]> git.proxmox.com Git - rustc.git/blob - src/librustc/ty/wf.rs
New upstream version 1.27.1+dfsg1
[rustc.git] / src / librustc / ty / wf.rs
1 // Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 use hir::def_id::DefId;
12 use middle::const_val::ConstVal;
13 use infer::InferCtxt;
14 use ty::subst::Substs;
15 use traits;
16 use ty::{self, ToPredicate, Ty, TyCtxt, TypeFoldable};
17 use std::iter::once;
18 use syntax::ast;
19 use syntax_pos::Span;
20 use middle::lang_items;
21
22 /// Returns the set of obligations needed to make `ty` well-formed.
23 /// If `ty` contains unresolved inference variables, this may include
24 /// further WF obligations. However, if `ty` IS an unresolved
25 /// inference variable, returns `None`, because we are not able to
26 /// make any progress at all. This is to prevent "livelock" where we
27 /// say "$0 is WF if $0 is WF".
28 pub fn obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
29 param_env: ty::ParamEnv<'tcx>,
30 body_id: ast::NodeId,
31 ty: Ty<'tcx>,
32 span: Span)
33 -> Option<Vec<traits::PredicateObligation<'tcx>>>
34 {
35 let mut wf = WfPredicates { infcx,
36 param_env,
37 body_id,
38 span,
39 out: vec![] };
40 if wf.compute(ty) {
41 debug!("wf::obligations({:?}, body_id={:?}) = {:?}", ty, body_id, wf.out);
42 let result = wf.normalize();
43 debug!("wf::obligations({:?}, body_id={:?}) ~~> {:?}", ty, body_id, result);
44 Some(result)
45 } else {
46 None // no progress made, return None
47 }
48 }
49
50 /// Returns the obligations that make this trait reference
51 /// well-formed. For example, if there is a trait `Set` defined like
52 /// `trait Set<K:Eq>`, then the trait reference `Foo: Set<Bar>` is WF
53 /// if `Bar: Eq`.
54 pub fn trait_obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
55 param_env: ty::ParamEnv<'tcx>,
56 body_id: ast::NodeId,
57 trait_ref: &ty::TraitRef<'tcx>,
58 span: Span)
59 -> Vec<traits::PredicateObligation<'tcx>>
60 {
61 let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![] };
62 wf.compute_trait_ref(trait_ref, Elaborate::All);
63 wf.normalize()
64 }
65
66 pub fn predicate_obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
67 param_env: ty::ParamEnv<'tcx>,
68 body_id: ast::NodeId,
69 predicate: &ty::Predicate<'tcx>,
70 span: Span)
71 -> Vec<traits::PredicateObligation<'tcx>>
72 {
73 let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![] };
74
75 // (*) ok to skip binders, because wf code is prepared for it
76 match *predicate {
77 ty::Predicate::Trait(ref t) => {
78 wf.compute_trait_ref(&t.skip_binder().trait_ref, Elaborate::None); // (*)
79 }
80 ty::Predicate::RegionOutlives(..) => {
81 }
82 ty::Predicate::TypeOutlives(ref t) => {
83 wf.compute(t.skip_binder().0);
84 }
85 ty::Predicate::Projection(ref t) => {
86 let t = t.skip_binder(); // (*)
87 wf.compute_projection(t.projection_ty);
88 wf.compute(t.ty);
89 }
90 ty::Predicate::WellFormed(t) => {
91 wf.compute(t);
92 }
93 ty::Predicate::ObjectSafe(_) => {
94 }
95 ty::Predicate::ClosureKind(..) => {
96 }
97 ty::Predicate::Subtype(ref data) => {
98 wf.compute(data.skip_binder().a); // (*)
99 wf.compute(data.skip_binder().b); // (*)
100 }
101 ty::Predicate::ConstEvaluatable(def_id, substs) => {
102 let obligations = wf.nominal_obligations(def_id, substs);
103 wf.out.extend(obligations);
104
105 for ty in substs.types() {
106 wf.compute(ty);
107 }
108 }
109 }
110
111 wf.normalize()
112 }
113
114 struct WfPredicates<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
115 infcx: &'a InferCtxt<'a, 'gcx, 'tcx>,
116 param_env: ty::ParamEnv<'tcx>,
117 body_id: ast::NodeId,
118 span: Span,
119 out: Vec<traits::PredicateObligation<'tcx>>,
120 }
121
122 /// Controls whether we "elaborate" supertraits and so forth on the WF
123 /// predicates. This is a kind of hack to address #43784. The
124 /// underlying problem in that issue was a trait structure like:
125 ///
126 /// ```
127 /// trait Foo: Copy { }
128 /// trait Bar: Foo { }
129 /// impl<T: Bar> Foo for T { }
130 /// impl<T> Bar for T { }
131 /// ```
132 ///
133 /// Here, in the `Foo` impl, we will check that `T: Copy` holds -- but
134 /// we decide that this is true because `T: Bar` is in the
135 /// where-clauses (and we can elaborate that to include `T:
136 /// Copy`). This wouldn't be a problem, except that when we check the
137 /// `Bar` impl, we decide that `T: Foo` must hold because of the `Foo`
138 /// impl. And so nowhere did we check that `T: Copy` holds!
