]> git.proxmox.com Git - rustc.git/blob - src/librustc/ty/util.rs
New upstream version 1.37.0+dfsg1
[rustc.git] / src / librustc / ty / util.rs
1 //! Miscellaneous type-system utilities that are too small to deserve their own modules.
2
3 use crate::hir;
4 use crate::hir::def::DefKind;
5 use crate::hir::def_id::DefId;
6 use crate::hir::map::DefPathData;
7 use crate::mir::interpret::{sign_extend, truncate};
8 use crate::ich::NodeIdHashingMode;
9 use crate::traits::{self, ObligationCause};
10 use crate::ty::{self, DefIdTree, Ty, TyCtxt, GenericParamDefKind, TypeFoldable};
11 use crate::ty::subst::{Subst, InternalSubsts, SubstsRef, UnpackedKind};
12 use crate::ty::query::TyCtxtAt;
13 use crate::ty::TyKind::*;
14 use crate::ty::layout::{Integer, IntegerExt};
15 use crate::mir::interpret::ConstValue;
16 use crate::util::common::ErrorReported;
17 use crate::middle::lang_items;
18
19 use rustc_data_structures::stable_hasher::{StableHasher, HashStable};
20 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
21 use rustc_macros::HashStable;
22 use std::{cmp, fmt};
23 use syntax::ast;
24 use syntax::attr::{self, SignedInt, UnsignedInt};
25 use syntax::symbol::sym;
26 use syntax_pos::{Span, DUMMY_SP};
27
28 #[derive(Copy, Clone, Debug)]
29 pub struct Discr<'tcx> {
30 /// Bit representation of the discriminant (e.g., `-128i8` is `0xFF_u128`).
31 pub val: u128,
32 pub ty: Ty<'tcx>
33 }
34
35 impl<'tcx> fmt::Display for Discr<'tcx> {
36 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
37 match self.ty.sty {
38 ty::Int(ity) => {
39 let size = ty::tls::with(|tcx| {
40 Integer::from_attr(&tcx, SignedInt(ity)).size()
41 });
42 let x = self.val;
43 // sign extend the raw representation to be an i128
44 let x = sign_extend(x, size) as i128;
45 write!(fmt, "{}", x)
46 },
47 _ => write!(fmt, "{}", self.val),
48 }
49 }
50 }
51
52 impl<'tcx> Discr<'tcx> {
53 /// Adds `1` to the value and wraps around if the maximum for the type is reached.
54 pub fn wrap_incr(self, tcx: TyCtxt<'tcx>) -> Self {
55 self.checked_add(tcx, 1).0
56 }
57 pub fn checked_add(self, tcx: TyCtxt<'tcx>, n: u128) -> (Self, bool) {
58 let (int, signed) = match self.ty.sty {
59 Int(ity) => (Integer::from_attr(&tcx, SignedInt(ity)), true),
60 Uint(uty) => (Integer::from_attr(&tcx, UnsignedInt(uty)), false),
61 _ => bug!("non integer discriminant"),
62 };
63
64 let size = int.size();
65 let bit_size = int.size().bits();
66 let shift = 128 - bit_size;
67 if signed {
68 let sext = |u| {
69 sign_extend(u, size) as i128
70 };
71 let min = sext(1_u128 << (bit_size - 1));
72 let max = i128::max_value() >> shift;
73 let val = sext(self.val);
74 assert!(n < (i128::max_value() as u128));
75 let n = n as i128;
76 let oflo = val > max - n;
77 let val = if oflo {
78 min + (n - (max - val) - 1)
79 } else {
80 val + n
81 };
82 // zero the upper bits
83 let val = val as u128;
84 let val = truncate(val, size);
85 (Self {
86 val: val as u128,
87 ty: self.ty,
88 }, oflo)
89 } else {
90 let max = u128::max_value() >> shift;
91 let val = self.val;
92 let oflo = val > max - n;
93 let val = if oflo {
94 n - (max - val) - 1
95 } else {
96 val + n
97 };
98 (Self {
99 val: val,
100 ty: self.ty,
101 }, oflo)
102 }
103 }
104 }
105
106 pub trait IntTypeExt {
107 fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>;
108 fn disr_incr<'tcx>(&self, tcx: TyCtxt<'tcx>, val: Option<Discr<'tcx>>) -> Option<Discr<'tcx>>;
109 fn initial_discriminant<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Discr<'tcx>;
110 }
111
112 impl IntTypeExt for attr::IntType {
113 fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
114 match *self {
115 SignedInt(ast::IntTy::I8) => tcx.types.i8,
116 SignedInt(ast::IntTy::I16) => tcx.types.i16,
117 SignedInt(ast::IntTy::I32) => tcx.types.i32,
118 SignedInt(ast::IntTy::I64) => tcx.types.i64,
119 SignedInt(ast::IntTy::I128) => tcx.types.i128,
120 SignedInt(ast::IntTy::Isize) => tcx.types.isize,
121 UnsignedInt(ast::UintTy::U8) => tcx.types.u8,
122 UnsignedInt(ast::UintTy::U16) => tcx.types.u16,
123 UnsignedInt(ast::UintTy::U32) => tcx.types.u32,
124 UnsignedInt(ast::UintTy::U64) => tcx.types.u64,
125 UnsignedInt(ast::UintTy::U128) => tcx.types.u128,
126 UnsignedInt(ast::UintTy::Usize) => tcx.types.usize,
127 }
128 }
129
130 fn initial_discriminant<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Discr<'tcx> {
131 Discr {
132 val: 0,
133 ty: self.to_ty(tcx)
134 }
135 }
136
137 fn disr_incr<'tcx>(&self, tcx: TyCtxt<'tcx>, val: Option<Discr<'tcx>>) -> Option<Discr<'tcx>> {
138 if let Some(val) = val {
139 assert_eq!(self.to_ty(tcx), val.ty);
140 let (new, oflo) = val.checked_add(tcx, 1);
141 if oflo {
142 None
143 } else {
144 Some(new)
145 }
146 } else {
147 Some(self.initial_discriminant(tcx))
148 }
149 }
150 }
151
152
153 #[derive(Clone)]
154 pub enum CopyImplementationError<'tcx> {
155 InfrigingFields(Vec<&'tcx ty::FieldDef>),
156 NotAnAdt,
157 HasDestructor,
158 }
159
160 /// Describes whether a type is representable. For types that are not
161 /// representable, 'SelfRecursive' and 'ContainsRecursive' are used to
162 /// distinguish between types that are recursive with themselves and types that
163 /// contain a different recursive type. These cases can therefore be treated
164 /// differently when reporting errors.
