]> git.proxmox.com Git - rustc.git/blob - src/librustc/ty/wf.rs
New upstream version 1.23.0+dfsg1
[rustc.git] / src / librustc / ty / wf.rs
1 // Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 use hir::def_id::DefId;
12 use middle::const_val::{ConstVal, ConstAggregate};
13 use infer::InferCtxt;
14 use ty::subst::Substs;
15 use traits;
16 use ty::{self, ToPredicate, Ty, TyCtxt, TypeFoldable};
17 use std::iter::once;
18 use syntax::ast;
19 use syntax_pos::Span;
20 use middle::lang_items;
21
22 /// Returns the set of obligations needed to make `ty` well-formed.
23 /// If `ty` contains unresolved inference variables, this may include
24 /// further WF obligations. However, if `ty` IS an unresolved
25 /// inference variable, returns `None`, because we are not able to
26 /// make any progress at all. This is to prevent "livelock" where we
27 /// say "$0 is WF if $0 is WF".
28 pub fn obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
29 param_env: ty::ParamEnv<'tcx>,
30 body_id: ast::NodeId,
31 ty: Ty<'tcx>,
32 span: Span)
33 -> Option<Vec<traits::PredicateObligation<'tcx>>>
34 {
35 let mut wf = WfPredicates { infcx,
36 param_env,
37 body_id,
38 span,
39 out: vec![] };
40 if wf.compute(ty) {
41 debug!("wf::obligations({:?}, body_id={:?}) = {:?}", ty, body_id, wf.out);
42 let result = wf.normalize();
43 debug!("wf::obligations({:?}, body_id={:?}) ~~> {:?}", ty, body_id, result);
44 Some(result)
45 } else {
46 None // no progress made, return None
47 }
48 }
49
50 /// Returns the obligations that make this trait reference
51 /// well-formed. For example, if there is a trait `Set` defined like
52 /// `trait Set<K:Eq>`, then the trait reference `Foo: Set<Bar>` is WF
53 /// if `Bar: Eq`.
54 pub fn trait_obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
55 param_env: ty::ParamEnv<'tcx>,
56 body_id: ast::NodeId,
57 trait_ref: &ty::TraitRef<'tcx>,
58 span: Span)
59 -> Vec<traits::PredicateObligation<'tcx>>
60 {
61 let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![] };
62 wf.compute_trait_ref(trait_ref, Elaborate::All);
63 wf.normalize()
64 }
65
66 pub fn predicate_obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
67 param_env: ty::ParamEnv<'tcx>,
68 body_id: ast::NodeId,
69 predicate: &ty::Predicate<'tcx>,
70 span: Span)
71 -> Vec<traits::PredicateObligation<'tcx>>
72 {
73 let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![] };
74
75 // (*) ok to skip binders, because wf code is prepared for it
76 match *predicate {
77 ty::Predicate::Trait(ref t) => {
78 wf.compute_trait_ref(&t.skip_binder().trait_ref, Elaborate::None); // (*)
79 }
80 ty::Predicate::Equate(ref t) => {
81 wf.compute(t.skip_binder().0);
82 wf.compute(t.skip_binder().1);
83 }
84 ty::Predicate::RegionOutlives(..) => {
85 }
86 ty::Predicate::TypeOutlives(ref t) => {
87 wf.compute(t.skip_binder().0);
88 }
89 ty::Predicate::Projection(ref t) => {
90 let t = t.skip_binder(); // (*)
91 wf.compute_projection(t.projection_ty);
92 wf.compute(t.ty);
93 }
94 ty::Predicate::WellFormed(t) => {
95 wf.compute(t);
96 }
97 ty::Predicate::ObjectSafe(_) => {
98 }
99 ty::Predicate::ClosureKind(..) => {
100 }
101 ty::Predicate::Subtype(ref data) => {
102 wf.compute(data.skip_binder().a); // (*)
103 wf.compute(data.skip_binder().b); // (*)
104 }
105 ty::Predicate::ConstEvaluatable(def_id, substs) => {
106 let obligations = wf.nominal_obligations(def_id, substs);
107 wf.out.extend(obligations);
108