139 ///
140 /// To resolve this, we elaborate the WF requirements that must be
141 /// proven when checking impls. This means that (e.g.) the `impl Bar
142 /// for T` will be forced to prove not only that `T: Foo` but also `T:
143 /// Copy` (which it won't be able to do, because there is no `Copy`
144 /// impl for `T`).
145 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
146 enum Elaborate {
147 All,
148 None,
149 }
150
151 impl<'a, 'gcx, 'tcx> WfPredicates<'a, 'gcx, 'tcx> {
152 fn cause(&mut self, code: traits::ObligationCauseCode<'tcx>) -> traits::ObligationCause<'tcx> {
153 traits::ObligationCause::new(self.span, self.body_id, code)
154 }
155
156 fn normalize(&mut self) -> Vec<traits::PredicateObligation<'tcx>> {
157 let cause = self.cause(traits::MiscObligation);
158 let infcx = &mut self.infcx;
159 let param_env = self.param_env;
160 self.out.iter()
161 .inspect(|pred| assert!(!pred.has_escaping_regions()))
162 .flat_map(|pred| {
163 let mut selcx = traits::SelectionContext::new(infcx);
164 let pred = traits::normalize(&mut selcx, param_env, cause.clone(), pred);
165 once(pred.value).chain(pred.obligations)
166 })
167 .collect()
168 }
169
170 /// Pushes the obligations required for `trait_ref` to be WF into
171 /// `self.out`.
172 fn compute_trait_ref(&mut self, trait_ref: &ty::TraitRef<'tcx>, elaborate: Elaborate) {
173 let obligations = self.nominal_obligations(trait_ref.def_id, trait_ref.substs);
174
175 let cause = self.cause(traits::MiscObligation);
176 let param_env = self.param_env;
177
178 if let Elaborate::All = elaborate {
179 let predicates = obligations.iter()
180 .map(|obligation| obligation.predicate.clone())
181 .collect();
182 let implied_obligations = traits::elaborate_predicates(self.infcx.tcx, predicates);
183 let implied_obligations = implied_obligations.map(|pred| {
184 traits::Obligation::new(cause.clone(), param_env, pred)
185 });
186 self.out.extend(implied_obligations);
187 }
188
189 self.out.extend(obligations);
190
191 self.out.extend(
192 trait_ref.substs.types()
193 .filter(|ty| !ty.has_escaping_regions())
194 .map(|ty| traits::Obligation::new(cause.clone(),
195 param_env,
196 ty::Predicate::WellFormed(ty))));
197 }
198
199 /// Pushes the obligations required for `trait_ref::Item` to be WF
200 /// into `self.out`.
201 fn compute_projection(&mut self, data: ty::ProjectionTy<'tcx>) {
202 // A projection is well-formed if (a) the trait ref itself is
203 // WF and (b) the trait-ref holds. (It may also be
204 // normalizable and be WF that way.)
