions(
84 &mut self,
85 a: ty::Region<'tcx>,
86 b: ty::Region<'tcx>,
87 ) -> RelateResult<'tcx, ty::Region<'tcx>>;
88
89 fn consts(
90 &mut self,
91 a: &'tcx ty::Const<'tcx>,
92 b: &'tcx ty::Const<'tcx>,
93 ) -> RelateResult<'tcx, &'tcx ty::Const<'tcx>>;
94
95 fn binders<T>(
96 &mut self,
97 a: &ty::Binder<T>,
98 b: &ty::Binder<T>,
99 ) -> RelateResult<'tcx, ty::Binder<T>>
100 where
101 T: Relate<'tcx>;
102 }
103
104 pub trait Relate<'tcx>: TypeFoldable<'tcx> {
105 fn relate<R: TypeRelation<'tcx>>(
106 relation: &mut R,
107 a: &Self,
108 b: &Self,
109 ) -> RelateResult<'tcx, Self>;
110 }
111
112 ///////////////////////////////////////////////////////////////////////////
113 // Relate impls
114
115 impl<'tcx> Relate<'tcx> for ty::TypeAndMut<'tcx> {
116 fn relate<R: TypeRelation<'tcx>>(
117 relation: &mut R,
118 a: &ty::TypeAndMut<'tcx>,
119 b: &ty::TypeAndMut<'tcx>,
120 ) -> RelateResult<'tcx, ty::TypeAndMut<'tcx>> {
121 debug!("{}.mts({:?}, {:?})", relation.tag(), a, b);
122 if a.mutbl != b.mutbl {
123 Err(TypeError::Mutability)
124 } else {
125 let mutbl = a.mutbl;
126 let variance = match mutbl {
127 ast::Mutability::Not => ty::Covariant,
128 ast::Mutability::Mut => ty::Invariant,
129 };
130 let ty = relation.relate_with_variance(variance, &a.ty, &b.ty)?;
131 Ok(ty::TypeAndMut { ty, mutbl })
132 }
133 }
134 }
135
136 pub fn relate_substs<R: TypeRelation<'tcx>>(
137 relation: &mut R,
138 variances: Option<&[ty::Variance]>,
139 a_subst: SubstsRef<'tcx>,
140 b_subst: SubstsRef<'tcx>,
141 ) -> RelateResult<'tcx, SubstsRef<'tcx>> {
142 let tcx = relation.tcx();
143
144 let params = a_subst.iter().zip(b_subst).enumerate().map(|(i, (a, b))| {
145 let variance = variances.map_or(ty::Invariant, |v| v[i]);
146 relation.relate_with_variance(variance, a, b)
147 });
148
149 Ok(tcx.mk_substs(params)?)
150 }
151
152 impl<'tcx> Relate<'tcx> for ty::FnSig<'tcx> {
153 fn relate<R: TypeRelation<'tcx>>(
154 relation: &mut R,
155 a: &ty::FnSig<'tcx>,
156 b: &ty::FnSig<'tcx>,
157 ) -> RelateResult<'tcx, ty::FnSig<'tcx>> {
158 let tcx = relation.tcx();
159
160 if a.c_variadic != b.c_variadic {
161 return Err(TypeError::VariadicMismatch(expected_found(
162 relation,
163 &a.c_variadic,
164 &b.c_variadic,
165 )));
166 }
167 let unsafety = relation.relate(&a.unsafety, &b.unsafety)?;
168 let abi = relation.relate(&a.abi, &b.abi)?;
169
170 if a.inputs().len() != b.inputs().len() {
171 return Err(TypeError::ArgCount);
172 }
173
174 let inputs_and_output = a
175 .inputs()
176 .iter()
177 .cloned()
178 .zip(b.inputs().iter().cloned())
179 .map(|x| (x, false))
180 .chain(iter::once(((a.output(), b.output()), true)))
181 .map(|((a, b), is_output)| {
182 if is_output {
183 relation.relate(&a, &b)
184 } else {
185 relation.relate_with_variance(ty::Contravariant, &a, &b)
186 }
187 });
188 Ok(ty::FnSig {
189 inputs_and_output: tcx.mk_type_list(inputs_and_output)?,
190 c_variadic: a.c_variadic,
191 unsafety,
192 abi,
193 })
194 }
195 }
196
197 impl<'tcx> Relate<'tcx> for ast::Unsafety {
198 fn relate<R: TypeRelation<'tcx>>(
199 relation: &mut R,
200 a: &ast::Unsafety,
201 b: &ast::Unsafety,
202 ) -> RelateResult<'tcx, ast::Unsafety> {
203 if a != b {
204 Err(TypeError::UnsafetyMismatch(expected_found(relation, a, b)))
205 } else {
206 Ok(*a)
207 }
208 }
209 }
210
211 impl<'tcx> Relate<'tcx> for abi::Abi {
212 fn relate<R: TypeRelation<'tcx>>(
213 relation: &mut R,
214 a: &abi::Abi,
215 b: &abi::Abi,
216 ) -> RelateResult<'tcx, abi::Abi> {
217 if a == b { Ok(*a) } else { Err(TypeError::AbiMismatch(expected_found(relation, a, b))) }
218 }
219 }
220
221 impl<'tcx> Relate<'tcx> for ty::ProjectionTy<'tcx> {
222 fn relate<R: TypeRelation<'tcx>>(
223 relation: &mut R,
224 a: &ty::ProjectionTy<'tcx>,
225 b: &ty::ProjectionTy<'tcx>,
226 ) -> RelateResult<'tcx, ty::ProjectionTy<'tcx>> {
