]> git.proxmox.com Git - rustc.git/blob - src/librustc/ty/wf.rs
New upstream version 1.13.0+dfsg1
[rustc.git] / src / librustc / ty / wf.rs
1 // Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 use hir::def_id::DefId;
12 use infer::InferCtxt;
13 use ty::outlives::Component;
14 use ty::subst::Substs;
15 use traits;
16 use ty::{self, ToPredicate, Ty, TyCtxt, TypeFoldable};
17 use std::iter::once;
18 use syntax::ast;
19 use syntax_pos::Span;
20 use util::common::ErrorReported;
21
22 /// Returns the set of obligations needed to make `ty` well-formed.
23 /// If `ty` contains unresolved inference variables, this may include
24 /// further WF obligations. However, if `ty` IS an unresolved
25 /// inference variable, returns `None`, because we are not able to
26 /// make any progress at all. This is to prevent "livelock" where we
27 /// say "$0 is WF if $0 is WF".
28 pub fn obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
29 body_id: ast::NodeId,
30 ty: Ty<'tcx>,
31 span: Span)
32 -> Option<Vec<traits::PredicateObligation<'tcx>>>
33 {
34 let mut wf = WfPredicates { infcx: infcx,
35 body_id: body_id,
36 span: span,
37 out: vec![] };
38 if wf.compute(ty) {
39 debug!("wf::obligations({:?}, body_id={:?}) = {:?}", ty, body_id, wf.out);
40 let result = wf.normalize();
41 debug!("wf::obligations({:?}, body_id={:?}) ~~> {:?}", ty, body_id, result);
42 Some(result)
43 } else {
44 None // no progress made, return None
45 }
46 }
47
48 /// Returns the obligations that make this trait reference
49 /// well-formed. For example, if there is a trait `Set` defined like
50 /// `trait Set<K:Eq>`, then the trait reference `Foo: Set<Bar>` is WF
51 /// if `Bar: Eq`.
52 pub fn trait_obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
53 body_id: ast::NodeId,
54 trait_ref: &ty::TraitRef<'tcx>,
55 span: Span)
56 -> Vec<traits::PredicateObligation<'tcx>>
57 {
58 let mut wf = WfPredicates { infcx: infcx, body_id: body_id, span: span, out: vec![] };
59 wf.compute_trait_ref(trait_ref);
60 wf.normalize()
61 }
62
63 pub fn predicate_obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
64 body_id: ast::NodeId,
65 predicate: &ty::Predicate<'tcx>,
66 span: Span)
67 -> Vec<traits::PredicateObligation<'tcx>>
68 {
69 let mut wf = WfPredicates { infcx: infcx, body_id: body_id, span: span, out: vec![] };
70
71 // (*) ok to skip binders, because wf code is prepared for it
72 match *predicate {
73 ty::Predicate::Trait(ref t) => {
74 wf.compute_trait_ref(&t.skip_binder().trait_ref); // (*)
75 }
76 ty::Predicate::Equate(ref t) => {
77 wf.compute(t.skip_binder().0);
78 wf.compute(t.skip_binder().1);
79 }
80 ty::Predicate::RegionOutlives(..) => {
81 }
82 ty::Predicate::TypeOutlives(ref t) => {
83 wf.compute(t.skip_binder().0);
84 }
85 ty::Predicate::Projection(ref t) => {
86 let t = t.skip_binder(); // (*)
87 wf.compute_projection(t.projection_ty);
88 wf.compute(t.ty);
89 }
90 ty::Predicate::WellFormed(t) => {
91 wf.compute(t);
92 }
93 ty::Predicate::ObjectSafe(_) => {
94 }
95 ty::Predicate::ClosureKind(..) => {
96 }
97 }
98
99 wf.normalize()
100 }
101
102 /// Implied bounds are region relationships that we deduce
103 /// automatically. The idea is that (e.g.) a caller must check that a
104 /// function's argument types are well-formed immediately before
105 /// calling that fn, and hence the *callee* can assume that its
106 /// argument types are well-formed. This may imply certain relationships
107 /// between generic parameters. For example:
108 ///
109 /// fn foo<'a,T>(x: &'a T)
110 ///
111 /// can only be called with a `'a` and `T` such that `&'a T` is WF.