165 ///
166 /// The ordering of the cases is significant. They are sorted so that cmp::max
167 /// will keep the "more erroneous" of two values.
168 #[derive(Clone, PartialOrd, Ord, Eq, PartialEq, Debug)]
169 pub enum Representability {
170 Representable,
171 ContainsRecursive,
172 SelfRecursive(Vec<Span>),
173 }
174
175 impl<'tcx> ty::ParamEnv<'tcx> {
176 pub fn can_type_implement_copy(
177 self,
178 tcx: TyCtxt<'tcx>,
179 self_type: Ty<'tcx>,
180 ) -> Result<(), CopyImplementationError<'tcx>> {
181 // FIXME: (@jroesch) float this code up
182 tcx.infer_ctxt().enter(|infcx| {
183 let (adt, substs) = match self_type.sty {
184 // These types used to have a builtin impl.
185 // Now libcore provides that impl.
186 ty::Uint(_) | ty::Int(_) | ty::Bool | ty::Float(_) |
187 ty::Char | ty::RawPtr(..) | ty::Never |
188 ty::Ref(_, _, hir::MutImmutable) => return Ok(()),
189
190 ty::Adt(adt, substs) => (adt, substs),
191
192 _ => return Err(CopyImplementationError::NotAnAdt),
193 };
194
195 let mut infringing = Vec::new();
196 for variant in &adt.variants {
197 for field in &variant.fields {
198 let ty = field.ty(tcx, substs);
199 if ty.references_error() {
200 continue;
201 }
202 let span = tcx.def_span(field.did);
203 let cause = ObligationCause { span, ..ObligationCause::dummy() };
204 let ctx = traits::FulfillmentContext::new();
205 match traits::fully_normalize(&infcx, ctx, cause, self, &ty) {
206 Ok(ty) => if !infcx.type_is_copy_modulo_regions(self, ty, span) {
207 infringing.push(field);
208 }
209 Err(errors) => {
210 infcx.report_fulfillment_errors(&errors, None, false);
211 }
212 };
213 }
214 }
215 if !infringing.is_empty() {
216 return Err(CopyImplementationError::InfrigingFields(infringing));
217 }
218 if adt.has_dtor(tcx) {
219 return Err(CopyImplementationError::HasDestructor);
220 }
221
222 Ok(())
223 })
224 }
225 }
226
227 impl<'tcx> TyCtxt<'tcx> {
228 /// Creates a hash of the type `Ty` which will be the same no matter what crate
229 /// context it's calculated within. This is used by the `type_id` intrinsic.
230 pub fn type_id_hash(self, ty: Ty<'tcx>) -> u64 {
231 let mut hasher = StableHasher::new();
232 let mut hcx = self.create_stable_hashing_context();
233
234 // We want the type_id be independent of the types free regions, so we
235 // erase them. The erase_regions() call will also anonymize bound
236 // regions, which is desirable too.
237 let ty = self.erase_regions(&ty);
238
239 hcx.while_hashing_spans(false, |hcx| {
240 hcx.with_node_id_hashing_mode(NodeIdHashingMode::HashDefPath, |hcx| {
241 ty.hash_stable(hcx, &mut hasher);
242 });
243 });
244 hasher.finish()
245 }
246 }
247
248 impl<'tcx> TyCtxt<'tcx> {
249 pub fn has_error_field(self, ty: Ty<'tcx>) -> bool {
250 if let ty::Adt(def, substs) = ty.sty {
251 for field in def.all_fields() {
252 let field_ty = field.ty(self, substs);
253 if let Error = field_ty.sty {
254 return true;
255 }
256 }
257 }
258 false
259 }
260
261 /// Returns the deeply last field of nested structures, or the same type,
262 /// if not a structure at all. Corresponds to the only possible unsized
263 /// field, and its type can be used to determine unsizing strategy.
264 pub fn struct_tail(self, mut ty: Ty<'tcx>) -> Ty<'tcx> {
265 loop {
266 match ty.sty {
267 ty::Adt(def, substs) => {
268 if !def.is_struct() {
269 break;
270 }
271 match def.non_enum_variant().fields.last() {
272 Some(f) => ty = f.ty(self, substs),
273 None => break,
274 }
275 }
276
277 ty::Tuple(tys) => {
278 if let Some((&last_ty, _)) = tys.split_last() {
279 ty = last_ty.expect_ty();
280 } else {
281 break;
282 }
283 }
284
285 _ => {
286 break;
287 }
288 }
289 }
290 ty
291 }
292
293 /// Same as applying struct_tail on `source` and `target`, but only
294 /// keeps going as long as the two types are instances of the same
295 /// structure definitions.