227 if a.item_def_id != b.item_def_id {
228 Err(TypeError::ProjectionMismatched(expected_found(
229 relation,
230 &a.item_def_id,
231 &b.item_def_id,
232 )))
233 } else {
234 let substs = relation.relate(&a.substs, &b.substs)?;
235 Ok(ty::ProjectionTy { item_def_id: a.item_def_id, substs: &substs })
236 }
237 }
238 }
239
240 impl<'tcx> Relate<'tcx> for ty::ExistentialProjection<'tcx> {
241 fn relate<R: TypeRelation<'tcx>>(
242 relation: &mut R,
243 a: &ty::ExistentialProjection<'tcx>,
244 b: &ty::ExistentialProjection<'tcx>,
245 ) -> RelateResult<'tcx, ty::ExistentialProjection<'tcx>> {
246 if a.item_def_id != b.item_def_id {
247 Err(TypeError::ProjectionMismatched(expected_found(
248 relation,
249 &a.item_def_id,
250 &b.item_def_id,
251 )))
252 } else {
253 let ty = relation.relate(&a.ty, &b.ty)?;
254 let substs = relation.relate(&a.substs, &b.substs)?;
255 Ok(ty::ExistentialProjection { item_def_id: a.item_def_id, substs, ty })
256 }
257 }
258 }
259
260 impl<'tcx> Relate<'tcx> for Vec<ty::PolyExistentialProjection<'tcx>> {
261 fn relate<R: TypeRelation<'tcx>>(
262 relation: &mut R,
263 a: &Vec<ty::PolyExistentialProjection<'tcx>>,
264 b: &Vec<ty::PolyExistentialProjection<'tcx>>,
265 ) -> RelateResult<'tcx, Vec<ty::PolyExistentialProjection<'tcx>>> {
266 // To be compatible, `a` and `b` must be for precisely the
267 // same set of traits and item names. We always require that
268 // projection bounds lists are sorted by trait-def-id and item-name,
269 // so we can just iterate through the lists pairwise, so long as they are the
270 // same length.
271 if a.len() != b.len() {
272 Err(TypeError::ProjectionBoundsLength(expected_found(relation, &a.len(), &b.len())))
273 } else {
274 a.iter().zip(b).map(|(a, b)| relation.relate(a, b)).collect()
275 }
276 }
277 }
278
279 impl<'tcx> Relate<'tcx> for ty::TraitRef<'tcx> {
280 fn relate<R: TypeRelation<'tcx>>(
281 relation: &mut R,
282 a: &ty::TraitRef<'tcx>,
283 b: &ty::TraitRef<'tcx>,
284 ) -> RelateResult<'tcx, ty::TraitRef<'tcx>> {
285 // Different traits cannot be related.
286 if a.def_id != b.def_id {
287 Err(TypeError::Traits(expected_found(relation, &a.def_id, &b.def_id)))
288 } else {
289 let substs = relate_substs(relation, None, a.substs, b.substs)?;
290 Ok(ty::TraitRef { def_id: a.def_id, substs })
291 }
292 }
293 }
294
295 impl<'tcx> Relate<'tcx> for ty::ExistentialTraitRef<'tcx> {
296 fn relate<R: TypeRelation<'tcx>>(
297 relation: &mut R,
298 a: &ty::ExistentialTraitRef<'tcx>,
299 b: &ty::ExistentialTraitRef<'tcx>,
300 ) -> RelateResult<'tcx, ty::ExistentialTraitRef<'tcx>> {
301 // Different traits cannot be related.
302 if a.def_id != b.def_id {
303 Err(TypeError::Traits(expected_found(relation, &a.def_id, &b.def_id)))
304 } else {
305 let substs = relate_substs(relation, None, a.substs, b.substs)?;
306 Ok(ty::ExistentialTraitRef { def_id: a.def_id, substs })
307 }
308 }
309 }
310
311 #[derive(Debug, Clone, TypeFoldable)]
312 struct GeneratorWitness<'tcx>(&'tcx ty::List<Ty<'tcx>>);
313
314 impl<'tcx> Relate<'tcx> for GeneratorWitness<'tcx> {
315 fn relate<R: TypeRelation<'tcx>>(
316 relation: &mut R,
317 a: &GeneratorWitness<'tcx>,
318 b: &GeneratorWitness<'tcx>,
319 ) -> RelateResult<'tcx, GeneratorWitness<'tcx>> {
320 assert_eq!(a.0.len(), b.0.len());
321 let tcx = relation.tcx();
322 let types = tcx.mk_type_list(a.0.iter().zip(b.0).map(|(a, b)| relation.relate(a, b)))?;
323 Ok(GeneratorWitness(types))
324 }
325 }
326
327 impl<'tcx> Relate<'tcx> for Ty<'tcx> {
328 fn relate<R: TypeRelation<'tcx>>(
329 relation: &mut R,
330 a: &Ty<'tcx>,
331 b: &Ty<'tcx>,
332 ) -> RelateResult<'tcx, Ty<'tcx>> {
333 relation.tys(a, b)
334 }
335 }
336
337 /// The main "type relation" routine. Note that this does not handle
338 /// inference artifacts, so you should filter those out before calling
339 /// it.
