]> git.proxmox.com Git - rustc.git/blob - src/librustc/ty/wf.rs
New upstream version 1.19.0+dfsg1
[rustc.git] / src / librustc / ty / wf.rs
1 // Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 use hir::def_id::DefId;
12 use infer::InferCtxt;
13 use ty::subst::Substs;
14 use traits;
15 use ty::{self, ToPredicate, Ty, TyCtxt, TypeFoldable};
16 use std::iter::once;
17 use syntax::ast;
18 use syntax_pos::Span;
19 use middle::lang_items;
20
21 /// Returns the set of obligations needed to make `ty` well-formed.
22 /// If `ty` contains unresolved inference variables, this may include
23 /// further WF obligations. However, if `ty` IS an unresolved
24 /// inference variable, returns `None`, because we are not able to
25 /// make any progress at all. This is to prevent "livelock" where we
26 /// say "$0 is WF if $0 is WF".
27 pub fn obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
28 param_env: ty::ParamEnv<'tcx>,
29 body_id: ast::NodeId,
30 ty: Ty<'tcx>,
31 span: Span)
32 -> Option<Vec<traits::PredicateObligation<'tcx>>>
33 {
34 let mut wf = WfPredicates { infcx: infcx,
35 param_env: param_env,
36 body_id: body_id,
37 span: span,
38 out: vec![] };
39 if wf.compute(ty) {
40 debug!("wf::obligations({:?}, body_id={:?}) = {:?}", ty, body_id, wf.out);
41 let result = wf.normalize();
42 debug!("wf::obligations({:?}, body_id={:?}) ~~> {:?}", ty, body_id, result);
43 Some(result)
44 } else {
45 None // no progress made, return None
46 }
47 }
48
49 /// Returns the obligations that make this trait reference
50 /// well-formed. For example, if there is a trait `Set` defined like
51 /// `trait Set<K:Eq>`, then the trait reference `Foo: Set<Bar>` is WF
52 /// if `Bar: Eq`.
53 pub fn trait_obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
54 param_env: ty::ParamEnv<'tcx>,
55 body_id: ast::NodeId,
56 trait_ref: &ty::TraitRef<'tcx>,
57 span: Span)
58 -> Vec<traits::PredicateObligation<'tcx>>
59 {
60 let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![] };
61 wf.compute_trait_ref(trait_ref);
62 wf.normalize()
63 }
64
65 pub fn predicate_obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
66 param_env: ty::ParamEnv<'tcx>,
67 body_id: ast::NodeId,
68 predicate: &ty::Predicate<'tcx>,
69 span: Span)
70 -> Vec<traits::PredicateObligation<'tcx>>
71 {
72 let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![] };
73
74 // (*) ok to skip binders, because wf code is prepared for it
75 match *predicate {
76 ty::Predicate::Trait(ref t) => {
77 wf.compute_trait_ref(&t.skip_binder().trait_ref); // (*)
78 }
79 ty::Predicate::Equate(ref t) => {
80 wf.compute(t.skip_binder().0);
81 wf.compute(t.skip_binder().1);
82 }
83 ty::Predicate::RegionOutlives(..) => {
84 }
85 ty::Predicate::TypeOutlives(ref t) => {
86 wf.compute(t.skip_binder().0);
87 }
88 ty::Predicate::Projection(ref t) => {
89 let t = t.skip_binder(); // (*)
90 wf.compute_projection(t.projection_ty);
91 wf.compute(t.ty);
92 }
93 ty::Predicate::WellFormed(t) => {
94 wf.compute(t);
95 }
96 ty::Predicate::ObjectSafe(_) => {
97 }
98 ty::Predicate::ClosureKind(..) => {
99 }