109 for ty in substs.types() {
110 wf.compute(ty);
111 }
112 }
113 }
114
115 wf.normalize()
116 }
117
118 struct WfPredicates<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
119 infcx: &'a InferCtxt<'a, 'gcx, 'tcx>,
120 param_env: ty::ParamEnv<'tcx>,
121 body_id: ast::NodeId,
122 span: Span,
123 out: Vec<traits::PredicateObligation<'tcx>>,
124 }
125
126 /// Controls whether we "elaborate" supertraits and so forth on the WF
127 /// predicates. This is a kind of hack to address #43784. The
128 /// underlying problem in that issue was a trait structure like:
129 ///
130 /// ```
131 /// trait Foo: Copy { }
132 /// trait Bar: Foo { }
133 /// impl<T: Bar> Foo for T { }
134 /// impl<T> Bar for T { }
135 /// ```
136 ///
137 /// Here, in the `Foo` impl, we will check that `T: Copy` holds -- but
138 /// we decide that this is true because `T: Bar` is in the
139 /// where-clauses (and we can elaborate that to include `T:
140 /// Copy`). This wouldn't be a problem, except that when we check the
141 /// `Bar` impl, we decide that `T: Foo` must hold because of the `Foo`
142 /// impl. And so nowhere did we check that `T: Copy` holds!
143 ///
144 /// To resolve this, we elaborate the WF requirements that must be
145 /// proven when checking impls. This means that (e.g.) the `impl Bar
146 /// for T` will be forced to prove not only that `T: Foo` but also `T:
147 /// Copy` (which it won't be able to do, because there is no `Copy`
148 /// impl for `T`).
149 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
150 enum Elaborate {
151 All,
152 None,
153 }
154
155 impl<'a, 'gcx, 'tcx> WfPredicates<'a, 'gcx, 'tcx> {
156 fn cause(&mut self, code: traits::ObligationCauseCode<'tcx>) -> traits::ObligationCause<'tcx> {
157 traits::ObligationCause::new(self.span, self.body_id, code)
158 }
159
160 fn normalize(&mut self) -> Vec<traits::PredicateObligation<'tcx>> {
161 let cause = self.cause(traits::MiscObligation);
162 let infcx = &mut self.infcx;
163 let param_env = self.param_env;
164 self.out.iter()
165 .inspect(|pred| assert!(!pred.has_escaping_regions()))
166 .flat_map(|pred| {
167 let mut selcx = traits::SelectionContext::new(infcx);
168 let pred = traits::normalize(&mut selcx, param_env, cause.clone(), pred);
169 once(pred.value).chain(pred.obligations)
170 })
171 .collect()
172 }
173
174 /// Pushes the obligations required for `trait_ref` to be WF into
175 /// `self.out`.
176 fn compute_trait_ref(&mut self, trait_ref: &ty::TraitRef<'tcx>, elaborate: Elaborate) {
177 let obligations = self.nominal_obligations(trait_ref.def_id, trait_ref.substs);
178
179 let cause = self.cause(traits::MiscObligation);
180 let param_env = self.param_env;
181
182 if let Elaborate::All = elaborate {
183 let predicates = obligations.iter()
184 .map(|obligation| obligation.predicate.clone())
185 .collect();
186 let implied_obligations = traits::elaborate_predicates(self.infcx.tcx, predicates);
187 let implied_obligations = implied_obligations.map(|pred| {
188 traits::Obligation::new(cause.clone(), param_env, pred)
189 });
190 self.out.extend(implied_obligations);
191 }
192
193 self.out.extend(obligations);
194
195 self.out.extend(
196 trait_ref.substs.types()
197 .filter(|ty| !ty.has_escaping_regions())
198 .map(|ty| traits::Obligation::new(cause.clone(),
199 param_env,
200 ty::Predicate::WellFormed(ty))));
201 }
202
203 /// Pushes the obligations required for `trait_ref::Item` to be WF
204 /// into `self.out`.