296 /// For `(Foo<Foo<T>>, Foo<dyn Trait>)`, the result will be `(Foo<T>, Trait)`,
297 /// whereas struct_tail produces `T`, and `Trait`, respectively.
298 pub fn struct_lockstep_tails(self,
299 source: Ty<'tcx>,
300 target: Ty<'tcx>)
301 -> (Ty<'tcx>, Ty<'tcx>) {
302 let (mut a, mut b) = (source, target);
303 loop {
304 match (&a.sty, &b.sty) {
305 (&Adt(a_def, a_substs), &Adt(b_def, b_substs))
306 if a_def == b_def && a_def.is_struct() => {
307 if let Some(f) = a_def.non_enum_variant().fields.last() {
308 a = f.ty(self, a_substs);
309 b = f.ty(self, b_substs);
310 } else {
311 break;
312 }
313 },
314 (&Tuple(a_tys), &Tuple(b_tys))
315 if a_tys.len() == b_tys.len() => {
316 if let Some(a_last) = a_tys.last() {
317 a = a_last.expect_ty();
318 b = b_tys.last().unwrap().expect_ty();
319 } else {
320 break;
321 }
322 },
323 _ => break,
324 }
325 }
326 (a, b)
327 }
328
329 /// Given a set of predicates that apply to an object type, returns
330 /// the region bounds that the (erased) `Self` type must
331 /// outlive. Precisely *because* the `Self` type is erased, the
332 /// parameter `erased_self_ty` must be supplied to indicate what type
333 /// has been used to represent `Self` in the predicates
334 /// themselves. This should really be a unique type; `FreshTy(0)` is a
335 /// popular choice.
336 ///
337 /// N.B., in some cases, particularly around higher-ranked bounds,
338 /// this function returns a kind of conservative approximation.
339 /// That is, all regions returned by this function are definitely
340 /// required, but there may be other region bounds that are not
341 /// returned, as well as requirements like `for<'a> T: 'a`.
342 ///
343 /// Requires that trait definitions have been processed so that we can
344 /// elaborate predicates and walk supertraits.
345 //
346 // FIXME: callers may only have a `&[Predicate]`, not a `Vec`, so that's
347 // what this code should accept.
348 pub fn required_region_bounds(self,
349 erased_self_ty: Ty<'tcx>,
350 predicates: Vec<ty::Predicate<'tcx>>)
351 -> Vec<ty::Region<'tcx>> {
352 debug!("required_region_bounds(erased_self_ty={:?}, predicates={:?})",
353 erased_self_ty,
354 predicates);
355
356 assert!(!erased_self_ty.has_escaping_bound_vars());
357
358 traits::elaborate_predicates(self, predicates)
359 .filter_map(|predicate| {
360 match predicate {
361 ty::Predicate::Projection(..) |
362 ty::Predicate::Trait(..) |
363 ty::Predicate::Subtype(..) |
364 ty::Predicate::WellFormed(..) |
365 ty::Predicate::ObjectSafe(..) |
366 ty::Predicate::ClosureKind(..) |
367 ty::Predicate::RegionOutlives(..) |
368 ty::Predicate::ConstEvaluatable(..) => {
369 None
370 }
371 ty::Predicate::TypeOutlives(predicate) => {
372 // Search for a bound of the form `erased_self_ty
373 // : 'a`, but be wary of something like `for<'a>
374 // erased_self_ty : 'a` (we interpret a
375 // higher-ranked bound like that as 'static,
376 // though at present the code in `fulfill.rs`
377 // considers such bounds to be unsatisfiable, so
378 // it's kind of a moot point since you could never
379 // construct such an object, but this seems
380 // correct even if that code changes).
381 let ty::OutlivesPredicate(ref t, ref r) = predicate.skip_binder();
382 if t == &erased_self_ty && !r.has_escaping_bound_vars() {
383 Some(*r)
384 } else {
385 None
386 }
387 }
388 }
389 })
390 .collect()
391 }
392
393 /// Calculate the destructor of a given type.
394 pub fn calculate_dtor(
395 self,
396 adt_did: DefId,
397 validate: &mut dyn FnMut(Self, DefId) -> Result<(), ErrorReported>
398 ) -> Option<ty::Destructor> {
399 let drop_trait = if let Some(def_id) = self.lang_items().drop_trait() {
400 def_id
401 } else {
402 return None;
403 };
404
405 self.ensure().coherent_trait(drop_trait);
406
407 let mut dtor_did = None;
408 let ty = self.type_of(adt_did);
409 self.for_each_relevant_impl(drop_trait, ty, |impl_did| {
410 if let Some(item) = self.associated_items(impl_did).next() {
411 if validate(self, impl_did).is_ok() {
412 dtor_did = Some(item.def_id);
413 }
414 }
415 });
416
417 Some(ty::Destructor { did: dtor_did? })
418 }
419
420 /// Returns the set of types that are required to be alive in
421 /// order to run the destructor of `def` (see RFCs 769 and
422 /// 1238).
423 ///
424 /// Note that this returns only the constraints for the
425 /// destructor of `def` itself. For the destructors of the
426 /// contents, you need `adt_dtorck_constraint`.
