]> git.proxmox.com Git - rustc.git/blob - src/librustc/ty/wf.rs
New upstream version 1.18.0+dfsg1
[rustc.git] / src / librustc / ty / wf.rs
1 // Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 use hir::def_id::DefId;
12 use infer::InferCtxt;
13 use ty::outlives::Component;
14 use ty::subst::Substs;
15 use traits;
16 use ty::{self, ToPredicate, Ty, TyCtxt, TypeFoldable};
17 use std::iter::once;
18 use syntax::ast;
19 use syntax_pos::Span;
20 use middle::lang_items;
21
22 /// Returns the set of obligations needed to make `ty` well-formed.
23 /// If `ty` contains unresolved inference variables, this may include
24 /// further WF obligations. However, if `ty` IS an unresolved
25 /// inference variable, returns `None`, because we are not able to
26 /// make any progress at all. This is to prevent "livelock" where we
27 /// say "$0 is WF if $0 is WF".
28 pub fn obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
29 body_id: ast::NodeId,
30 ty: Ty<'tcx>,
31 span: Span)
32 -> Option<Vec<traits::PredicateObligation<'tcx>>>
33 {
34 let mut wf = WfPredicates { infcx: infcx,
35 body_id: body_id,
36 span: span,
37 out: vec![] };
38 if wf.compute(ty) {
39 debug!("wf::obligations({:?}, body_id={:?}) = {:?}", ty, body_id, wf.out);
40 let result = wf.normalize();
41 debug!("wf::obligations({:?}, body_id={:?}) ~~> {:?}", ty, body_id, result);
42 Some(result)
43 } else {
44 None // no progress made, return None
45 }
46 }
47
48 /// Returns the obligations that make this trait reference
49 /// well-formed. For example, if there is a trait `Set` defined like
50 /// `trait Set<K:Eq>`, then the trait reference `Foo: Set<Bar>` is WF
51 /// if `Bar: Eq`.
52 pub fn trait_obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
53 body_id: ast::NodeId,
54 trait_ref: &ty::TraitRef<'tcx>,
55 span: Span)
56 -> Vec<traits::PredicateObligation<'tcx>>
57 {
58 let mut wf = WfPredicates { infcx: infcx, body_id: body_id, span: span, out: vec![] };
59 wf.compute_trait_ref(trait_ref);
60 wf.normalize()
61 }
62
63 pub fn predicate_obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
64 body_id: ast::NodeId,
65 predicate: &ty::Predicate<'tcx>,
66 span: Span)
67 -> Vec<traits::PredicateObligation<'tcx>>
68 {
69 let mut wf = WfPredicates { infcx: infcx, body_id: body_id, span: span, out: vec![] };
70
71 // (*) ok to skip binders, because wf code is prepared for it
72 match *predicate {
73 ty::Predicate::Trait(ref t) => {
74 wf.compute_trait_ref(&t.skip_binder().trait_ref); // (*)
75 }
76 ty::Predicate::Equate(ref t) => {
77 wf.compute(t.skip_binder().0);
78 wf.compute(t.skip_binder().1);
79 }
80 ty::Predicate::RegionOutlives(..) => {
81 }
82 ty::Predicate::TypeOutlives(ref t) => {
83 wf.compute(t.skip_binder().0);
84 }
85 ty::Predicate::Projection(ref t) => {
86 let t = t.skip_binder(); // (*)
87 wf.compute_projection(t.projection_ty);
88 wf.compute(t.ty);
89 }
90 ty::Predicate::WellFormed(t) => {
91 wf.compute(t);
92 }
93 ty::Predicate::ObjectSafe(_) => {
94 }
95 ty::Predicate::ClosureKind(..) => {
96 }
97 ty::Predicate::Subtype(ref data) => {
98 wf.compute(data.skip_binder().a); // (*)
99 wf.compute(data.skip_binder().b); // (*)
100 }
101 }
102
103 wf.normalize()
104 }
105
106 /// Implied bounds are region relationships that we deduce
107 /// automatically. The idea is that (e.g.) a caller must check that a
108 /// function's argument types are well-formed immediately before
109 /// calling that fn, and hence the *callee* can assume that its
110 /// argument types are well-formed. This may imply certain relationships
111 /// between generic parameters. For example:
112 ///
113 /// fn foo<'a,T>(x: &'a T)
114 ///
115 /// can only be called with a `'a` and `T` such that `&'a T` is WF.