340 pub fn super_relate_tys<R: TypeRelation<'tcx>>(
341 relation: &mut R,
342 a: Ty<'tcx>,
343 b: Ty<'tcx>,
344 ) -> RelateResult<'tcx, Ty<'tcx>> {
345 let tcx = relation.tcx();
346 debug!("super_relate_tys: a={:?} b={:?}", a, b);
347 match (&a.kind, &b.kind) {
348 (&ty::Infer(_), _) | (_, &ty::Infer(_)) => {
349 // The caller should handle these cases!
350 bug!("var types encountered in super_relate_tys")
351 }
352
353 (ty::Bound(..), _) | (_, ty::Bound(..)) => {
354 bug!("bound types encountered in super_relate_tys")
355 }
356
357 (&ty::Error, _) | (_, &ty::Error) => Ok(tcx.types.err),
358
359 (&ty::Never, _)
360 | (&ty::Char, _)
361 | (&ty::Bool, _)
362 | (&ty::Int(_), _)
363 | (&ty::Uint(_), _)
364 | (&ty::Float(_), _)
365 | (&ty::Str, _)
366 if a == b =>
367 {
368 Ok(a)
369 }
370
371 (&ty::Param(ref a_p), &ty::Param(ref b_p)) if a_p.index == b_p.index => Ok(a),
372
373 (ty::Placeholder(p1), ty::Placeholder(p2)) if p1 == p2 => Ok(a),
374
375 (&ty::Adt(a_def, a_substs), &ty::Adt(b_def, b_substs)) if a_def == b_def => {
376 let substs = relation.relate_item_substs(a_def.did, a_substs, b_substs)?;
377 Ok(tcx.mk_adt(a_def, substs))
378 }
379
380 (&ty::Foreign(a_id), &ty::Foreign(b_id)) if a_id == b_id => Ok(tcx.mk_foreign(a_id)),
381
382 (&ty::Dynamic(ref a_obj, ref a_region), &ty::Dynamic(ref b_obj, ref b_region)) => {
383 let region_bound = relation.with_cause(Cause::ExistentialRegionBound, |relation| {
384 relation.relate_with_variance(ty::Contravariant, a_region, b_region)
385 })?;
386 Ok(tcx.mk_dynamic(relation.relate(a_obj, b_obj)?, region_bound))
387 }
388
389 (&ty::Generator(a_id, a_substs, movability), &ty::Generator(b_id, b_substs, _))
390 if a_id == b_id =>
391 {
392 // All Generator types with the same id represent
393 // the (anonymous) type of the same generator expression. So
394 // all of their regions should be equated.
395 let substs = relation.relate(&a_substs, &b_substs)?;
396 Ok(tcx.mk_generator(a_id, substs, movability))
397 }
398
399 (&ty::GeneratorWitness(a_types), &ty::GeneratorWitness(b_types)) => {
400 // Wrap our types with a temporary GeneratorWitness struct
401 // inside the binder so we can related them
402 let a_types = a_types.map_bound(GeneratorWitness);
403 let b_types = b_types.map_bound(GeneratorWitness);
404 // Then remove the GeneratorWitness for the result
405 let types = relation.relate(&a_types, &b_types)?.map_bound(|witness| witness.0);
406 Ok(tcx.mk_generator_witness(types))
407 }
408
409 (&ty::Closure(a_id, a_substs), &ty::Closure(b_id, b_substs)) if a_id == b_id => {
410 // All Closure types with the same id represent
411 // the (anonymous) type of the same closure expression. So
412 // all of their regions should be equated.
413 let substs = relation.relate(&a_substs, &b_substs)?;
414 Ok(tcx.mk_closure(a_id, &substs))
415 }
416
417 (&ty::RawPtr(ref a_mt), &ty::RawPtr(ref b_mt)) => {
418 let mt = relation.relate(a_mt, b_mt)?;
419 Ok(tcx.mk_ptr(mt))
420 }
421
422 (&ty::Ref(a_r, a_ty, a_mutbl), &ty::Ref(b_r, b_ty, b_mutbl)) => {
423 let r = relation.relate_with_variance(ty::Contravariant, &a_r, &b_r)?;
424 let a_mt = ty::TypeAndMut { ty: a_ty, mutbl: a_mutbl };
425 let b_mt = ty::TypeAndMut { ty: b_ty, mutbl: b_mutbl };
426 let mt = relation.relate(&a_mt, &b_mt)?;
427 Ok(tcx.mk_ref(r, mt))
428 }
429
430 (&ty::Array(a_t, sz_a), &ty::Array(b_t, sz_b)) => {
431 let t = relation.relate(&a_t, &b_t)?;
432 match relation.relate(&sz_a, &sz_b) {
433 Ok(sz) => Ok(tcx.mk_ty(ty::Array(t, sz))),
434 Err(err) => {
435 // Check whether the lengths are both concrete/known values,
436 // but are unequal, for better diagnostics.