205 let trait_ref = data.trait_ref(self.infcx.tcx);
206 self.compute_trait_ref(&trait_ref, Elaborate::None);
207
208 if !data.has_escaping_regions() {
209 let predicate = trait_ref.to_predicate();
210 let cause = self.cause(traits::ProjectionWf(data));
211 self.out.push(traits::Obligation::new(cause, self.param_env, predicate));
212 }
213 }
214
215 /// Pushes the obligations required for a constant value to be WF
216 /// into `self.out`.
217 fn compute_const(&mut self, constant: &'tcx ty::Const<'tcx>) {
218 self.require_sized(constant.ty, traits::ConstSized);
219 match constant.val {
220 ConstVal::Value(_) => {}
221 ConstVal::Unevaluated(def_id, substs) => {
222 let obligations = self.nominal_obligations(def_id, substs);
223 self.out.extend(obligations);
224
225 let predicate = ty::Predicate::ConstEvaluatable(def_id, substs);
226 let cause = self.cause(traits::MiscObligation);
227 self.out.push(traits::Obligation::new(cause,
228 self.param_env,
229 predicate));
230 }
231 }
232 }
233
234 fn require_sized(&mut self, subty: Ty<'tcx>, cause: traits::ObligationCauseCode<'tcx>) {
235 if !subty.has_escaping_regions() {
236 let cause = self.cause(cause);
237 let trait_ref = ty::TraitRef {
238 def_id: self.infcx.tcx.require_lang_item(lang_items::SizedTraitLangItem),
239 substs: self.infcx.tcx.mk_substs_trait(subty, &[]),
240 };
241 self.out.push(traits::Obligation::new(cause, self.param_env, trait_ref.to_predicate()));
242 }
243 }
244
245 /// Push new obligations into `out`. Returns true if it was able
246 /// to generate all the predicates needed to validate that `ty0`
247 /// is WF. Returns false if `ty0` is an unresolved type variable,
248 /// in which case we are not able to simplify at all.
249 fn compute(&mut self, ty0: Ty<'tcx>) -> bool {
250 let mut subtys = ty0.walk();
251 let param_env = self.param_env;
252 while let Some(ty) = subtys.next() {
253 match ty.sty {
254 ty::TyBool |
255 ty::TyChar |
256 ty::TyInt(..) |
257 ty::TyUint(..) |
258 ty::TyFloat(..) |
259 ty::TyError |
260 ty::TyStr |
261 ty::TyGeneratorWitness(..) |
262 ty::TyNever |
263 ty::TyParam(_) |
264 ty::TyForeign(..) => {
265 // WfScalar, WfParameter, etc
266 }
267
268 ty::TySlice(subty) => {
269 self.require_sized(subty, traits::SliceOrArrayElem);
270 }
271
272 ty::TyArray(subty, len) => {
273 self.require_sized(subty, traits::SliceOrArrayElem);
274 assert_eq!(len.ty, self.infcx.tcx.types.usize);
275 self.compute_const(len);
276 }
277
278 ty::TyTuple(ref tys) => {
279 if let Some((_last, rest)) = tys.split_last() {
280 for elem in rest {
281 self.require_sized(elem, traits::TupleElem);
282 }
283 }
284 }
285
286 ty::TyRawPtr(_) => {
287 // simple cases that are WF if their type args are WF
288 }
289
290 ty::TyProjection(data) => {
291 subtys.skip_current_subtree(); // subtree handled by compute_projection
292 self.compute_projection(data);
293 }
294
295 ty::TyAdt(def, substs) => {
296 // WfNominalType
297 let obligations = self.nominal_obligations(def.did, substs);
298 self.out.extend(obligations);
299 }
300
301 ty::TyRef(r, mt) => {
302 // WfReference
303 if !r.has_escaping_regions() && !mt.ty.has_escaping_regions() {
304 let cause = self.cause(traits::ReferenceOutlivesReferent(ty));
305 self.out.push(
306 traits::Obligation::new(
307 cause,
308 param_env,
309 ty::Predicate::TypeOutlives(
310 ty::Binder::dummy(
311 ty::OutlivesPredicate(mt.ty, r)))));
312 }
313 }
314
315 ty::TyGenerator(..) => {
316 // Walk ALL the types in the generator: this will
317 // include the upvar types as well as the yield
318 // type. Note that this is mildly distinct from
319 // the closure case, where we have to be careful
320 // about the signature of the closure. We don't
321 // have the problem of implied bounds here since
322 // generators don't take arguments.