116 /// For `&'a T` to be WF, `T: 'a` must hold. So we can assume `T: 'a`.
117 #[derive(Debug)]
118 pub enum ImpliedBound<'tcx> {
119 RegionSubRegion(&'tcx ty::Region, &'tcx ty::Region),
120 RegionSubParam(&'tcx ty::Region, ty::ParamTy),
121 RegionSubProjection(&'tcx ty::Region, ty::ProjectionTy<'tcx>),
122 }
123
124 /// Compute the implied bounds that a callee/impl can assume based on
125 /// the fact that caller/projector has ensured that `ty` is WF. See
126 /// the `ImpliedBound` type for more details.
127 pub fn implied_bounds<'a, 'gcx, 'tcx>(
128 infcx: &'a InferCtxt<'a, 'gcx, 'tcx>,
129 body_id: ast::NodeId,
130 ty: Ty<'tcx>,
131 span: Span)
132 -> Vec<ImpliedBound<'tcx>>
133 {
134 // Sometimes when we ask what it takes for T: WF, we get back that
135 // U: WF is required; in that case, we push U onto this stack and
136 // process it next. Currently (at least) these resulting
137 // predicates are always guaranteed to be a subset of the original
138 // type, so we need not fear non-termination.
139 let mut wf_types = vec![ty];
140
141 let mut implied_bounds = vec![];
142
143 while let Some(ty) = wf_types.pop() {
144 // Compute the obligations for `ty` to be well-formed. If `ty` is
145 // an unresolved inference variable, just substituted an empty set
146 // -- because the return type here is going to be things we *add*
147 // to the environment, it's always ok for this set to be smaller
148 // than the ultimate set. (Note: normally there won't be
149 // unresolved inference variables here anyway, but there might be
150 // during typeck under some circumstances.)
151 let obligations = obligations(infcx, body_id, ty, span).unwrap_or(vec![]);
152
153 // From the full set of obligations, just filter down to the
154 // region relationships.
155 implied_bounds.extend(
156 obligations
157 .into_iter()
158 .flat_map(|obligation| {
159 assert!(!obligation.has_escaping_regions());
160 match obligation.predicate {
161 ty::Predicate::Trait(..) |
162 ty::Predicate::Equate(..) |
163 ty::Predicate::Subtype(..) |
164 ty::Predicate::Projection(..) |
165 ty::Predicate::ClosureKind(..) |
166 ty::Predicate::ObjectSafe(..) =>
167 vec![],
168
169 ty::Predicate::WellFormed(subty) => {
170 wf_types.push(subty);
171 vec![]
172 }
173
174 ty::Predicate::RegionOutlives(ref data) =>
175 match infcx.tcx.no_late_bound_regions(data) {
176 None =>
177 vec![],
178 Some(ty::OutlivesPredicate(r_a, r_b)) =>
179 vec![ImpliedBound::RegionSubRegion(r_b, r_a)],
180 },
181
182 ty::Predicate::TypeOutlives(ref data) =>
183 match infcx.tcx.no_late_bound_regions(data) {
184 None => vec![],
185 Some(ty::OutlivesPredicate(ty_a, r_b)) => {
186 let ty_a = infcx.resolve_type_vars_if_possible(&ty_a);
187 let components = infcx.tcx.outlives_components(ty_a);
188 implied_bounds_from_components(r_b, components)
189 }
190 },
191 }}));
192 }
193
194 implied_bounds
195 }
196
197 /// When we have an implied bound that `T: 'a`, we can further break
198 /// this down to determine what relationships would have to hold for
199 /// `T: 'a` to hold. We get to assume that the caller has validated
200 /// those relationships.