427 pub fn destructor_constraints(self, def: &'tcx ty::AdtDef)
428 -> Vec<ty::subst::Kind<'tcx>>
429 {
430 let dtor = match def.destructor(self) {
431 None => {
432 debug!("destructor_constraints({:?}) - no dtor", def.did);
433 return vec![]
434 }
435 Some(dtor) => dtor.did
436 };
437
438 // RFC 1238: if the destructor method is tagged with the
439 // attribute `unsafe_destructor_blind_to_params`, then the
440 // compiler is being instructed to *assume* that the
441 // destructor will not access borrowed data,
442 // even if such data is otherwise reachable.
443 //
444 // Such access can be in plain sight (e.g., dereferencing
445 // `*foo.0` of `Foo<'a>(&'a u32)`) or indirectly hidden
446 // (e.g., calling `foo.0.clone()` of `Foo<T:Clone>`).
447 if self.has_attr(dtor, sym::unsafe_destructor_blind_to_params) {
448 debug!("destructor_constraint({:?}) - blind", def.did);
449 return vec![];
450 }
451
452 let impl_def_id = self.associated_item(dtor).container.id();
453 let impl_generics = self.generics_of(impl_def_id);
454
455 // We have a destructor - all the parameters that are not
456 // pure_wrt_drop (i.e, don't have a #[may_dangle] attribute)
457 // must be live.
458
459 // We need to return the list of parameters from the ADTs
460 // generics/substs that correspond to impure parameters on the
461 // impl's generics. This is a bit ugly, but conceptually simple:
462 //
463 // Suppose our ADT looks like the following
464 //
465 // struct S<X, Y, Z>(X, Y, Z);
466 //
467 // and the impl is
468 //
469 // impl<#[may_dangle] P0, P1, P2> Drop for S<P1, P2, P0>
470 //
471 // We want to return the parameters (X, Y). For that, we match
472 // up the item-substs <X, Y, Z> with the substs on the impl ADT,
473 // <P1, P2, P0>, and then look up which of the impl substs refer to
474 // parameters marked as pure.
475
476 let impl_substs = match self.type_of(impl_def_id).sty {
477 ty::Adt(def_, substs) if def_ == def => substs,
478 _ => bug!()
479 };
480
481 let item_substs = match self.type_of(def.did).sty {
482 ty::Adt(def_, substs) if def_ == def => substs,
483 _ => bug!()
484 };
485
486 let result = item_substs.iter().zip(impl_substs.iter())
487 .filter(|&(_, &k)| {
488 match k.unpack() {
489 UnpackedKind::Lifetime(&ty::RegionKind::ReEarlyBound(ref ebr)) => {
490 !impl_generics.region_param(ebr, self).pure_wrt_drop
491 }
492 UnpackedKind::Type(&ty::TyS {
493 sty: ty::Param(ref pt), ..
494 }) => {
495 !impl_generics.type_param(pt, self).pure_wrt_drop
496 }
497 UnpackedKind::Const(&ty::Const {
498 val: ConstValue::Param(ref pc),
499 ..
500 }) => {
501 !impl_generics.const_param(pc, self).pure_wrt_drop
502 }
503 UnpackedKind::Lifetime(_) |
504 UnpackedKind::Type(_) |
505 UnpackedKind::Const(_) => {
506 // Not a type, const or region param: this should be reported
507 // as an error.
508 false
509 }
510 }
511 })
512 .map(|(&item_param, _)| item_param)
513 .collect();
514 debug!("destructor_constraint({:?}) = {:?}", def.did, result);
515 result
516 }
517
518 /// Returns `true` if `def_id` refers to a closure (e.g., `|x| x * 2`). Note
519 /// that closures have a `DefId`, but the closure *expression* also
520 /// has a `HirId` that is located within the context where the
521 /// closure appears (and, sadly, a corresponding `NodeId`, since
522 /// those are not yet phased out). The parent of the closure's
523 /// `DefId` will also be the context where it appears.
524 pub fn is_closure(self, def_id: DefId) -> bool {
525 self.def_key(def_id).disambiguated_data.data == DefPathData::ClosureExpr
526 }
527
528 /// Returns `true` if `def_id` refers to a trait (i.e., `trait Foo { ... }`).
529 pub fn is_trait(self, def_id: DefId) -> bool {
530 self.def_kind(def_id) == Some(DefKind::Trait)
531 }
532
533 /// Returns `true` if `def_id` refers to a trait alias (i.e., `trait Foo = ...;`),
534 /// and `false` otherwise.
535 pub fn is_trait_alias(self, def_id: DefId) -> bool {
536 self.def_kind(def_id) == Some(DefKind::TraitAlias)
537 }
538
539 /// Returns `true` if this `DefId` refers to the implicit constructor for
540 /// a tuple struct like `struct Foo(u32)`, and `false` otherwise.
541 pub fn is_constructor(self, def_id: DefId) -> bool {
542 self.def_key(def_id).disambiguated_data.data == DefPathData::Ctor
543 }
544
545 /// Given the def-ID of a fn or closure, returns the def-ID of
546 /// the innermost fn item that the closure is contained within.
547 /// This is a significant `DefId` because, when we do
548 /// type-checking, we type-check this fn item and all of its
549 /// (transitive) closures together. Therefore, when we fetch the
550 /// `typeck_tables_of` the closure, for example, we really wind up
551 /// fetching the `typeck_tables_of` the enclosing fn item.
552 pub fn closure_base_def_id(self, def_id: DefId) -> DefId {
553 let mut def_id = def_id;
554 while self.is_closure(def_id) {
555 def_id = self.parent(def_id).unwrap_or_else(|| {
556 bug!("closure {:?} has no parent", def_id);
557 });
558 }
559 def_id
560 }
561
562 /// Given the `DefId` and substs a closure, creates the type of
563 /// `self` argument that the closure expects. For example, for a
564 /// `Fn` closure, this would return a reference type `&T` where
565 /// `T = closure_ty`.