323 }
324
325 ty::TyClosure(def_id, substs) => {
326 // Only check the upvar types for WF, not the rest
327 // of the types within. This is needed because we
328 // capture the signature and it may not be WF
329 // without the implied bounds. Consider a closure
330 // like `|x: &'a T|` -- it may be that `T: 'a` is
331 // not known to hold in the creator's context (and
332 // indeed the closure may not be invoked by its
333 // creator, but rather turned to someone who *can*
334 // verify that).
335 //
336 // The special treatment of closures here really
337 // ought not to be necessary either; the problem
338 // is related to #25860 -- there is no way for us
339 // to express a fn type complete with the implied
340 // bounds that it is assuming. I think in reality
341 // the WF rules around fn are a bit messed up, and
342 // that is the rot problem: `fn(&'a T)` should
343 // probably always be WF, because it should be
344 // shorthand for something like `where(T: 'a) {
345 // fn(&'a T) }`, as discussed in #25860.
346 //
347 // Note that we are also skipping the generic
348 // types. This is consistent with the `outlives`
349 // code, but anyway doesn't matter: within the fn
350 // body where they are created, the generics will
351 // always be WF, and outside of that fn body we
352 // are not directly inspecting closure types
353 // anyway, except via auto trait matching (which
354 // only inspects the upvar types).
355 subtys.skip_current_subtree(); // subtree handled by compute_projection
356 for upvar_ty in substs.upvar_tys(def_id, self.infcx.tcx) {
357 self.compute(upvar_ty);
358 }
359 }
360
361 ty::TyFnDef(..) | ty::TyFnPtr(_) => {
362 // let the loop iterate into the argument/return
363 // types appearing in the fn signature
364 }
365
366 ty::TyAnon(..) => {
367 // all of the requirements on type parameters
368 // should've been checked by the instantiation
369 // of whatever returned this exact `impl Trait`.
370 }
371
372 ty::TyDynamic(data, r) => {
373 // WfObject
374 //
375 // Here, we defer WF checking due to higher-ranked
376 // regions. This is perhaps not ideal.
377 self.from_object_ty(ty, data, r);
378
379 // FIXME(#27579) RFC also considers adding trait
380 // obligations that don't refer to Self and
381 // checking those
382
383 let cause = self.cause(traits::MiscObligation);
384 let component_traits =
385 data.auto_traits().chain(data.principal().map(|p| p.def_id()));
386 self.out.extend(
387 component_traits.map(|did| traits::Obligation::new(
388 cause.clone(),
389 param_env,
390 ty::Predicate::ObjectSafe(did)
391 ))
392 );
393 }
394
395 // Inference variables are the complicated case, since we don't
396 // know what type they are. We do two things:
397 //
398 // 1. Check if they have been resolved, and if so proceed with
399 // THAT type.
400 // 2. If not, check whether this is the type that we
401 // started with (ty0). In that case, we've made no
402 // progress at all, so return false. Otherwise,
403 // we've at least simplified things (i.e., we went
404 // from `Vec<$0>: WF` to `$0: WF`, so we can
405 // register a pending obligation and keep
406 // moving. (Goal is that an "inductive hypothesis"
407 // is satisfied to ensure termination.)
408 ty::TyInfer(_) => {
409 let ty = self.infcx.shallow_resolve(ty);
410 if let ty::TyInfer(_) = ty.sty { // not yet resolved...
411 if ty == ty0 { // ...this is the type we started from! no progress.
412 return false;
413 }
414
415 let cause = self.cause(traits::MiscObligation);
416 self.out.push( // ...not the type we started from, so we made progress.
417 traits::Obligation::new(cause,
418 self.param_env,
419 ty::Predicate::WellFormed(ty)));
420 } else {
421 // Yes, resolved, proceed with the
422 // result. Should never return false because
423 // `ty` is not a TyInfer.