112 /// For `&'a T` to be WF, `T: 'a` must hold. So we can assume `T: 'a`.
113 #[derive(Debug)]
114 pub enum ImpliedBound<'tcx> {
115 RegionSubRegion(&'tcx ty::Region, &'tcx ty::Region),
116 RegionSubParam(&'tcx ty::Region, ty::ParamTy),
117 RegionSubProjection(&'tcx ty::Region, ty::ProjectionTy<'tcx>),
118 }
119
120 /// Compute the implied bounds that a callee/impl can assume based on
121 /// the fact that caller/projector has ensured that `ty` is WF. See
122 /// the `ImpliedBound` type for more details.
123 pub fn implied_bounds<'a, 'gcx, 'tcx>(
124 infcx: &'a InferCtxt<'a, 'gcx, 'tcx>,
125 body_id: ast::NodeId,
126 ty: Ty<'tcx>,
127 span: Span)
128 -> Vec<ImpliedBound<'tcx>>
129 {
130 // Sometimes when we ask what it takes for T: WF, we get back that
131 // U: WF is required; in that case, we push U onto this stack and
132 // process it next. Currently (at least) these resulting
133 // predicates are always guaranteed to be a subset of the original
134 // type, so we need not fear non-termination.
135 let mut wf_types = vec![ty];
136
137 let mut implied_bounds = vec![];
138
139 while let Some(ty) = wf_types.pop() {
140 // Compute the obligations for `ty` to be well-formed. If `ty` is
141 // an unresolved inference variable, just substituted an empty set
142 // -- because the return type here is going to be things we *add*
143 // to the environment, it's always ok for this set to be smaller
144 // than the ultimate set. (Note: normally there won't be
145 // unresolved inference variables here anyway, but there might be
146 // during typeck under some circumstances.)
147 let obligations = obligations(infcx, body_id, ty, span).unwrap_or(vec![]);
148
149 // From the full set of obligations, just filter down to the
150 // region relationships.
151 implied_bounds.extend(
152 obligations
153 .into_iter()
154 .flat_map(|obligation| {
155 assert!(!obligation.has_escaping_regions());
156 match obligation.predicate {
157 ty::Predicate::Trait(..) |
158 ty::Predicate::Equate(..) |
159 ty::Predicate::Projection(..) |
160 ty::Predicate::ClosureKind(..) |
161 ty::Predicate::ObjectSafe(..) =>
162 vec![],
163
164 ty::Predicate::WellFormed(subty) => {
165 wf_types.push(subty);
166 vec![]
167 }
168
169 ty::Predicate::RegionOutlives(ref data) =>
170 match infcx.tcx.no_late_bound_regions(data) {
171 None =>
172 vec![],
173 Some(ty::OutlivesPredicate(r_a, r_b)) =>
174 vec![ImpliedBound::RegionSubRegion(r_b, r_a)],
175 },
176
177 ty::Predicate::TypeOutlives(ref data) =>
178 match infcx.tcx.no_late_bound_regions(data) {
179 None => vec![],
180 Some(ty::OutlivesPredicate(ty_a, r_b)) => {
181 let components = infcx.outlives_components(ty_a);
182 implied_bounds_from_components(r_b, components)
183 }
184 },
185 }}));
186 }
187
188 implied_bounds
189 }
190
191 /// When we have an implied bound that `T: 'a`, we can further break
192 /// this down to determine what relationships would have to hold for
193 /// `T: 'a` to hold. We get to assume that the caller has validated
194 /// those relationships.
195 fn implied_bounds_from_components<'tcx>(sub_region: &'tcx ty::Region,
196 sup_components: Vec<Component<'tcx>>)
197 -> Vec<ImpliedBound<'tcx>>
198 {
199 sup_components
200 .into_iter()
201 .flat_map(|component| {
202 match component {
203 Component::Region(r) =>
204 vec!(ImpliedBound::RegionSubRegion(sub_region, r)),
205 Component::Param(p) =>
206 vec!(ImpliedBound::RegionSubParam(sub_region, p)),
207 Component::Projection(p) =>
208 vec!(ImpliedBound::RegionSubProjection(sub_region, p)),
209 Component::EscapingProjection(_) =>
210 // If the projection has escaping regions, don't
211 // try to infer any implied bounds even for its
212 // free components. This is conservative, because
213 // the caller will still have to prove that those
214 // free components outlive `sub_region`. But the
215 // idea is that the WAY that the caller proves
216 // that may change in the future and we want to
217 // give ourselves room to get smarter here.