566 ///
567 /// Returns `None` if this closure's kind has not yet been inferred.
568 /// This should only be possible during type checking.
569 ///
570 /// Note that the return value is a late-bound region and hence
571 /// wrapped in a binder.
572 pub fn closure_env_ty(self,
573 closure_def_id: DefId,
574 closure_substs: ty::ClosureSubsts<'tcx>)
575 -> Option<ty::Binder<Ty<'tcx>>>
576 {
577 let closure_ty = self.mk_closure(closure_def_id, closure_substs);
578 let env_region = ty::ReLateBound(ty::INNERMOST, ty::BrEnv);
579 let closure_kind_ty = closure_substs.closure_kind_ty(closure_def_id, self);
580 let closure_kind = closure_kind_ty.to_opt_closure_kind()?;
581 let env_ty = match closure_kind {
582 ty::ClosureKind::Fn => self.mk_imm_ref(self.mk_region(env_region), closure_ty),
583 ty::ClosureKind::FnMut => self.mk_mut_ref(self.mk_region(env_region), closure_ty),
584 ty::ClosureKind::FnOnce => closure_ty,
585 };
586 Some(ty::Binder::bind(env_ty))
587 }
588
589 /// Given the `DefId` of some item that has no type or const parameters, make
590 /// a suitable "empty substs" for it.
591 pub fn empty_substs_for_def_id(self, item_def_id: DefId) -> SubstsRef<'tcx> {
592 InternalSubsts::for_item(self, item_def_id, |param, _| {
593 match param.kind {
594 GenericParamDefKind::Lifetime => self.lifetimes.re_erased.into(),
595 GenericParamDefKind::Type { .. } => {
596 bug!("empty_substs_for_def_id: {:?} has type parameters", item_def_id)
597 }
598 GenericParamDefKind::Const { .. } => {
599 bug!("empty_substs_for_def_id: {:?} has const parameters", item_def_id)
600 }
601 }
602 })
603 }
604
605 /// Returns `true` if the node pointed to by `def_id` is a `static` item.
606 pub fn is_static(&self, def_id: DefId) -> bool {
607 self.static_mutability(def_id).is_some()
608 }
609
610 /// Returns `true` if the node pointed to by `def_id` is a mutable `static` item.
611 pub fn is_mutable_static(&self, def_id: DefId) -> bool {
612 self.static_mutability(def_id) == Some(hir::MutMutable)
613 }
614
615 /// Expands the given impl trait type, stopping if the type is recursive.
616 pub fn try_expand_impl_trait_type(
617 self,
618 def_id: DefId,
619 substs: SubstsRef<'tcx>,
620 ) -> Result<Ty<'tcx>, Ty<'tcx>> {
621 use crate::ty::fold::TypeFolder;
622
623 struct OpaqueTypeExpander<'tcx> {
624 // Contains the DefIds of the opaque types that are currently being
625 // expanded. When we expand an opaque type we insert the DefId of
626 // that type, and when we finish expanding that type we remove the
627 // its DefId.
628 seen_opaque_tys: FxHashSet<DefId>,
629 primary_def_id: DefId,
630 found_recursion: bool,
631 tcx: TyCtxt<'tcx>,
632 }
633
634 impl<'tcx> OpaqueTypeExpander<'tcx> {
635 fn expand_opaque_ty(
636 &mut self,
637 def_id: DefId,
638 substs: SubstsRef<'tcx>,
639 ) -> Option<Ty<'tcx>> {
640 if self.found_recursion {
641 None
642 } else if self.seen_opaque_tys.insert(def_id) {
643 let generic_ty = self.tcx.type_of(def_id);
644 let concrete_ty = generic_ty.subst(self.tcx, substs);
645 let expanded_ty = self.fold_ty(concrete_ty);
646 self.seen_opaque_tys.remove(&def_id);
647 Some(expanded_ty)
648 } else {
649 // If another opaque type that we contain is recursive, then it
650 // will report the error, so we don't have to.
651 self.found_recursion = def_id == self.primary_def_id;
652 None
653 }
654 }
655 }
656
657 impl<'tcx> TypeFolder<'tcx> for OpaqueTypeExpander<'tcx> {
658 fn tcx(&self) -> TyCtxt<'tcx> {
659 self.tcx
660 }
661
662 fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
663 if let ty::Opaque(def_id, substs) = t.sty {
664 self.expand_opaque_ty(def_id, substs).unwrap_or(t)
665 } else {
666 t.super_fold_with(self)
667 }
668 }
669 }
670
671 let mut visitor = OpaqueTypeExpander {
672 seen_opaque_tys: FxHashSet::default(),
673 primary_def_id: def_id,
674 found_recursion: false,
675 tcx: self,
676 };
677 let expanded_type = visitor.expand_opaque_ty(def_id, substs).unwrap();
678 if visitor.found_recursion {
679 Err(expanded_type)
680 } else {
681 Ok(expanded_type)
682 }
683 }
684 }
685
686 impl<'tcx> ty::TyS<'tcx> {
687 /// Checks whether values of this type `T` are *moved* or *copied*
688 /// when referenced -- this amounts to a check for whether `T:
689 /// Copy`, but note that we **don't** consider lifetimes when
690 /// doing this check. This means that we may generate MIR which
691 /// does copies even when the type actually doesn't satisfy the
692 /// full requirements for the `Copy` trait (cc #29149) -- this
693 /// winds up being reported as an error during NLL borrow check.