424 assert!(self.compute(ty));
425 }
426 }
427 }
428 }
429
430 // if we made it through that loop above, we made progress!
431 return true;
432 }
433
434 fn nominal_obligations(&mut self,
435 def_id: DefId,
436 substs: &Substs<'tcx>)
437 -> Vec<traits::PredicateObligation<'tcx>>
438 {
439 let predicates =
440 self.infcx.tcx.predicates_of(def_id)
441 .instantiate(self.infcx.tcx, substs);
442 let cause = self.cause(traits::ItemObligation(def_id));
443 predicates.predicates
444 .into_iter()
445 .map(|pred| traits::Obligation::new(cause.clone(),
446 self.param_env,
447 pred))
448 .filter(|pred| !pred.has_escaping_regions())
449 .collect()
450 }
451
452 fn from_object_ty(&mut self, ty: Ty<'tcx>,
453 data: ty::Binder<&'tcx ty::Slice<ty::ExistentialPredicate<'tcx>>>,
454 region: ty::Region<'tcx>) {
455 // Imagine a type like this:
456 //
457 // trait Foo { }
458 // trait Bar<'c> : 'c { }
459 //
460 // &'b (Foo+'c+Bar<'d>)
461 // ^
462 //
463 // In this case, the following relationships must hold:
464 //
465 // 'b <= 'c
466 // 'd <= 'c
467 //
468 // The first conditions is due to the normal region pointer
469 // rules, which say that a reference cannot outlive its
470 // referent.
471 //
472 // The final condition may be a bit surprising. In particular,
473 // you may expect that it would have been `'c <= 'd`, since
474 // usually lifetimes of outer things are conservative
475 // approximations for inner things. However, it works somewhat
476 // differently with trait objects: here the idea is that if the
477 // user specifies a region bound (`'c`, in this case) it is the
478 // "master bound" that *implies* that bounds from other traits are
479 // all met. (Remember that *all bounds* in a type like
480 // `Foo+Bar+Zed` must be met, not just one, hence if we write
481 // `Foo<'x>+Bar<'y>`, we know that the type outlives *both* 'x and
482 // 'y.)
483 //
484 // Note: in fact we only permit builtin traits, not `Bar<'d>`, I
485 // am looking forward to the future here.
486
487 if !data.has_escaping_regions() {
488 let implicit_bounds =
489 object_region_bounds(self.infcx.tcx, data);
490
491 let explicit_bound = region;
492
493 for implicit_bound in implicit_bounds {
494 let cause = self.cause(traits::ObjectTypeBound(ty, explicit_bound));
495 let outlives = ty::Binder::dummy(
496 ty::OutlivesPredicate(explicit_bound, implicit_bound));
497 self.out.push(traits::Obligation::new(cause,
498 self.param_env,
499 outlives.to_predicate()));
500 }
501 }
502 }
503 }
504
505 /// Given an object type like `SomeTrait+Send`, computes the lifetime
506 /// bounds that must hold on the elided self type. These are derived
507 /// from the declarations of `SomeTrait`, `Send`, and friends -- if
508 /// they declare `trait SomeTrait : 'static`, for example, then
509 /// `'static` would appear in the list. The hard work is done by
510 /// `ty::required_region_bounds`, see that for more information.
511 pub fn object_region_bounds<'a, 'gcx, 'tcx>(
512 tcx: TyCtxt<'a, 'gcx, 'tcx>,
513 existential_predicates: ty::Binder<&'tcx ty::Slice<ty::ExistentialPredicate<'tcx>>>)
514 -> Vec<ty::Region<'tcx>>
515 {
516 // Since we don't actually *know* the self type for an object,
517 // this "open(err)" serves as a kind of dummy standin -- basically
518 // a skolemized type.
519 let open_ty = tcx.mk_infer(ty::FreshTy(0));
520
521 let predicates = existential_predicates.iter().filter_map(|predicate| {
522 if let ty::ExistentialPredicate::Projection(_) = *predicate.skip_binder() {
523 None
524 } else {
525 Some(predicate.with_self_ty(tcx, open_ty))
526 }
527 }).collect();
528
529 tcx.required_region_bounds(open_ty, predicates)
530 }