437 let sz_a = sz_a.try_eval_usize(tcx, relation.param_env());
438 let sz_b = sz_b.try_eval_usize(tcx, relation.param_env());
439 match (sz_a, sz_b) {
440 (Some(sz_a_val), Some(sz_b_val)) => Err(TypeError::FixedArraySize(
441 expected_found(relation, &sz_a_val, &sz_b_val),
442 )),
443 _ => return Err(err),
444 }
445 }
446 }
447 }
448
449 (&ty::Slice(a_t), &ty::Slice(b_t)) => {
450 let t = relation.relate(&a_t, &b_t)?;
451 Ok(tcx.mk_slice(t))
452 }
453
454 (&ty::Tuple(as_), &ty::Tuple(bs)) => {
455 if as_.len() == bs.len() {
456 Ok(tcx.mk_tup(
457 as_.iter()
458 .zip(bs)
459 .map(|(a, b)| relation.relate(&a.expect_ty(), &b.expect_ty())),
460 )?)
461 } else if !(as_.is_empty() || bs.is_empty()) {
462 Err(TypeError::TupleSize(expected_found(relation, &as_.len(), &bs.len())))
463 } else {
464 Err(TypeError::Sorts(expected_found(relation, &a, &b)))
465 }
466 }
467
468 (&ty::FnDef(a_def_id, a_substs), &ty::FnDef(b_def_id, b_substs))
469 if a_def_id == b_def_id =>
470 {
471 let substs = relation.relate_item_substs(a_def_id, a_substs, b_substs)?;
472 Ok(tcx.mk_fn_def(a_def_id, substs))
473 }
474
475 (&ty::FnPtr(a_fty), &ty::FnPtr(b_fty)) => {
476 let fty = relation.relate(&a_fty, &b_fty)?;
477 Ok(tcx.mk_fn_ptr(fty))
478 }
479
480 (ty::UnnormalizedProjection(a_data), ty::UnnormalizedProjection(b_data)) => {
481 let projection_ty = relation.relate(a_data, b_data)?;
482 Ok(tcx.mk_ty(ty::UnnormalizedProjection(projection_ty)))
483 }
484
485 // these two are already handled downstream in case of lazy normalization
486 (ty::Projection(a_data), ty::Projection(b_data)) => {
487 let projection_ty = relation.relate(a_data, b_data)?;
488 Ok(tcx.mk_projection(projection_ty.item_def_id, projection_ty.substs))
489 }
490
491 (&ty::Opaque(a_def_id, a_substs), &ty::Opaque(b_def_id, b_substs))
492 if a_def_id == b_def_id =>
493 {
494 let substs = relate_substs(relation, None, a_substs, b_substs)?;
495 Ok(tcx.mk_opaque(a_def_id, substs))
496 }
497
498 _ => Err(TypeError::Sorts(expected_found(relation, &a, &b))),
499 }
500 }
501
502 /// The main "const relation" routine. Note that this does not handle
503 /// inference artifacts, so you should filter those out before calling
504 /// it.
505 pub fn super_relate_consts<R: TypeRelation<'tcx>>(
506 relation: &mut R,
507 a: &'tcx ty::Const<'tcx>,
508 b: &'tcx ty::Const<'tcx>,
509 ) -> RelateResult<'tcx, &'tcx ty::Const<'tcx>> {
510 let tcx = relation.tcx();
511
512 let eagerly_eval = |x: &'tcx ty::Const<'tcx>| {
513 if !x.val.has_local_value() {
514 return x.eval(tcx, relation.param_env()).val;
515 }
516 x.val
517 };
518
519 // Currently, the values that can be unified are primitive types,
520 // and those that derive both `PartialEq` and `Eq`, corresponding
521 // to `structural_match` types.
522 let new_const_val = match (eagerly_eval(a), eagerly_eval(b)) {
523 (ty::ConstKind::Infer(_), _) | (_, ty::ConstKind::Infer(_)) => {
524 // The caller should handle these cases!