694 pub fn is_copy_modulo_regions(
695 &'tcx self,
696 tcx: TyCtxt<'tcx>,
697 param_env: ty::ParamEnv<'tcx>,
698 span: Span,
699 ) -> bool {
700 tcx.at(span).is_copy_raw(param_env.and(self))
701 }
702
703 /// Checks whether values of this type `T` have a size known at
704 /// compile time (i.e., whether `T: Sized`). Lifetimes are ignored
705 /// for the purposes of this check, so it can be an
706 /// over-approximation in generic contexts, where one can have
707 /// strange rules like `<T as Foo<'static>>::Bar: Sized` that
708 /// actually carry lifetime requirements.
709 pub fn is_sized(&'tcx self, tcx_at: TyCtxtAt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool {
710 tcx_at.is_sized_raw(param_env.and(self))
711 }
712
713 /// Checks whether values of this type `T` implement the `Freeze`
714 /// trait -- frozen types are those that do not contain a
715 /// `UnsafeCell` anywhere. This is a language concept used to
716 /// distinguish "true immutability", which is relevant to
717 /// optimization as well as the rules around static values. Note
718 /// that the `Freeze` trait is not exposed to end users and is
719 /// effectively an implementation detail.
720 pub fn is_freeze(
721 &'tcx self,
722 tcx: TyCtxt<'tcx>,
723 param_env: ty::ParamEnv<'tcx>,
724 span: Span,
725 ) -> bool {
726 tcx.at(span).is_freeze_raw(param_env.and(self))
727 }
728
729 /// If `ty.needs_drop(...)` returns `true`, then `ty` is definitely
730 /// non-copy and *might* have a destructor attached; if it returns
731 /// `false`, then `ty` definitely has no destructor (i.e., no drop glue).
732 ///
733 /// (Note that this implies that if `ty` has a destructor attached,
734 /// then `needs_drop` will definitely return `true` for `ty`.)
735 #[inline]
736 pub fn needs_drop(&'tcx self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool {
737 tcx.needs_drop_raw(param_env.and(self)).0
738 }
739
740 pub fn same_type(a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
741 match (&a.sty, &b.sty) {
742 (&Adt(did_a, substs_a), &Adt(did_b, substs_b)) => {
743 if did_a != did_b {
744 return false;
745 }
746
747 substs_a.types().zip(substs_b.types()).all(|(a, b)| Self::same_type(a, b))
748 }
749 _ => a == b,
750 }
751 }
752
753 /// Check whether a type is representable. This means it cannot contain unboxed
754 /// structural recursion. This check is needed for structs and enums.
755 pub fn is_representable(&'tcx self, tcx: TyCtxt<'tcx>, sp: Span) -> Representability {
756 // Iterate until something non-representable is found
757 fn fold_repr<It: Iterator<Item=Representability>>(iter: It) -> Representability {
758 iter.fold(Representability::Representable, |r1, r2| {
759 match (r1, r2) {
760 (Representability::SelfRecursive(v1),
761 Representability::SelfRecursive(v2)) => {
762 Representability::SelfRecursive(v1.into_iter().chain(v2).collect())
763 }
764 (r1, r2) => cmp::max(r1, r2)
765 }
766 })
767 }
768
769 fn are_inner_types_recursive<'tcx>(
770 tcx: TyCtxt<'tcx>,
771 sp: Span,
772 seen: &mut Vec<Ty<'tcx>>,
773 representable_cache: &mut FxHashMap<Ty<'tcx>, Representability>,
774 ty: Ty<'tcx>,
775 ) -> Representability {
776 match ty.sty {
777 Tuple(ref ts) => {
778 // Find non representable
779 fold_repr(ts.iter().map(|ty| {
780 is_type_structurally_recursive(
781 tcx,
782 sp,
783 seen,
784 representable_cache,
785 ty.expect_ty(),
786 )
787 }))
788 }
789 // Fixed-length vectors.
790 // FIXME(#11924) Behavior undecided for zero-length vectors.
791 Array(ty, _) => {
792 is_type_structurally_recursive(tcx, sp, seen, representable_cache, ty)
793 }
794 Adt(def, substs) => {
795 // Find non representable fields with their spans
796 fold_repr(def.all_fields().map(|field| {
797 let ty = field.ty(tcx, substs);
798 let span = tcx.hir().span_if_local(field.did).unwrap_or(sp);
799 match is_type_structurally_recursive(tcx, span, seen,
800 representable_cache, ty)
801 {
802 Representability::SelfRecursive(_) => {
803 Representability::SelfRecursive(vec![span])
804 }
805 x => x,
806 }
807 }))
808 }
809 Closure(..) => {
810 // this check is run on type definitions, so we don't expect
811 // to see closure types
812 bug!("requires check invoked on inapplicable type: {:?}", ty)
813 }
814 _ => Representability::Representable,
815 }
816 }
817
818 fn same_struct_or_enum<'tcx>(ty: Ty<'tcx>, def: &'tcx ty::AdtDef) -> bool {
819 match ty.sty {
820 Adt(ty_def, _) => {
821 ty_def == def
822 }
823 _ => false
824 }
825 }
826
827 // Does the type `ty` directly (without indirection through a pointer)
828 // contain any types on stack `seen`?