218 vec!(),
219 Component::UnresolvedInferenceVariable(..) =>
220 vec!(),
221 }
222 })
223 .collect()
224 }
225
226 struct WfPredicates<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
227 infcx: &'a InferCtxt<'a, 'gcx, 'tcx>,
228 body_id: ast::NodeId,
229 span: Span,
230 out: Vec<traits::PredicateObligation<'tcx>>,
231 }
232
233 impl<'a, 'gcx, 'tcx> WfPredicates<'a, 'gcx, 'tcx> {
234 fn cause(&mut self, code: traits::ObligationCauseCode<'tcx>) -> traits::ObligationCause<'tcx> {
235 traits::ObligationCause::new(self.span, self.body_id, code)
236 }
237
238 fn normalize(&mut self) -> Vec<traits::PredicateObligation<'tcx>> {
239 let cause = self.cause(traits::MiscObligation);
240 let infcx = &mut self.infcx;
241 self.out.iter()
242 .inspect(|pred| assert!(!pred.has_escaping_regions()))
243 .flat_map(|pred| {
244 let mut selcx = traits::SelectionContext::new(infcx);
245 let pred = traits::normalize(&mut selcx, cause.clone(), pred);
246 once(pred.value).chain(pred.obligations)
247 })
248 .collect()
249 }
250
251 /// Pushes the obligations required for `trait_ref` to be WF into
252 /// `self.out`.
253 fn compute_trait_ref(&mut self, trait_ref: &ty::TraitRef<'tcx>) {
254 let obligations = self.nominal_obligations(trait_ref.def_id, trait_ref.substs);
255 self.out.extend(obligations);
256
257 let cause = self.cause(traits::MiscObligation);
258 self.out.extend(
259 trait_ref.substs.types()
260 .filter(|ty| !ty.has_escaping_regions())
261 .map(|ty| traits::Obligation::new(cause.clone(),
262 ty::Predicate::WellFormed(ty))));
263 }
264
265 /// Pushes the obligations required for `trait_ref::Item` to be WF
266 /// into `self.out`.
267 fn compute_projection(&mut self, data: ty::ProjectionTy<'tcx>) {
268 // A projection is well-formed if (a) the trait ref itself is
269 // WF and (b) the trait-ref holds. (It may also be
270 // normalizable and be WF that way.)
271
272 self.compute_trait_ref(&data.trait_ref);
273
274 if !data.has_escaping_regions() {
275 let predicate = data.trait_ref.to_predicate();
276 let cause = self.cause(traits::ProjectionWf(data));
277 self.out.push(traits::Obligation::new(cause, predicate));
278 }
279 }
280
281 fn require_sized(&mut self, subty: Ty<'tcx>, cause: traits::ObligationCauseCode<'tcx>) {
282 if !subty.has_escaping_regions() {
283 let cause = self.cause(cause);
284 match self.infcx.tcx.trait_ref_for_builtin_bound(ty::BoundSized, subty) {
285 Ok(trait_ref) => {
286 self.out.push(
287 traits::Obligation::new(cause,
288 trait_ref.to_predicate()));
289 }
290 Err(ErrorReported) => { }
291 }
292 }
293 }
294
295 /// Push new obligations into `out`. Returns true if it was able
296 /// to generate all the predicates needed to validate that `ty0`
297 /// is WF. Returns false if `ty0` is an unresolved type variable,
298 /// in which case we are not able to simplify at all.