205 fn compute_projection(&mut self, data: ty::ProjectionTy<'tcx>) {
206 // A projection is well-formed if (a) the trait ref itself is
207 // WF and (b) the trait-ref holds. (It may also be
208 // normalizable and be WF that way.)
209 let trait_ref = data.trait_ref(self.infcx.tcx);
210 self.compute_trait_ref(&trait_ref, Elaborate::None);
211
212 if !data.has_escaping_regions() {
213 let predicate = trait_ref.to_predicate();
214 let cause = self.cause(traits::ProjectionWf(data));
215 self.out.push(traits::Obligation::new(cause, self.param_env, predicate));
216 }
217 }
218
219 /// Pushes the obligations required for a constant value to be WF
220 /// into `self.out`.
221 fn compute_const(&mut self, constant: &'tcx ty::Const<'tcx>) {
222 self.require_sized(constant.ty, traits::ConstSized);
223 match constant.val {
224 ConstVal::Integral(_) |
225 ConstVal::Float(_) |
226 ConstVal::Str(_) |
227 ConstVal::ByteStr(_) |
228 ConstVal::Bool(_) |
229 ConstVal::Char(_) |
230 ConstVal::Variant(_) |
231 ConstVal::Function(..) => {}
232 ConstVal::Aggregate(ConstAggregate::Struct(fields)) => {
233 for &(_, v) in fields {
234 self.compute_const(v);
235 }
236 }
237 ConstVal::Aggregate(ConstAggregate::Tuple(fields)) |
238 ConstVal::Aggregate(ConstAggregate::Array(fields)) => {
239 for v in fields {
240 self.compute_const(v);
241 }
242 }
243 ConstVal::Aggregate(ConstAggregate::Repeat(v, _)) => {
244 self.compute_const(v);
245 }
246 ConstVal::Unevaluated(def_id, substs) => {
247 let obligations = self.nominal_obligations(def_id, substs);
248 self.out.extend(obligations);
249
250 let predicate = ty::Predicate::ConstEvaluatable(def_id, substs);
251 let cause = self.cause(traits::MiscObligation);
252 self.out.push(traits::Obligation::new(cause,
253 self.param_env,
254 predicate));
255 }
256 }
257 }
258
259 fn require_sized(&mut self, subty: Ty<'tcx>, cause: traits::ObligationCauseCode<'tcx>) {
260 if !subty.has_escaping_regions() {
261 let cause = self.cause(cause);
262 let trait_ref = ty::TraitRef {
263 def_id: self.infcx.tcx.require_lang_item(lang_items::SizedTraitLangItem),
264 substs: self.infcx.tcx.mk_substs_trait(subty, &[]),
265 };
266 self.out.push(traits::Obligation::new(cause, self.param_env, trait_ref.to_predicate()));
267 }
268 }
269
270 /// Push new obligations into `out`. Returns true if it was able
271 /// to generate all the predicates needed to validate that `ty0`
272 /// is WF. Returns false if `ty0` is an unresolved type variable,
273 /// in which case we are not able to simplify at all.