829 fn is_type_structurally_recursive<'tcx>(
830 tcx: TyCtxt<'tcx>,
831 sp: Span,
832 seen: &mut Vec<Ty<'tcx>>,
833 representable_cache: &mut FxHashMap<Ty<'tcx>, Representability>,
834 ty: Ty<'tcx>,
835 ) -> Representability {
836 debug!("is_type_structurally_recursive: {:?} {:?}", ty, sp);
837 if let Some(representability) = representable_cache.get(ty) {
838 debug!("is_type_structurally_recursive: {:?} {:?} - (cached) {:?}",
839 ty, sp, representability);
840 return representability.clone();
841 }
842
843 let representability = is_type_structurally_recursive_inner(
844 tcx, sp, seen, representable_cache, ty);
845
846 representable_cache.insert(ty, representability.clone());
847 representability
848 }
849
850 fn is_type_structurally_recursive_inner<'tcx>(
851 tcx: TyCtxt<'tcx>,
852 sp: Span,
853 seen: &mut Vec<Ty<'tcx>>,
854 representable_cache: &mut FxHashMap<Ty<'tcx>, Representability>,
855 ty: Ty<'tcx>,
856 ) -> Representability {
857 match ty.sty {
858 Adt(def, _) => {
859 {
860 // Iterate through stack of previously seen types.
861 let mut iter = seen.iter();
862
863 // The first item in `seen` is the type we are actually curious about.
864 // We want to return SelfRecursive if this type contains itself.
865 // It is important that we DON'T take generic parameters into account
866 // for this check, so that Bar<T> in this example counts as SelfRecursive:
867 //
868 // struct Foo;
869 // struct Bar<T> { x: Bar<Foo> }
870
871 if let Some(&seen_type) = iter.next() {
872 if same_struct_or_enum(seen_type, def) {
873 debug!("SelfRecursive: {:?} contains {:?}",
874 seen_type,
875 ty);
876 return Representability::SelfRecursive(vec![sp]);
877 }
878 }
879
880 // We also need to know whether the first item contains other types
881 // that are structurally recursive. If we don't catch this case, we
882 // will recurse infinitely for some inputs.
883 //
884 // It is important that we DO take generic parameters into account
885 // here, so that code like this is considered SelfRecursive, not
886 // ContainsRecursive:
887 //
888 // struct Foo { Option<Option<Foo>> }
889
890 for &seen_type in iter {
891 if ty::TyS::same_type(ty, seen_type) {
892 debug!("ContainsRecursive: {:?} contains {:?}",
893 seen_type,
894 ty);
895 return Representability::ContainsRecursive;
896 }
897 }
898 }
899
900 // For structs and enums, track all previously seen types by pushing them
901 // onto the 'seen' stack.
902 seen.push(ty);
903 let out = are_inner_types_recursive(tcx, sp, seen, representable_cache, ty);
904 seen.pop();
905 out
906 }
907 _ => {
908 // No need to push in other cases.
909 are_inner_types_recursive(tcx, sp, seen, representable_cache, ty)
910 }
911 }
912 }
913
914 debug!("is_type_representable: {:?}", self);
915
916 // To avoid a stack overflow when checking an enum variant or struct that
917 // contains a different, structurally recursive type, maintain a stack
918 // of seen types and check recursion for each of them (issues #3008, #3779).
919 let mut seen: Vec<Ty<'_>> = Vec::new();
920 let mut representable_cache = FxHashMap::default();
921 let r = is_type_structurally_recursive(
922 tcx, sp, &mut seen, &mut representable_cache, self);
923 debug!("is_type_representable: {:?} is {:?}", self, r);
924 r
925 }
926 }
927
928 fn is_copy_raw<'tcx>(tcx: TyCtxt<'tcx>, query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
929 let (param_env, ty) = query.into_parts();
930 let trait_def_id = tcx.require_lang_item(lang_items::CopyTraitLangItem);
931 tcx.infer_ctxt()
932 .enter(|infcx| traits::type_known_to_meet_bound_modulo_regions(
933 &infcx,
934 param_env,
935 ty,
936 trait_def_id,
937 DUMMY_SP,
938 ))
939 }
940
941 fn is_sized_raw<'tcx>(tcx: TyCtxt<'tcx>, query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
942 let (param_env, ty) = query.into_parts();
943 let trait_def_id = tcx.require_lang_item(lang_items::SizedTraitLangItem);
944 tcx.infer_ctxt()
945 .enter(|infcx| traits::type_known_to_meet_bound_modulo_regions(
946 &infcx,
947 param_env,
948 ty,
949 trait_def_id,
950 DUMMY_SP,
951 ))
952 }
953
954 fn is_freeze_raw<'tcx>(tcx: TyCtxt<'tcx>, query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
955 let (param_env, ty) = query.into_parts();
956 let trait_def_id = tcx.require_lang_item(lang_items::FreezeTraitLangItem);
957 tcx.infer_ctxt()
958 .enter(|infcx| traits::type_known_to_meet_bound_modulo_regions(
959 &infcx,
960 param_env,
961 ty,
962 trait_def_id,
963 DUMMY_SP,
964 ))
965 }
966
967 #[derive(Clone, HashStable)]
968 pub struct NeedsDrop(pub bool);
969
970 fn needs_drop_raw<'tcx>(tcx: TyCtxt<'tcx>, query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> NeedsDrop {
971 let (param_env, ty) = query.into_parts();
972
973 let needs_drop = |ty: Ty<'tcx>| -> bool {
974 tcx.needs_drop_raw(param_env.and(ty)).0
975 };
976
977 assert!(!ty.needs_infer());
978
979 NeedsDrop(match ty.sty {
980 // Fast-path for primitive types
981 ty::Infer(ty::FreshIntTy(_)) | ty::Infer(ty::FreshFloatTy(_)) |
982 ty::Bool | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Never |
983 ty::FnDef(..) | ty::FnPtr(_) | ty::Char | ty::GeneratorWitness(..) |
984 ty::RawPtr(_) | ty::Ref(..) | ty::Str => false,
985
986 // Foreign types can never have destructors
987 ty::Foreign(..) => false,
988
989 // `ManuallyDrop` doesn't have a destructor regardless of field types.