201 fn implied_bounds_from_components<'tcx>(sub_region: &'tcx ty::Region,
202 sup_components: Vec<Component<'tcx>>)
203 -> Vec<ImpliedBound<'tcx>>
204 {
205 sup_components
206 .into_iter()
207 .flat_map(|component| {
208 match component {
209 Component::Region(r) =>
210 vec![ImpliedBound::RegionSubRegion(sub_region, r)],
211 Component::Param(p) =>
212 vec![ImpliedBound::RegionSubParam(sub_region, p)],
213 Component::Projection(p) =>
214 vec![ImpliedBound::RegionSubProjection(sub_region, p)],
215 Component::EscapingProjection(_) =>
216 // If the projection has escaping regions, don't
217 // try to infer any implied bounds even for its
218 // free components. This is conservative, because
219 // the caller will still have to prove that those
220 // free components outlive `sub_region`. But the
221 // idea is that the WAY that the caller proves
222 // that may change in the future and we want to
223 // give ourselves room to get smarter here.
224 vec![],
225 Component::UnresolvedInferenceVariable(..) =>
226 vec![],
227 }
228 })
229 .collect()
230 }
231
232 struct WfPredicates<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
233 infcx: &'a InferCtxt<'a, 'gcx, 'tcx>,
234 body_id: ast::NodeId,
235 span: Span,
236 out: Vec<traits::PredicateObligation<'tcx>>,
237 }
238
239 impl<'a, 'gcx, 'tcx> WfPredicates<'a, 'gcx, 'tcx> {
240 fn cause(&mut self, code: traits::ObligationCauseCode<'tcx>) -> traits::ObligationCause<'tcx> {
241 traits::ObligationCause::new(self.span, self.body_id, code)
242 }
243
244 fn normalize(&mut self) -> Vec<traits::PredicateObligation<'tcx>> {
245 let cause = self.cause(traits::MiscObligation);
246 let infcx = &mut self.infcx;
247 self.out.iter()
248 .inspect(|pred| assert!(!pred.has_escaping_regions()))
249 .flat_map(|pred| {
250 let mut selcx = traits::SelectionContext::new(infcx);
251 let pred = traits::normalize(&mut selcx, cause.clone(), pred);
252 once(pred.value).chain(pred.obligations)
253 })
254 .collect()
255 }
256
257 /// Pushes the obligations required for `trait_ref` to be WF into
258 /// `self.out`.
259 fn compute_trait_ref(&mut self, trait_ref: &ty::TraitRef<'tcx>) {
260 let obligations = self.nominal_obligations(trait_ref.def_id, trait_ref.substs);
261 self.out.extend(obligations);
262
263 let cause = self.cause(traits::MiscObligation);
264 self.out.extend(
265 trait_ref.substs.types()
266 .filter(|ty| !ty.has_escaping_regions())
267 .map(|ty| traits::Obligation::new(cause.clone(),
268 ty::Predicate::WellFormed(ty))));
269 }
270
271 /// Pushes the obligations required for `trait_ref::Item` to be WF
272 /// into `self.out`.
273 fn compute_projection(&mut self, data: ty::ProjectionTy<'tcx>) {
274 // A projection is well-formed if (a) the trait ref itself is
275 // WF and (b) the trait-ref holds. (It may also be
276 // normalizable and be WF that way.)
277
278 self.compute_trait_ref(&data.trait_ref);
279
280 if !data.has_escaping_regions() {
281 let predicate = data.trait_ref.to_predicate();
282 let cause = self.cause(traits::ProjectionWf(data));
283 self.out.push(traits::Obligation::new(cause, predicate));
284 }
285 }
286
287 fn require_sized(&mut self, subty: Ty<'tcx>, cause: traits::ObligationCauseCode<'tcx>) {
288 if !subty.has_escaping_regions() {
289 let cause = self.cause(cause);
290 let trait_ref = ty::TraitRef {
291 def_id: self.infcx.tcx.require_lang_item(lang_items::SizedTraitLangItem),
292 substs: self.infcx.tcx.mk_substs_trait(subty, &[]),
293 };
294 self.out.push(traits::Obligation::new(cause, trait_ref.to_predicate()));
295 }
296 }
297
298 /// Push new obligations into `out`. Returns true if it was able
299 /// to generate all the predicates needed to validate that `ty0`
300 /// is WF. Returns false if `ty0` is an unresolved type variable,
301 /// in which case we are not able to simplify at all.