299 fn compute(&mut self, ty0: Ty<'tcx>) -> bool {
300 let tcx = self.infcx.tcx;
301 let mut subtys = ty0.walk();
302 while let Some(ty) = subtys.next() {
303 match ty.sty {
304 ty::TyBool |
305 ty::TyChar |
306 ty::TyInt(..) |
307 ty::TyUint(..) |
308 ty::TyFloat(..) |
309 ty::TyError |
310 ty::TyStr |
311 ty::TyNever |
312 ty::TyParam(_) => {
313 // WfScalar, WfParameter, etc
314 }
315
316 ty::TySlice(subty) |
317 ty::TyArray(subty, _) => {
318 self.require_sized(subty, traits::SliceOrArrayElem);
319 }
320
321 ty::TyTuple(ref tys) => {
322 if let Some((_last, rest)) = tys.split_last() {
323 for elem in rest {
324 self.require_sized(elem, traits::TupleElem);
325 }
326 }
327 }
328
329 ty::TyBox(_) |
330 ty::TyRawPtr(_) => {
331 // simple cases that are WF if their type args are WF
332 }
333
334 ty::TyProjection(data) => {
335 subtys.skip_current_subtree(); // subtree handled by compute_projection
336 self.compute_projection(data);
337 }
338
339 ty::TyAdt(def, substs) => {
340 // WfNominalType
341 let obligations = self.nominal_obligations(def.did, substs);
342 self.out.extend(obligations);
343 }
344
345 ty::TyRef(r, mt) => {
346 // WfReference
347 if !r.has_escaping_regions() && !mt.ty.has_escaping_regions() {
348 let cause = self.cause(traits::ReferenceOutlivesReferent(ty));
349 self.out.push(
350 traits::Obligation::new(
351 cause,
352 ty::Predicate::TypeOutlives(
353 ty::Binder(
354 ty::OutlivesPredicate(mt.ty, r)))));
355 }
356 }
357
358 ty::TyClosure(..) => {
359 // the types in a closure are always the types of
360 // local variables (or possibly references to local
361 // variables), we'll walk those.
362 //
363 // (Though, local variables are probably not
364 // needed, as they are separately checked w/r/t
365 // WFedness.)
366 }
367
368 ty::TyFnDef(..) | ty::TyFnPtr(_) => {
369 // let the loop iterate into the argument/return
370 // types appearing in the fn signature
371 }
372
373 ty::TyAnon(..) => {
374 // all of the requirements on type parameters
375 // should've been checked by the instantiation
376 // of whatever returned this exact `impl Trait`.
377 }
378
379 ty::TyTrait(ref data) => {
380 // WfObject
381 //
382 // Here, we defer WF checking due to higher-ranked
383 // regions. This is perhaps not ideal.
384 self.from_object_ty(ty, data);
385
386 // FIXME(#27579) RFC also considers adding trait
387 // obligations that don't refer to Self and
388 // checking those
389
390 let cause = self.cause(traits::MiscObligation);
391
392 let component_traits =
393 data.builtin_bounds.iter().flat_map(|bound| {
394 tcx.lang_items.from_builtin_kind(bound).ok()
395 })
396 .chain(Some(data.principal.def_id()));
397 self.out.extend(
398 component_traits.map(|did| { traits::Obligation::new(
399 cause.clone(),
400 ty::Predicate::ObjectSafe(did)
401 )})
402 );
403 }
404
405 // Inference variables are the complicated case, since we don't
406 // know what type they are. We do two things:
407 //
408 // 1. Check if they have been resolved, and if so proceed with
409 // THAT type.
410 // 2. If not, check whether this is the type that we
411 // started with (ty0). In that case, we've made no
412 // progress at all, so return false. Otherwise,
413 // we've at least simplified things (i.e., we went
414 // from `Vec<$0>: WF` to `$0: WF`, so we can
415 // register a pending obligation and keep
416 // moving. (Goal is that an "inductive hypothesis"
417 // is satisfied to ensure termination.)
418 ty::TyInfer(_) => {
419 let ty = self.infcx.shallow_resolve(ty);
420 if let ty::TyInfer(_) = ty.sty { // not yet resolved...
421 if ty == ty0 { // ...this is the type we started from! no progress.
422 return false;
423 }
424
425 let cause = self.cause(traits::MiscObligation);
426 self.out.push( // ...not the type we started from, so we made progress.