274 fn compute(&mut self, ty0: Ty<'tcx>) -> bool {
275 let mut subtys = ty0.walk();
276 let param_env = self.param_env;
277 while let Some(ty) = subtys.next() {
278 match ty.sty {
279 ty::TyBool |
280 ty::TyChar |
281 ty::TyInt(..) |
282 ty::TyUint(..) |
283 ty::TyFloat(..) |
284 ty::TyError |
285 ty::TyStr |
286 ty::TyNever |
287 ty::TyParam(_) |
288 ty::TyForeign(..) => {
289 // WfScalar, WfParameter, etc
290 }
291
292 ty::TySlice(subty) => {
293 self.require_sized(subty, traits::SliceOrArrayElem);
294 }
295
296 ty::TyArray(subty, len) => {
297 self.require_sized(subty, traits::SliceOrArrayElem);
298 assert_eq!(len.ty, self.infcx.tcx.types.usize);
299 self.compute_const(len);
300 }
301
302 ty::TyTuple(ref tys, _) => {
303 if let Some((_last, rest)) = tys.split_last() {
304 for elem in rest {
305 self.require_sized(elem, traits::TupleElem);
306 }
307 }
308 }
309
310 ty::TyRawPtr(_) => {
311 // simple cases that are WF if their type args are WF
312 }
313
314 ty::TyProjection(data) => {
315 subtys.skip_current_subtree(); // subtree handled by compute_projection
316 self.compute_projection(data);
317 }
318
319 ty::TyAdt(def, substs) => {
320 // WfNominalType
321 let obligations = self.nominal_obligations(def.did, substs);
322 self.out.extend(obligations);
323 }
324
325 ty::TyRef(r, mt) => {
326 // WfReference
327 if !r.has_escaping_regions() && !mt.ty.has_escaping_regions() {
328 let cause = self.cause(traits::ReferenceOutlivesReferent(ty));
329 self.out.push(
330 traits::Obligation::new(
331 cause,
332 param_env,
333 ty::Predicate::TypeOutlives(
334 ty::Binder(
335 ty::OutlivesPredicate(mt.ty, r)))));
336 }
337 }
338
339 ty::TyGenerator(..) | ty::TyClosure(..) => {
340 // the types in a closure or generator are always the types of
341 // local variables (or possibly references to local
342 // variables), we'll walk those.
343 //
344 // (Though, local variables are probably not
345 // needed, as they are separately checked w/r/t
346 // WFedness.)
347 }
348
349 ty::TyFnDef(..) | ty::TyFnPtr(_) => {
350 // let the loop iterate into the argument/return
351 // types appearing in the fn signature
352 }
353
354 ty::TyAnon(..) => {
355 // all of the requirements on type parameters
356 // should've been checked by the instantiation
357 // of whatever returned this exact `impl Trait`.
358 }
359
360 ty::TyDynamic(data, r) => {
361 // WfObject
362 //
363 // Here, we defer WF checking due to higher-ranked
364 // regions. This is perhaps not ideal.
365 self.from_object_ty(ty, data, r);
366
367 // FIXME(#27579) RFC also considers adding trait
368 // obligations that don't refer to Self and
369 // checking those
370
371 let cause = self.cause(traits::MiscObligation);
372 let component_traits =
373 data.auto_traits().chain(data.principal().map(|p| p.def_id()));
374 self.out.extend(
375 component_traits.map(|did| traits::Obligation::new(
376 cause.clone(),
377 param_env,
378 ty::Predicate::ObjectSafe(did)
379 ))
380 );
381 }
382
383 // Inference variables are the complicated case, since we don't
384 // know what type they are. We do two things:
385 //
386 // 1. Check if they have been resolved, and if so proceed with
387 // THAT type.
388 // 2. If not, check whether this is the type that we
389 // started with (ty0). In that case, we've made no
390 // progress at all, so return false. Otherwise,
391 // we've at least simplified things (i.e., we went
392 // from `Vec<$0>: WF` to `$0: WF`, so we can
393 // register a pending obligation and keep
394 // moving. (Goal is that an "inductive hypothesis"
395 // is satisfied to ensure termination.)
396 ty::TyInfer(_) => {
397 let ty = self.infcx.shallow_resolve(ty);
398 if let ty::TyInfer(_) = ty.sty { // not yet resolved...
399 if ty == ty0 { // ...this is the type we started from! no progress.
400 return false;
401 }
402
403 let cause = self.cause(traits::MiscObligation);
404 self.out.push( // ...not the type we started from, so we made progress.
405 traits::Obligation::new(cause,
406 self.param_env,
407 ty::Predicate::WellFormed(ty)));
408 } else {
409 // Yes, resolved, proceed with the
410 // result. Should never return false because
411 // `ty` is not a TyInfer.
412 assert!(self.compute(ty));
413 }
414 }
415 }
416 }
417
418 // if we made it through that loop above, we made progress!