525 bug!("var types encountered in super_relate_consts: {:?} {:?}", a, b)
526 }
527 (ty::ConstKind::Param(a_p), ty::ConstKind::Param(b_p)) if a_p.index == b_p.index => {
528 return Ok(a);
529 }
530 (ty::ConstKind::Placeholder(p1), ty::ConstKind::Placeholder(p2)) if p1 == p2 => {
531 return Ok(a);
532 }
533 (ty::ConstKind::Value(a_val), ty::ConstKind::Value(b_val)) => {
534 let new_val = match (a_val, b_val) {
535 (ConstValue::Scalar(a_val), ConstValue::Scalar(b_val)) if a.ty == b.ty => {
536 if a_val == b_val {
537 Ok(ConstValue::Scalar(a_val))
538 } else if let ty::FnPtr(_) = a.ty.kind {
539 let alloc_map = tcx.alloc_map.lock();
540 let a_instance = alloc_map.unwrap_fn(a_val.assert_ptr().alloc_id);
541 let b_instance = alloc_map.unwrap_fn(b_val.assert_ptr().alloc_id);
542 if a_instance == b_instance {
543 Ok(ConstValue::Scalar(a_val))
544 } else {
545 Err(TypeError::ConstMismatch(expected_found(relation, &a, &b)))
546 }
547 } else {
548 Err(TypeError::ConstMismatch(expected_found(relation, &a, &b)))
549 }
550 }
551
552 (a_val @ ConstValue::Slice { .. }, b_val @ ConstValue::Slice { .. }) => {
553 let a_bytes = get_slice_bytes(&tcx, a_val);
554 let b_bytes = get_slice_bytes(&tcx, b_val);
555 if a_bytes == b_bytes {
556 Ok(a_val)
557 } else {
558 Err(TypeError::ConstMismatch(expected_found(relation, &a, &b)))
559 }
560 }
561
562 // FIXME(const_generics): handle `ConstValue::ByRef`.
563 _ => Err(TypeError::ConstMismatch(expected_found(relation, &a, &b))),
564 };
565
566 new_val.map(ty::ConstKind::Value)
567 }
568
569 // FIXME(const_generics): this is wrong, as it is a projection
570 (
571 ty::ConstKind::Unevaluated(a_def_id, a_substs, a_promoted),
572 ty::ConstKind::Unevaluated(b_def_id, b_substs, b_promoted),
573 ) if a_def_id == b_def_id && a_promoted == b_promoted => {
574 let substs =
575 relation.relate_with_variance(ty::Variance::Invariant, &a_substs, &b_substs)?;
576 Ok(ty::ConstKind::Unevaluated(a_def_id, &substs, a_promoted))
577 }
578 _ => Err(TypeError::ConstMismatch(expected_found(relation, &a, &b))),
579 };
580 new_const_val.map(|val| tcx.mk_const(ty::Const { val, ty: a.ty }))
581 }
582
583 impl<'tcx> Relate<'tcx> for &'tcx ty::List<ty::ExistentialPredicate<'tcx>> {
584 fn relate<R: TypeRelation<'tcx>>(
585 relation: &mut R,
586 a: &Self,
587 b: &Self,
588 ) -> RelateResult<'tcx, Self> {
589 if a.len() != b.len() {
590 return Err(TypeError::ExistentialMismatch(expected_found(relation, a, b)));
591 }
592
593 let tcx = relation.tcx();
594 let v = a.iter().zip(b.iter()).map(|(ep_a, ep_b)| {
595 use crate::ty::ExistentialPredicate::*;
596 match (*ep_a, *ep_b) {
597 (Trait(ref a), Trait(ref b)) => Ok(Trait(relation.relate(a, b)?)),
598 (Projection(ref a), Projection(ref b)) => Ok(Projection(relation.relate(a, b)?)),
599 (AutoTrait(ref a), AutoTrait(ref b)) if a == b => Ok(AutoTrait(*a)),
600 _ => Err(TypeError::ExistentialMismatch(expected_found(relation, a, b))),
601 }
602 });
603 Ok(tcx.mk_existential_predicates(v)?)
604 }
605 }
606
607 impl<'tcx> Relate<'tcx> for ty::ClosureSubsts<'tcx> {
608 fn relate<R: TypeRelation<'tcx>>(
609 relation: &mut R,
610 a: &ty::ClosureSubsts<'tcx>,
611 b: &ty::ClosureSubsts<'tcx>,
612 ) -> RelateResult<'tcx, ty::ClosureSubsts<'tcx>> {
613 let substs = relate_substs(relation, None, a.substs, b.substs)?;
614 Ok(ty::ClosureSubsts { substs })
615 }
616 }
617
618 impl<'tcx> Relate<'tcx> for ty::GeneratorSubsts<'tcx> {
619 fn relate<R: TypeRelation<'tcx>>(
620 relation: &mut R,
621 a: &ty::GeneratorSubsts<'tcx>,
622 b: &ty::GeneratorSubsts<'tcx>,
623 ) -> RelateResult<'tcx, ty::GeneratorSubsts<'tcx>> {
624 let substs = relate_substs(relation, None, a.substs, b.substs)?;
625 Ok(ty::GeneratorSubsts { substs })
626 }
627 }
628
629 impl<'tcx> Relate<'tcx> for SubstsRef<'tcx> {
630 fn relate<R: TypeRelation<'tcx>>(
631 relation: &mut R,
632 a: &SubstsRef<'tcx>,
633 b: &SubstsRef<'tcx>,
634 ) -> RelateResult<'tcx, SubstsRef<'tcx>> {
635 relate_substs(relation, None, a, b)
636 }
637 }
638
639 impl<'tcx> Relate<'tcx> for ty::Region<'tcx> {
640 fn relate<R: TypeRelation<'tcx>>(
641 relation: &mut R,
642 a: &ty::Region<'tcx>,
643 b: &ty::Region<'tcx>,
644 ) -> RelateResult<'tcx, ty::Region<'tcx>> {
645 relation.regions(*a, *b)
646 }
647 }
648
649 impl<'tcx> Relate<'tcx> for &'tcx ty::Const<'tcx> {
650 fn relate<R: TypeRelation<'tcx>>(
651 relation: &mut R,
652 a: &&'tcx ty::Const<'tcx>,
653 b: &&'tcx ty::Const<'tcx>,
654 ) -> RelateResult<'tcx, &'tcx ty::Const<'tcx>> {
655 relation.consts(*a, *b)
656 }
657 }
658
659 impl<'tcx, T: Relate<'tcx>> Relate<'tcx> for ty::Binder<T> {
660 fn relate<R: TypeRelation<'tcx>>(
661 relation: &mut R,
662 a: &ty::Binder<T>,
663 b: &ty::Binder<T>,
664 ) -> RelateResult<'tcx, ty::Binder<T>> {
665 relation.binders(a, b)
666 }
667 }
668
669 impl<'tcx, T: Relate<'tcx>> Relate<'tcx> for Rc<T> {
670 fn relate<R: TypeRelation<'tcx>>(
671 relation: &mut R,
672 a: &Rc<T>,
673 b: &Rc<T>,
674 ) -> RelateResult<'tcx, Rc<T>> {
675 let a: &T = a;
676 let b: &T = b;