302 fn compute(&mut self, ty0: Ty<'tcx>) -> bool {
303 let mut subtys = ty0.walk();
304 while let Some(ty) = subtys.next() {
305 match ty.sty {
306 ty::TyBool |
307 ty::TyChar |
308 ty::TyInt(..) |
309 ty::TyUint(..) |
310 ty::TyFloat(..) |
311 ty::TyError |
312 ty::TyStr |
313 ty::TyNever |
314 ty::TyParam(_) => {
315 // WfScalar, WfParameter, etc
316 }
317
318 ty::TySlice(subty) |
319 ty::TyArray(subty, _) => {
320 self.require_sized(subty, traits::SliceOrArrayElem);
321 }
322
323 ty::TyTuple(ref tys, _) => {
324 if let Some((_last, rest)) = tys.split_last() {
325 for elem in rest {
326 self.require_sized(elem, traits::TupleElem);
327 }
328 }
329 }
330
331 ty::TyRawPtr(_) => {
332 // simple cases that are WF if their type args are WF
333 }
334
335 ty::TyProjection(data) => {
336 subtys.skip_current_subtree(); // subtree handled by compute_projection
337 self.compute_projection(data);
338 }
339
340 ty::TyAdt(def, substs) => {
341 // WfNominalType
342 let obligations = self.nominal_obligations(def.did, substs);
343 self.out.extend(obligations);
344 }
345
346 ty::TyRef(r, mt) => {
347 // WfReference
348 if !r.has_escaping_regions() && !mt.ty.has_escaping_regions() {
349 let cause = self.cause(traits::ReferenceOutlivesReferent(ty));
350 self.out.push(
351 traits::Obligation::new(
352 cause,
353 ty::Predicate::TypeOutlives(
354 ty::Binder(
355 ty::OutlivesPredicate(mt.ty, r)))));
356 }
357 }
358
359 ty::TyClosure(..) => {
360 // the types in a closure are always the types of
361 // local variables (or possibly references to local
362 // variables), we'll walk those.
363 //
364 // (Though, local variables are probably not
365 // needed, as they are separately checked w/r/t
366 // WFedness.)
367 }
368
369 ty::TyFnDef(..) | ty::TyFnPtr(_) => {
370 // let the loop iterate into the argument/return
371 // types appearing in the fn signature
372 }
373
374 ty::TyAnon(..) => {
375 // all of the requirements on type parameters
376 // should've been checked by the instantiation
377 // of whatever returned this exact `impl Trait`.
378 }
379
380 ty::TyDynamic(data, r) => {
381 // WfObject
382 //
383 // Here, we defer WF checking due to higher-ranked
384 // regions. This is perhaps not ideal.
385 self.from_object_ty(ty, data, r);
386
387 // FIXME(#27579) RFC also considers adding trait
388 // obligations that don't refer to Self and
389 // checking those
390
391 let cause = self.cause(traits::MiscObligation);
392
393 let component_traits =
394 data.auto_traits().chain(data.principal().map(|p| p.def_id()));
395 self.out.extend(
396 component_traits.map(|did| traits::Obligation::new(
397 cause.clone(),
398 ty::Predicate::ObjectSafe(did)
399 ))
400 );
401 }
402
403 // Inference variables are the complicated case, since we don't
404 // know what type they are. We do two things:
405 //
406 // 1. Check if they have been resolved, and if so proceed with
407 // THAT type.
408 // 2. If not, check whether this is the type that we
409 // started with (ty0). In that case, we've made no
410 // progress at all, so return false. Otherwise,
411 // we've at least simplified things (i.e., we went
412 // from `Vec<$0>: WF` to `$0: WF`, so we can
413 // register a pending obligation and keep
414 // moving. (Goal is that an "inductive hypothesis"
415 // is satisfied to ensure termination.)
416 ty::TyInfer(_) => {
417 let ty = self.infcx.shallow_resolve(ty);
418 if let ty::TyInfer(_) = ty.sty { // not yet resolved...
419 if ty == ty0 { // ...this is the type we started from! no progress.
420 return false;
421 }
422
423 let cause = self.cause(traits::MiscObligation);
424 self.out.push( // ...not the type we started from, so we made progress.
425 traits::Obligation::new(cause, ty::Predicate::WellFormed(ty)));
426 } else {
427 // Yes, resolved, proceed with the
428 // result. Should never return false because
429 // `ty` is not a TyInfer.