100 ty::Predicate::Subtype(ref data) => {
101 wf.compute(data.skip_binder().a); // (*)
102 wf.compute(data.skip_binder().b); // (*)
103 }
104 }
105
106 wf.normalize()
107 }
108
109 struct WfPredicates<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
110 infcx: &'a InferCtxt<'a, 'gcx, 'tcx>,
111 param_env: ty::ParamEnv<'tcx>,
112 body_id: ast::NodeId,
113 span: Span,
114 out: Vec<traits::PredicateObligation<'tcx>>,
115 }
116
117 impl<'a, 'gcx, 'tcx> WfPredicates<'a, 'gcx, 'tcx> {
118 fn cause(&mut self, code: traits::ObligationCauseCode<'tcx>) -> traits::ObligationCause<'tcx> {
119 traits::ObligationCause::new(self.span, self.body_id, code)
120 }
121
122 fn normalize(&mut self) -> Vec<traits::PredicateObligation<'tcx>> {
123 let cause = self.cause(traits::MiscObligation);
124 let infcx = &mut self.infcx;
125 let param_env = self.param_env;
126 self.out.iter()
127 .inspect(|pred| assert!(!pred.has_escaping_regions()))
128 .flat_map(|pred| {
129 let mut selcx = traits::SelectionContext::new(infcx);
130 let pred = traits::normalize(&mut selcx, param_env, cause.clone(), pred);
131 once(pred.value).chain(pred.obligations)
132 })
133 .collect()
134 }
135
136 /// Pushes the obligations required for `trait_ref` to be WF into
137 /// `self.out`.
138 fn compute_trait_ref(&mut self, trait_ref: &ty::TraitRef<'tcx>) {
139 let obligations = self.nominal_obligations(trait_ref.def_id, trait_ref.substs);
140 self.out.extend(obligations);
141
142 let cause = self.cause(traits::MiscObligation);
143 let param_env = self.param_env;
144 self.out.extend(
145 trait_ref.substs.types()
146 .filter(|ty| !ty.has_escaping_regions())
147 .map(|ty| traits::Obligation::new(cause.clone(),
148 param_env,
149 ty::Predicate::WellFormed(ty))));
150 }
151
152 /// Pushes the obligations required for `trait_ref::Item` to be WF
153 /// into `self.out`.
154 fn compute_projection(&mut self, data: ty::ProjectionTy<'tcx>) {
155 // A projection is well-formed if (a) the trait ref itself is
156 // WF and (b) the trait-ref holds. (It may also be
157 // normalizable and be WF that way.)
158
159 self.compute_trait_ref(&data.trait_ref);
160
161 if !data.has_escaping_regions() {
162 let predicate = data.trait_ref.to_predicate();
163 let cause = self.cause(traits::ProjectionWf(data));
164 self.out.push(traits::Obligation::new(cause, self.param_env, predicate));
165 }
166 }
167
168 fn require_sized(&mut self, subty: Ty<'tcx>, cause: traits::ObligationCauseCode<'tcx>) {
169 if !subty.has_escaping_regions() {
170 let cause = self.cause(cause);
171 let trait_ref = ty::TraitRef {
172 def_id: self.infcx.tcx.require_lang_item(lang_items::SizedTraitLangItem),
173 substs: self.infcx.tcx.mk_substs_trait(subty, &[]),
174 };
175 self.out.push(traits::Obligation::new(cause, self.param_env, trait_ref.to_predicate()));
176 }
177 }
178
179 /// Push new obligations into `out`. Returns true if it was able
180 /// to generate all the predicates needed to validate that `ty0`
181 /// is WF. Returns false if `ty0` is an unresolved type variable,
182 /// in which case we are not able to simplify at all.