677 Ok(Rc::new(relation.relate(a, b)?))
678 }
679 }
680
681 impl<'tcx, T: Relate<'tcx>> Relate<'tcx> for Box<T> {
682 fn relate<R: TypeRelation<'tcx>>(
683 relation: &mut R,
684 a: &Box<T>,
685 b: &Box<T>,
686 ) -> RelateResult<'tcx, Box<T>> {
687 let a: &T = a;
688 let b: &T = b;
689 Ok(Box::new(relation.relate(a, b)?))
690 }
691 }
692
693 impl<'tcx> Relate<'tcx> for GenericArg<'tcx> {
694 fn relate<R: TypeRelation<'tcx>>(
695 relation: &mut R,
696 a: &GenericArg<'tcx>,
697 b: &GenericArg<'tcx>,
698 ) -> RelateResult<'tcx, GenericArg<'tcx>> {
699 match (a.unpack(), b.unpack()) {
700 (GenericArgKind::Lifetime(a_lt), GenericArgKind::Lifetime(b_lt)) => {
701 Ok(relation.relate(&a_lt, &b_lt)?.into())
702 }
703 (GenericArgKind::Type(a_ty), GenericArgKind::Type(b_ty)) => {
704 Ok(relation.relate(&a_ty, &b_ty)?.into())
705 }
706 (GenericArgKind::Const(a_ct), GenericArgKind::Const(b_ct)) => {
707 Ok(relation.relate(&a_ct, &b_ct)?.into())
708 }
709 (GenericArgKind::Lifetime(unpacked), x) => {
710 bug!("impossible case reached: can't relate: {:?} with {:?}", unpacked, x)
711 }
712 (GenericArgKind::Type(unpacked), x) => {
713 bug!("impossible case reached: can't relate: {:?} with {:?}", unpacked, x)
714 }
715 (GenericArgKind::Const(unpacked), x) => {
716 bug!("impossible case reached: can't relate: {:?} with {:?}", unpacked, x)
717 }
718 }
719 }
720 }
721
722 impl<'tcx> Relate<'tcx> for ty::TraitPredicate<'tcx> {
723 fn relate<R: TypeRelation<'tcx>>(
724 relation: &mut R,
725 a: &ty::TraitPredicate<'tcx>,
726 b: &ty::TraitPredicate<'tcx>,
727 ) -> RelateResult<'tcx, ty::TraitPredicate<'tcx>> {
728 Ok(ty::TraitPredicate { trait_ref: relation.relate(&a.trait_ref, &b.trait_ref)? })
729 }
730 }
731
732 impl<'tcx> Relate<'tcx> for ty::ProjectionPredicate<'tcx> {
733 fn relate<R: TypeRelation<'tcx>>(
734 relation: &mut R,
735 a: &ty::ProjectionPredicate<'tcx>,
736 b: &ty::ProjectionPredicate<'tcx>,
737 ) -> RelateResult<'tcx, ty::ProjectionPredicate<'tcx>> {
738 Ok(ty::ProjectionPredicate {
739 projection_ty: relation.relate(&a.projection_ty, &b.projection_ty)?,
740 ty: relation.relate(&a.ty, &b.ty)?,
741 })
742 }
743 }
744
745 impl<'tcx> Relate<'tcx> for traits::WhereClause<'tcx> {
746 fn relate<R: TypeRelation<'tcx>>(
747 relation: &mut R,
748 a: &traits::WhereClause<'tcx>,
749 b: &traits::WhereClause<'tcx>,
750 ) -> RelateResult<'tcx, traits::WhereClause<'tcx>> {
751 use crate::traits::WhereClause::*;