990 ty::Adt(def, _) if Some(def.did) == tcx.lang_items().manually_drop() => false,
991
992 // Issue #22536: We first query `is_copy_modulo_regions`. It sees a
993 // normalized version of the type, and therefore will definitely
994 // know whether the type implements Copy (and thus needs no
995 // cleanup/drop/zeroing) ...
996 _ if ty.is_copy_modulo_regions(tcx, param_env, DUMMY_SP) => false,
997
998 // ... (issue #22536 continued) but as an optimization, still use
999 // prior logic of asking for the structural "may drop".
1000
1001 // FIXME(#22815): Note that this is a conservative heuristic;
1002 // it may report that the type "may drop" when actual type does
1003 // not actually have a destructor associated with it. But since
1004 // the type absolutely did not have the `Copy` bound attached
1005 // (see above), it is sound to treat it as having a destructor.
1006
1007 // User destructors are the only way to have concrete drop types.
1008 ty::Adt(def, _) if def.has_dtor(tcx) => true,
1009
1010 // Can refer to a type which may drop.
1011 // FIXME(eddyb) check this against a ParamEnv.
1012 ty::Dynamic(..) | ty::Projection(..) | ty::Param(_) | ty::Bound(..) |
1013 ty::Placeholder(..) | ty::Opaque(..) | ty::Infer(_) | ty::Error => true,
1014
1015 ty::UnnormalizedProjection(..) => bug!("only used with chalk-engine"),
1016
1017 // Structural recursion.
1018 ty::Array(ty, _) | ty::Slice(ty) => needs_drop(ty),
1019
1020 ty::Closure(def_id, ref substs) => substs.upvar_tys(def_id, tcx).any(needs_drop),
1021
1022 // Pessimistically assume that all generators will require destructors
1023 // as we don't know if a destructor is a noop or not until after the MIR
1024 // state transformation pass
1025 ty::Generator(..) => true,
1026
1027 ty::Tuple(ref tys) => tys.iter().map(|k| k.expect_ty()).any(needs_drop),
1028
1029 // unions don't have destructors because of the child types,
1030 // only if they manually implement `Drop` (handled above).
1031 ty::Adt(def, _) if def.is_union() => false,
1032
1033 ty::Adt(def, substs) =>
1034 def.variants.iter().any(
1035 |variant| variant.fields.iter().any(
1036 |field| needs_drop(field.ty(tcx, substs)))),
1037 })
1038 }
1039
1040 pub enum ExplicitSelf<'tcx> {
1041 ByValue,
1042 ByReference(ty::Region<'tcx>, hir::Mutability),
1043 ByRawPointer(hir::Mutability),
1044 ByBox,
1045 Other
1046 }
1047
1048 impl<'tcx> ExplicitSelf<'tcx> {
1049 /// Categorizes an explicit self declaration like `self: SomeType`
1050 /// into either `self`, `&self`, `&mut self`, `Box<self>`, or
1051 /// `Other`.
1052 /// This is mainly used to require the arbitrary_self_types feature
1053 /// in the case of `Other`, to improve error messages in the common cases,
1054 /// and to make `Other` non-object-safe.
1055 ///
1056 /// Examples:
1057 ///
1058 /// ```
1059 /// impl<'a> Foo for &'a T {
1060 /// // Legal declarations:
1061 /// fn method1(self: &&'a T); // ExplicitSelf::ByReference
1062 /// fn method2(self: &'a T); // ExplicitSelf::ByValue
1063 /// fn method3(self: Box<&'a T>); // ExplicitSelf::ByBox
1064 /// fn method4(self: Rc<&'a T>); // ExplicitSelf::Other
1065 ///
1066 /// // Invalid cases will be caught by `check_method_receiver`:
1067 /// fn method_err1(self: &'a mut T); // ExplicitSelf::Other
1068 /// fn method_err2(self: &'static T) // ExplicitSelf::ByValue
1069 /// fn method_err3(self: &&T) // ExplicitSelf::ByReference
1070 /// }
1071 /// ```
1072 ///
1073 pub fn determine<P>(
1074 self_arg_ty: Ty<'tcx>,
1075 is_self_ty: P
1076 ) -> ExplicitSelf<'tcx>
1077 where
1078 P: Fn(Ty<'tcx>) -> bool
1079 {
1080 use self::ExplicitSelf::*;
1081
1082 match self_arg_ty.sty {
1083 _ if is_self_ty(self_arg_ty) => ByValue,
1084 ty::Ref(region, ty, mutbl) if is_self_ty(ty) => {
1085 ByReference(region, mutbl)
1086 }
1087 ty::RawPtr(ty::TypeAndMut { ty, mutbl }) if is_self_ty(ty) => {
1088 ByRawPointer(mutbl)
1089 }
1090 ty::Adt(def, _) if def.is_box() && is_self_ty(self_arg_ty.boxed_ty()) => {
1091 ByBox
1092 }
1093 _ => Other
1094 }
1095 }
1096 }
1097
1098 pub fn provide(providers: &mut ty::query::Providers<'_>) {
1099 *providers = ty::query::Providers {
1100 is_copy_raw,
1101 is_sized_raw,
1102 is_freeze_raw,
1103 needs_drop_raw,
1104 ..*providers
1105 };
1106 }