183 fn compute(&mut self, ty0: Ty<'tcx>) -> bool {
184 let mut subtys = ty0.walk();
185 let param_env = self.param_env;
186 while let Some(ty) = subtys.next() {
187 match ty.sty {
188 ty::TyBool |
189 ty::TyChar |
190 ty::TyInt(..) |
191 ty::TyUint(..) |
192 ty::TyFloat(..) |
193 ty::TyError |
194 ty::TyStr |
195 ty::TyNever |
196 ty::TyParam(_) => {
197 // WfScalar, WfParameter, etc
198 }
199
200 ty::TySlice(subty) |
201 ty::TyArray(subty, _) => {
202 self.require_sized(subty, traits::SliceOrArrayElem);
203 }
204
205 ty::TyTuple(ref tys, _) => {
206 if let Some((_last, rest)) = tys.split_last() {
207 for elem in rest {
208 self.require_sized(elem, traits::TupleElem);
209 }
210 }
211 }
212
213 ty::TyRawPtr(_) => {
214 // simple cases that are WF if their type args are WF
215 }
216
217 ty::TyProjection(data) => {
218 subtys.skip_current_subtree(); // subtree handled by compute_projection
219 self.compute_projection(data);
220 }
221
222 ty::TyAdt(def, substs) => {
223 // WfNominalType
224 let obligations = self.nominal_obligations(def.did, substs);
225 self.out.extend(obligations);
226 }
227
228 ty::TyRef(r, mt) => {
229 // WfReference
230 if !r.has_escaping_regions() && !mt.ty.has_escaping_regions() {
231 let cause = self.cause(traits::ReferenceOutlivesReferent(ty));
232 self.out.push(
233 traits::Obligation::new(
234 cause,
235 param_env,
236 ty::Predicate::TypeOutlives(
237 ty::Binder(
238 ty::OutlivesPredicate(mt.ty, r)))));
239 }
240 }
241
242 ty::TyClosure(..) => {
243 // the types in a closure are always the types of
244 // local variables (or possibly references to local
245 // variables), we'll walk those.
246 //
247 // (Though, local variables are probably not
248 // needed, as they are separately checked w/r/t
249 // WFedness.)
250 }
251
252 ty::TyFnDef(..) | ty::TyFnPtr(_) => {
253 // let the loop iterate into the argument/return
254 // types appearing in the fn signature
255 }
256
257 ty::TyAnon(..) => {
258 // all of the requirements on type parameters
259 // should've been checked by the instantiation
260 // of whatever returned this exact `impl Trait`.
261 }
262
263 ty::TyDynamic(data, r) => {
264 // WfObject
265 //
266 // Here, we defer WF checking due to higher-ranked
267 // regions. This is perhaps not ideal.
268 self.from_object_ty(ty, data, r);
269
270 // FIXME(#27579) RFC also considers adding trait
271 // obligations that don't refer to Self and
272 // checking those
273
274 let cause = self.cause(traits::MiscObligation);
275 let component_traits =
276 data.auto_traits().chain(data.principal().map(|p| p.def_id()));
277 self.out.extend(
278 component_traits.map(|did| traits::Obligation::new(
279 cause.clone(),
280 param_env,
281 ty::Predicate::ObjectSafe(did)
282 ))
283 );
284 }
285
286 // Inference variables are the complicated case, since we don't
287 // know what type they are. We do two things:
288 //
289 // 1. Check if they have been resolved, and if so proceed with
290 // THAT type.
291 // 2. If not, check whether this is the type that we
292 // started with (ty0). In that case, we've made no
293 // progress at all, so return false. Otherwise,
294 // we've at least simplified things (i.e., we went
295 // from `Vec<$0>: WF` to `$0: WF`, so we can
296 // register a pending obligation and keep
297 // moving. (Goal is that an "inductive hypothesis"
298 // is satisfied to ensure termination.)
299 ty::TyInfer(_) => {
300 let ty = self.infcx.shallow_resolve(ty);
301 if let ty::TyInfer(_) = ty.sty { // not yet resolved...
302 if ty == ty0 { // ...this is the type we started from! no progress.
303 return false;
304 }
305
306 let cause = self.cause(traits::MiscObligation);
307 self.out.push( // ...not the type we started from, so we made progress.
308 traits::Obligation::new(cause,
309 self.param_env,
310 ty::Predicate::WellFormed(ty)));
311 } else {
312 // Yes, resolved, proceed with the
313 // result. Should never return false because
314 // `ty` is not a TyInfer.
315 assert!(self.compute(ty));
316 }
317 }
318 }
319 }
320
321 // if we made it through that loop above, we made progress!