752 match (a, b) {
753 (Implemented(a_pred), Implemented(b_pred)) => {
754 Ok(Implemented(relation.relate(a_pred, b_pred)?))
755 }
756
757 (ProjectionEq(a_pred), ProjectionEq(b_pred)) => {
758 Ok(ProjectionEq(relation.relate(a_pred, b_pred)?))
759 }
760
761 (RegionOutlives(a_pred), RegionOutlives(b_pred)) => {
762 Ok(RegionOutlives(ty::OutlivesPredicate(
763 relation.relate(&a_pred.0, &b_pred.0)?,
764 relation.relate(&a_pred.1, &b_pred.1)?,
765 )))
766 }
767
768 (TypeOutlives(a_pred), TypeOutlives(b_pred)) => {
769 Ok(TypeOutlives(ty::OutlivesPredicate(
770 relation.relate(&a_pred.0, &b_pred.0)?,
771 relation.relate(&a_pred.1, &b_pred.1)?,
772 )))
773 }
774
775 _ => Err(TypeError::Mismatch),
776 }
777 }
778 }
779
780 impl<'tcx> Relate<'tcx> for traits::WellFormed<'tcx> {
781 fn relate<R: TypeRelation<'tcx>>(
782 relation: &mut R,
783 a: &traits::WellFormed<'tcx>,
784 b: &traits::WellFormed<'tcx>,
785 ) -> RelateResult<'tcx, traits::WellFormed<'tcx>> {
786 use crate::traits::WellFormed::*;
787 match (a, b) {
788 (Trait(a_pred), Trait(b_pred)) => Ok(Trait(relation.relate(a_pred, b_pred)?)),
789 (Ty(a_ty), Ty(b_ty)) => Ok(Ty(relation.relate(a_ty, b_ty)?)),
790 _ => Err(TypeError::Mismatch),
791 }
792 }
793 }
794
795 impl<'tcx> Relate<'tcx> for traits::FromEnv<'tcx> {
796 fn relate<R: TypeRelation<'tcx>>(
797 relation: &mut R,
798 a: &traits::FromEnv<'tcx>,
799 b: &traits::FromEnv<'tcx>,
800 ) -> RelateResult<'tcx, traits::FromEnv<'tcx>> {
801 use crate::traits::FromEnv::*;
802 match (a, b) {
803 (Trait(a_pred), Trait(b_pred)) => Ok(Trait(relation.relate(a_pred, b_pred)?)),
804 (Ty(a_ty), Ty(b_ty)) => Ok(Ty(relation.relate(a_ty, b_ty)?)),
805 _ => Err(TypeError::Mismatch),
806 }
807 }
808 }
809
810 impl<'tcx> Relate<'tcx> for traits::DomainGoal<'tcx> {
811 fn relate<R: TypeRelation<'tcx>>(
812 relation: &mut R,
813 a: &traits::DomainGoal<'tcx>,
814 b: &traits::DomainGoal<'tcx>,
815 ) -> RelateResult<'tcx, traits::DomainGoal<'tcx>> {
816 use crate::traits::DomainGoal::*;
817 match (a, b) {
818 (Holds(a_wc), Holds(b_wc)) => Ok(Holds(relation.relate(a_wc, b_wc)?)),
819 (WellFormed(a_wf), WellFormed(b_wf)) => Ok(WellFormed(relation.relate(a_wf, b_wf)?)),
820 (FromEnv(a_fe), FromEnv(b_fe)) => Ok(FromEnv(relation.relate(a_fe, b_fe)?)),
821
822 (Normalize(a_pred), Normalize(b_pred)) => {
823 Ok(Normalize(relation.relate(a_pred, b_pred)?))
824 }
825
826 _ => Err(TypeError::Mismatch),
827 }
828 }
829 }
830
831 impl<'tcx> Relate<'tcx> for traits::Goal<'tcx> {
832 fn relate<R: TypeRelation<'tcx>>(
833 relation: &mut R,
834 a: &traits::Goal<'tcx>,
835 b: &traits::Goal<'tcx>,
836 ) -> RelateResult<'tcx, traits::Goal<'tcx>> {
837 use crate::traits::GoalKind::*;
838 match (a, b) {
839 (Implies(a_clauses, a_goal), Implies(b_clauses, b_goal)) => {
840 let clauses = relation.relate(a_clauses, b_clauses)?;
841 let goal = relation.relate(a_goal, b_goal)?;
842 Ok(relation.tcx().mk_goal(Implies(clauses, goal)))
843 }
844
845 (And(a_left, a_right), And(b_left, b_right)) => {
846 let left = relation.relate(a_left, b_left)?;
847 let right = relation.relate(a_right, b_right)?;
848 Ok(relation.tcx().mk_goal(And(left, right)))
849 }
850
851 (Not(a_goal), Not(b_goal)) => {
852 let goal = relation.relate(a_goal, b_goal)?;
853 Ok(relation.tcx().mk_goal(Not(goal)))
854 }
855
856 (DomainGoal(a_goal), DomainGoal(b_goal)) => {
857 let goal = relation.relate(a_goal, b_goal)?;
858 Ok(relation.tcx().mk_goal(DomainGoal(goal)))
859 }
860
861 (Quantified(a_qkind, a_goal), Quantified(b_qkind, b_goal)) if a_qkind == b_qkind => {
862 let goal = relation.relate(a_goal, b_goal)?;
863 Ok(relation.tcx().mk_goal(Quantified(*a_qkind, goal)))
864 }
865
866 (CannotProve, CannotProve) => Ok(*a),
867
868 _ => Err(TypeError::Mismatch),
869 }
870 }
871 }
872
873 impl<'tcx> Relate<'tcx> for traits::Goals<'tcx> {
874 fn relate<R: TypeRelation<'tcx>>(
875 relation: &mut R,
876 a: &traits::Goals<'tcx>,
877 b: &traits::Goals<'tcx>,
878 ) -> RelateResult<'tcx, traits::Goals<'tcx>> {
879 if a.len() != b.len() {
880 return Err(TypeError::Mismatch);
881 }
882
883 let tcx = relation.tcx();
884 let goals = a.iter().zip(b.iter()).map(|(a, b)| relation.relate(a, b));