430 assert!(self.compute(ty));
431 }
432 }
433 }
434 }
435
436 // if we made it through that loop above, we made progress!
437 return true;
438 }
439
440 fn nominal_obligations(&mut self,
441 def_id: DefId,
442 substs: &Substs<'tcx>)
443 -> Vec<traits::PredicateObligation<'tcx>>
444 {
445 let predicates =
446 self.infcx.tcx.item_predicates(def_id)
447 .instantiate(self.infcx.tcx, substs);
448 let cause = self.cause(traits::ItemObligation(def_id));
449 predicates.predicates
450 .into_iter()
451 .map(|pred| traits::Obligation::new(cause.clone(), pred))
452 .filter(|pred| !pred.has_escaping_regions())
453 .collect()
454 }
455
456 fn from_object_ty(&mut self, ty: Ty<'tcx>,
457 data: ty::Binder<&'tcx ty::Slice<ty::ExistentialPredicate<'tcx>>>,
458 region: &'tcx ty::Region) {
459 // Imagine a type like this:
460 //
461 // trait Foo { }
462 // trait Bar<'c> : 'c { }
463 //
464 // &'b (Foo+'c+Bar<'d>)
465 // ^
466 //
467 // In this case, the following relationships must hold:
468 //
469 // 'b <= 'c
470 // 'd <= 'c
471 //
472 // The first conditions is due to the normal region pointer
473 // rules, which say that a reference cannot outlive its
474 // referent.
475 //
476 // The final condition may be a bit surprising. In particular,
477 // you may expect that it would have been `'c <= 'd`, since
478 // usually lifetimes of outer things are conservative
479 // approximations for inner things. However, it works somewhat
480 // differently with trait objects: here the idea is that if the
481 // user specifies a region bound (`'c`, in this case) it is the
482 // "master bound" that *implies* that bounds from other traits are
483 // all met. (Remember that *all bounds* in a type like
484 // `Foo+Bar+Zed` must be met, not just one, hence if we write
485 // `Foo<'x>+Bar<'y>`, we know that the type outlives *both* 'x and
486 // 'y.)
487 //
488 // Note: in fact we only permit builtin traits, not `Bar<'d>`, I
489 // am looking forward to the future here.
490
491 if !data.has_escaping_regions() {
492 let implicit_bounds =
493 object_region_bounds(self.infcx.tcx, data);
494
495 let explicit_bound = region;
496
497 for implicit_bound in implicit_bounds {
498 let cause = self.cause(traits::ObjectTypeBound(ty, explicit_bound));
499 let outlives = ty::Binder(ty::OutlivesPredicate(explicit_bound, implicit_bound));
500 self.out.push(traits::Obligation::new(cause, outlives.to_predicate()));
501 }
502 }
503 }
504 }
505
506 /// Given an object type like `SomeTrait+Send`, computes the lifetime
507 /// bounds that must hold on the elided self type. These are derived
508 /// from the declarations of `SomeTrait`, `Send`, and friends -- if
509 /// they declare `trait SomeTrait : 'static`, for example, then
510 /// `'static` would appear in the list. The hard work is done by
511 /// `ty::required_region_bounds`, see that for more information.
512 pub fn object_region_bounds<'a, 'gcx, 'tcx>(
513 tcx: TyCtxt<'a, 'gcx, 'tcx>,
514 existential_predicates: ty::Binder<&'tcx ty::Slice<ty::ExistentialPredicate<'tcx>>>)
515 -> Vec<&'tcx ty::Region>
516 {
517 // Since we don't actually *know* the self type for an object,
518 // this "open(err)" serves as a kind of dummy standin -- basically
519 // a skolemized type.
520 let open_ty = tcx.mk_infer(ty::FreshTy(0));
521
522 let predicates = existential_predicates.iter().filter_map(|predicate| {
523 if let ty::ExistentialPredicate::Projection(_) = *predicate.skip_binder() {
524 None
525 } else {
526 Some(predicate.with_self_ty(tcx, open_ty))
527 }
528 }).collect();
529
530 tcx.required_region_bounds(open_ty, predicates)
531 }