322 return true;
323 }
324
325 fn nominal_obligations(&mut self,
326 def_id: DefId,
327 substs: &Substs<'tcx>)
328 -> Vec<traits::PredicateObligation<'tcx>>
329 {
330 let predicates =
331 self.infcx.tcx.predicates_of(def_id)
332 .instantiate(self.infcx.tcx, substs);
333 let cause = self.cause(traits::ItemObligation(def_id));
334 predicates.predicates
335 .into_iter()
336 .map(|pred| traits::Obligation::new(cause.clone(),
337 self.param_env,
338 pred))
339 .filter(|pred| !pred.has_escaping_regions())
340 .collect()
341 }
342
343 fn from_object_ty(&mut self, ty: Ty<'tcx>,
344 data: ty::Binder<&'tcx ty::Slice<ty::ExistentialPredicate<'tcx>>>,
345 region: ty::Region<'tcx>) {
346 // Imagine a type like this:
347 //
348 // trait Foo { }
349 // trait Bar<'c> : 'c { }
350 //
351 // &'b (Foo+'c+Bar<'d>)
352 // ^
353 //
354 // In this case, the following relationships must hold:
355 //
356 // 'b <= 'c
357 // 'd <= 'c
358 //
359 // The first conditions is due to the normal region pointer
360 // rules, which say that a reference cannot outlive its
361 // referent.
362 //
363 // The final condition may be a bit surprising. In particular,
364 // you may expect that it would have been `'c <= 'd`, since
365 // usually lifetimes of outer things are conservative
366 // approximations for inner things. However, it works somewhat
367 // differently with trait objects: here the idea is that if the
368 // user specifies a region bound (`'c`, in this case) it is the
369 // "master bound" that *implies* that bounds from other traits are
370 // all met. (Remember that *all bounds* in a type like
371 // `Foo+Bar+Zed` must be met, not just one, hence if we write
372 // `Foo<'x>+Bar<'y>`, we know that the type outlives *both* 'x and
373 // 'y.)
374 //
375 // Note: in fact we only permit builtin traits, not `Bar<'d>`, I
376 // am looking forward to the future here.
377
378 if !data.has_escaping_regions() {
379 let implicit_bounds =
380 object_region_bounds(self.infcx.tcx, data);
381
382 let explicit_bound = region;
383
384 for implicit_bound in implicit_bounds {
385 let cause = self.cause(traits::ObjectTypeBound(ty, explicit_bound));
386 let outlives = ty::Binder(ty::OutlivesPredicate(explicit_bound, implicit_bound));
387 self.out.push(traits::Obligation::new(cause,
388 self.param_env,
389 outlives.to_predicate()));
390 }
391 }
392 }
393 }
394
395 /// Given an object type like `SomeTrait+Send`, computes the lifetime
396 /// bounds that must hold on the elided self type. These are derived
397 /// from the declarations of `SomeTrait`, `Send`, and friends -- if
398 /// they declare `trait SomeTrait : 'static`, for example, then
399 /// `'static` would appear in the list. The hard work is done by
400 /// `ty::required_region_bounds`, see that for more information.
401 pub fn object_region_bounds<'a, 'gcx, 'tcx>(
402 tcx: TyCtxt<'a, 'gcx, 'tcx>,
403 existential_predicates: ty::Binder<&'tcx ty::Slice<ty::ExistentialPredicate<'tcx>>>)
404 -> Vec<ty::Region<'tcx>>
405 {
406 // Since we don't actually *know* the self type for an object,
407 // this "open(err)" serves as a kind of dummy standin -- basically
408 // a skolemized type.
409 let open_ty = tcx.mk_infer(ty::FreshTy(0));
410
411 let predicates = existential_predicates.iter().filter_map(|predicate| {
412 if let ty::ExistentialPredicate::Projection(_) = *predicate.skip_binder() {
413 None
414 } else {
415 Some(predicate.with_self_ty(tcx, open_ty))
416 }
417 }).collect();
418
419 tcx.required_region_bounds(open_ty, predicates)
420 }