885 Ok(tcx.mk_goals(goals)?)
886 }
887 }
888
889 impl<'tcx> Relate<'tcx> for traits::Clause<'tcx> {
890 fn relate<R: TypeRelation<'tcx>>(
891 relation: &mut R,
892 a: &traits::Clause<'tcx>,
893 b: &traits::Clause<'tcx>,
894 ) -> RelateResult<'tcx, traits::Clause<'tcx>> {
895 use crate::traits::Clause::*;
896 match (a, b) {
897 (Implies(a_clause), Implies(b_clause)) => {
898 let clause = relation.relate(a_clause, b_clause)?;
899 Ok(Implies(clause))
900 }
901
902 (ForAll(a_clause), ForAll(b_clause)) => {
903 let clause = relation.relate(a_clause, b_clause)?;
904 Ok(ForAll(clause))
905 }
906
907 _ => Err(TypeError::Mismatch),
908 }
909 }
910 }
911
912 impl<'tcx> Relate<'tcx> for traits::Clauses<'tcx> {
913 fn relate<R: TypeRelation<'tcx>>(
914 relation: &mut R,
915 a: &traits::Clauses<'tcx>,
916 b: &traits::Clauses<'tcx>,
917 ) -> RelateResult<'tcx, traits::Clauses<'tcx>> {
918 if a.len() != b.len() {
919 return Err(TypeError::Mismatch);
920 }
921
922 let tcx = relation.tcx();
923 let clauses = a.iter().zip(b.iter()).map(|(a, b)| relation.relate(a, b));
924 Ok(tcx.mk_clauses(clauses)?)
925 }
926 }
927
928 impl<'tcx> Relate<'tcx> for traits::ProgramClause<'tcx> {
929 fn relate<R: TypeRelation<'tcx>>(
930 relation: &mut R,
931 a: &traits::ProgramClause<'tcx>,
932 b: &traits::ProgramClause<'tcx>,
933 ) -> RelateResult<'tcx, traits::ProgramClause<'tcx>> {
934 Ok(traits::ProgramClause {
935 goal: relation.relate(&a.goal, &b.goal)?,
936 hypotheses: relation.relate(&a.hypotheses, &b.hypotheses)?,
937 category: traits::ProgramClauseCategory::Other,
938 })
939 }
940 }
941
942 impl<'tcx> Relate<'tcx> for traits::Environment<'tcx> {
943 fn relate<R: TypeRelation<'tcx>>(
944 relation: &mut R,
945 a: &traits::Environment<'tcx>,
946 b: &traits::Environment<'tcx>,
947 ) -> RelateResult<'tcx, traits::Environment<'tcx>> {
948 Ok(traits::Environment { clauses: relation.relate(&a.clauses, &b.clauses)? })
949 }
950 }
951
952 impl<'tcx, G> Relate<'tcx> for traits::InEnvironment<'tcx, G>
953 where
954 G: Relate<'tcx>,
955 {
956 fn relate<R: TypeRelation<'tcx>>(
957 relation: &mut R,
958 a: &traits::InEnvironment<'tcx, G>,
959 b: &traits::InEnvironment<'tcx, G>,
960 ) -> RelateResult<'tcx, traits::InEnvironment<'tcx, G>> {
961 Ok(traits::InEnvironment {
962 environment: relation.relate(&a.environment, &b.environment)?,
963 goal: relation.relate(&a.goal, &b.goal)?,
964 })
965 }
966 }
967
968 ///////////////////////////////////////////////////////////////////////////
969 // Error handling
970
971 pub fn expected_found<R, T>(relation: &mut R, a: &T, b: &T) -> ExpectedFound<T>
972 where
973 R: TypeRelation<'tcx>,
974 T: Clone,
975 {
976 expected_found_bool(relation.a_is_expected(), a, b)
977 }
978
979 pub fn expected_found_bool<T>(a_is_expected: bool, a: &T, b: &T) -> ExpectedFound<T>
980 where
981 T: Clone,
982 {
983 let a = a.clone();
984 let b = b.clone();
985 if a_is_expected {
986 ExpectedFound { expected: a, found: b }
987 } else {
988 ExpectedFound { expected: b, found: a }
989 }
990 }