419 return true;
420 }
421
422 fn nominal_obligations(&mut self,
423 def_id: DefId,
424 substs: &Substs<'tcx>)
425 -> Vec<traits::PredicateObligation<'tcx>>
426 {
427 let predicates =
428 self.infcx.tcx.predicates_of(def_id)
429 .instantiate(self.infcx.tcx, substs);
430 let cause = self.cause(traits::ItemObligation(def_id));
431 predicates.predicates
432 .into_iter()
433 .map(|pred| traits::Obligation::new(cause.clone(),
434 self.param_env,
435 pred))
436 .filter(|pred| !pred.has_escaping_regions())
437 .collect()
438 }
439
440 fn from_object_ty(&mut self, ty: Ty<'tcx>,
441 data: ty::Binder<&'tcx ty::Slice<ty::ExistentialPredicate<'tcx>>>,
442 region: ty::Region<'tcx>) {
443 // Imagine a type like this:
444 //
445 // trait Foo { }
446 // trait Bar<'c> : 'c { }
447 //
448 // &'b (Foo+'c+Bar<'d>)
449 // ^
450 //
451 // In this case, the following relationships must hold:
452 //
453 // 'b <= 'c
454 // 'd <= 'c
455 //
456 // The first conditions is due to the normal region pointer
457 // rules, which say that a reference cannot outlive its
458 // referent.
459 //
460 // The final condition may be a bit surprising. In particular,
461 // you may expect that it would have been `'c <= 'd`, since
462 // usually lifetimes of outer things are conservative
463 // approximations for inner things. However, it works somewhat
464 // differently with trait objects: here the idea is that if the
465 // user specifies a region bound (`'c`, in this case) it is the
466 // "master bound" that *implies* that bounds from other traits are
467 // all met. (Remember that *all bounds* in a type like
468 // `Foo+Bar+Zed` must be met, not just one, hence if we write
469 // `Foo<'x>+Bar<'y>`, we know that the type outlives *both* 'x and
470 // 'y.)
471 //
472 // Note: in fact we only permit builtin traits, not `Bar<'d>`, I
473 // am looking forward to the future here.
474
475 if !data.has_escaping_regions() {
476 let implicit_bounds =
477 object_region_bounds(self.infcx.tcx, data);
478
479 let explicit_bound = region;
480
481 for implicit_bound in implicit_bounds {
482 let cause = self.cause(traits::ObjectTypeBound(ty, explicit_bound));
483 let outlives = ty::Binder(ty::OutlivesPredicate(explicit_bound, implicit_bound));
484 self.out.push(traits::Obligation::new(cause,
485 self.param_env,
486 outlives.to_predicate()));
487 }
488 }
489 }
490 }
491
492 /// Given an object type like `SomeTrait+Send`, computes the lifetime
493 /// bounds that must hold on the elided self type. These are derived
494 /// from the declarations of `SomeTrait`, `Send`, and friends -- if
495 /// they declare `trait SomeTrait : 'static`, for example, then
496 /// `'static` would appear in the list. The hard work is done by
497 /// `ty::required_region_bounds`, see that for more information.
498 pub fn object_region_bounds<'a, 'gcx, 'tcx>(
499 tcx: TyCtxt<'a, 'gcx, 'tcx>,
500 existential_predicates: ty::Binder<&'tcx ty::Slice<ty::ExistentialPredicate<'tcx>>>)
501 -> Vec<ty::Region<'tcx>>
502 {
503 // Since we don't actually *know* the self type for an object,
504 // this "open(err)" serves as a kind of dummy standin -- basically
505 // a skolemized type.
506 let open_ty = tcx.mk_infer(ty::FreshTy(0));
507
508 let predicates = existential_predicates.iter().filter_map(|predicate| {
509 if let ty::ExistentialPredicate::Projection(_) = *predicate.skip_binder() {
510 None
511 } else {
512 Some(predicate.with_self_ty(tcx, open_ty))
513 }
514 }).collect();
515
516 tcx.required_region_bounds(open_ty, predicates)
517 }