427 traits::Obligation::new(cause, ty::Predicate::WellFormed(ty)));
428 } else {
429 // Yes, resolved, proceed with the
430 // result. Should never return false because
431 // `ty` is not a TyInfer.
432 assert!(self.compute(ty));
433 }
434 }
435 }
436 }
437
438 // if we made it through that loop above, we made progress!
439 return true;
440 }
441
442 fn nominal_obligations(&mut self,
443 def_id: DefId,
444 substs: &Substs<'tcx>)
445 -> Vec<traits::PredicateObligation<'tcx>>
446 {
447 let predicates =
448 self.infcx.tcx.lookup_predicates(def_id)
449 .instantiate(self.infcx.tcx, substs);
450 let cause = self.cause(traits::ItemObligation(def_id));
451 predicates.predicates
452 .into_iter()
453 .map(|pred| traits::Obligation::new(cause.clone(), pred))
454 .filter(|pred| !pred.has_escaping_regions())
455 .collect()
456 }
457
458 fn from_object_ty(&mut self, ty: Ty<'tcx>, data: &ty::TraitObject<'tcx>) {
459 // Imagine a type like this:
460 //
461 // trait Foo { }
462 // trait Bar<'c> : 'c { }
463 //
464 // &'b (Foo+'c+Bar<'d>)
465 // ^
466 //
467 // In this case, the following relationships must hold:
468 //
469 // 'b <= 'c
470 // 'd <= 'c
471 //
472 // The first conditions is due to the normal region pointer
473 // rules, which say that a reference cannot outlive its
474 // referent.
475 //
476 // The final condition may be a bit surprising. In particular,
477 // you may expect that it would have been `'c <= 'd`, since
478 // usually lifetimes of outer things are conservative
479 // approximations for inner things. However, it works somewhat
480 // differently with trait objects: here the idea is that if the
481 // user specifies a region bound (`'c`, in this case) it is the
482 // "master bound" that *implies* that bounds from other traits are
483 // all met. (Remember that *all bounds* in a type like
484 // `Foo+Bar+Zed` must be met, not just one, hence if we write
485 // `Foo<'x>+Bar<'y>`, we know that the type outlives *both* 'x and
486 // 'y.)
487 //
488 // Note: in fact we only permit builtin traits, not `Bar<'d>`, I
489 // am looking forward to the future here.
490
491 if !data.has_escaping_regions() {
492 let implicit_bounds =
493 object_region_bounds(self.infcx.tcx,
494 data.principal,
495 data.builtin_bounds);
496
497 let explicit_bound = data.region_bound;
498
499 for implicit_bound in implicit_bounds {
500 let cause = self.cause(traits::ReferenceOutlivesReferent(ty));
501 let outlives = ty::Binder(ty::OutlivesPredicate(explicit_bound, implicit_bound));
502 self.out.push(traits::Obligation::new(cause, outlives.to_predicate()));
503 }
504 }
505 }
506 }
507
508 /// Given an object type like `SomeTrait+Send`, computes the lifetime
509 /// bounds that must hold on the elided self type. These are derived
510 /// from the declarations of `SomeTrait`, `Send`, and friends -- if
511 /// they declare `trait SomeTrait : 'static`, for example, then
512 /// `'static` would appear in the list. The hard work is done by
513 /// `ty::required_region_bounds`, see that for more information.
514 pub fn object_region_bounds<'a, 'gcx, 'tcx>(
515 tcx: TyCtxt<'a, 'gcx, 'tcx>,
516 principal: ty::PolyExistentialTraitRef<'tcx>,
517 others: ty::BuiltinBounds)
518 -> Vec<&'tcx ty::Region>
519 {
520 // Since we don't actually *know* the self type for an object,
521 // this "open(err)" serves as a kind of dummy standin -- basically
522 // a skolemized type.
523 let open_ty = tcx.mk_infer(ty::FreshTy(0));
524
525 let mut predicates = others.to_predicates(tcx, open_ty);
526 predicates.push(principal.with_self_ty(tcx, open_ty).to_predicate());
527
528 tcx.required_region_bounds(open_ty, predicates)
529 }