]> git.proxmox.com Git - rustc.git/blob - src/librustc_apfloat/ieee.rs
New upstream version 1.44.1+dfsg1
[rustc.git] / src / librustc_apfloat / ieee.rs
1 use crate::{Category, ExpInt, IEK_INF, IEK_NAN, IEK_ZERO};
2 use crate::{Float, FloatConvert, ParseError, Round, Status, StatusAnd};
3
4 use core::cmp::{self, Ordering};
5 use core::convert::TryFrom;
6 use core::fmt::{self, Write};
7 use core::marker::PhantomData;
8 use core::mem;
9 use core::ops::Neg;
10 use smallvec::{smallvec, SmallVec};
11
12 #[must_use]
13 pub struct IeeeFloat<S> {
14 /// Absolute significand value (including the integer bit).
15 sig: [Limb; 1],
16
17 /// The signed unbiased exponent of the value.
18 exp: ExpInt,
19
20 /// What kind of floating point number this is.
21 category: Category,
22
23 /// Sign bit of the number.
24 sign: bool,
25
26 marker: PhantomData<S>,
27 }
28
29 /// Fundamental unit of big integer arithmetic, but also
30 /// large to store the largest significands by itself.
31 type Limb = u128;
32 const LIMB_BITS: usize = 128;
33 fn limbs_for_bits(bits: usize) -> usize {
34 (bits + LIMB_BITS - 1) / LIMB_BITS
35 }
36
37 /// Enum that represents what fraction of the LSB truncated bits of an fp number
38 /// represent.
39 ///
40 /// This essentially combines the roles of guard and sticky bits.
41 #[must_use]
42 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
43 enum Loss {
44 // Example of truncated bits:
45 ExactlyZero, // 000000
46 LessThanHalf, // 0xxxxx x's not all zero
47 ExactlyHalf, // 100000
48 MoreThanHalf, // 1xxxxx x's not all zero
49 }
50
51 /// Represents floating point arithmetic semantics.
52 pub trait Semantics: Sized {
53 /// Total number of bits in the in-memory format.
54 const BITS: usize;
55
56 /// Number of bits in the significand. This includes the integer bit.
57 const PRECISION: usize;
58
59 /// The largest E such that 2<sup>E</sup> is representable; this matches the
60 /// definition of IEEE 754.
61 const MAX_EXP: ExpInt;
62
63 /// The smallest E such that 2<sup>E</sup> is a normalized number; this
64 /// matches the definition of IEEE 754.
65 const MIN_EXP: ExpInt = -Self::MAX_EXP + 1;
66
67 /// The significand bit that marks NaN as quiet.
68 const QNAN_BIT: usize = Self::PRECISION - 2;
69
70 /// The significand bitpattern to mark a NaN as quiet.
71 /// NOTE: for X87DoubleExtended we need to set two bits instead of 2.
72 const QNAN_SIGNIFICAND: Limb = 1 << Self::QNAN_BIT;
73
74 fn from_bits(bits: u128) -> IeeeFloat<Self> {
75 assert!(Self::BITS > Self::PRECISION);
76
77 let sign = bits & (1 << (Self::BITS - 1));
78 let exponent = (bits & !sign) >> (Self::PRECISION - 1);
79 let mut r = IeeeFloat {
80 sig: [bits & ((1 << (Self::PRECISION - 1)) - 1)],
81 // Convert the exponent from its bias representation to a signed integer.
82 exp: (exponent as ExpInt) - Self::MAX_EXP,
83 category: Category::Zero,
84 sign: sign != 0,
85 marker: PhantomData,
86 };
87
88 if r.exp == Self::MIN_EXP - 1 && r.sig == [0] {
89 // Exponent, significand meaningless.
90 r.category = Category::Zero;
91 } else if r.exp == Self::MAX_EXP + 1 && r.sig == [0] {
92 // Exponent, significand meaningless.
93 r.category = Category::Infinity;
94 } else if r.exp == Self::MAX_EXP + 1 && r.sig != [0] {
95 // Sign, exponent, significand meaningless.
96 r.category = Category::NaN;
97 } else {
98 r.category = Category::Normal;
99 if r.exp == Self::MIN_EXP - 1 {
100 // Denormal.
101 r.exp = Self::MIN_EXP;
102 } else {
103 // Set integer bit.
104 sig::set_bit(&mut r.sig, Self::PRECISION - 1);
105 }
106 }
107
108 r
109 }
110
111 fn to_bits(x: IeeeFloat<Self>) -> u128 {
112 assert!(Self::BITS > Self::PRECISION);
113
114 // Split integer bit from significand.
115 let integer_bit = sig::get_bit(&x.sig, Self::PRECISION - 1);
116 let mut significand = x.sig[0] & ((1 << (Self::PRECISION - 1)) - 1);
117 let exponent = match x.category {
118 Category::Normal => {
119 if x.exp == Self::MIN_EXP && !integer_bit {
120 // Denormal.
121 Self::MIN_EXP - 1
122 } else {
123 x.exp
124 }
125 }
126 Category::Zero => {
127 // FIXME(eddyb) Maybe we should guarantee an invariant instead?
128 significand = 0;
129 Self::MIN_EXP - 1
130 }
131 Category::Infinity => {
132 // FIXME(eddyb) Maybe we should guarantee an invariant instead?
133 significand = 0;
134 Self::MAX_EXP + 1
135 }
136 Category::NaN => Self::MAX_EXP + 1,
137 };
138
139 // Convert the exponent from a signed integer to its bias representation.
140 let exponent = (exponent + Self::MAX_EXP) as u128;
141
142 ((x.sign as u128) << (Self::BITS - 1)) | (exponent << (Self::PRECISION - 1)) | significand
143 }
144 }
145
146 impl<S> Copy for IeeeFloat<S> {}
147 impl<S> Clone for IeeeFloat<S> {
148 fn clone(&self) -> Self {
149 *self
150 }
151 }
152
153 macro_rules! ieee_semantics {
154 ($($name:ident = $sem:ident($bits:tt : $exp_bits:tt)),*) => {
155 $(pub struct $sem;)*
156 $(pub type $name = IeeeFloat<$sem>;)*
157 $(impl Semantics for $sem {
158 const BITS: usize = $bits;
159 const PRECISION: usize = ($bits - 1 - $exp_bits) + 1;
160 const MAX_EXP: ExpInt = (1 << ($exp_bits - 1)) - 1;
161 })*
162 }
163 }
164
165 ieee_semantics! {
166 Half = HalfS(16:5),
167 Single = SingleS(32:8),
168 Double = DoubleS(64:11),
169 Quad = QuadS(128:15)
170 }
171
172 pub struct X87DoubleExtendedS;
173 pub type X87DoubleExtended = IeeeFloat<X87DoubleExtendedS>;
174 impl Semantics for X87DoubleExtendedS {
175 const BITS: usize = 80;
176 const PRECISION: usize = 64;
177 const MAX_EXP: ExpInt = (1 << (15 - 1)) - 1;
178
179 /// For x87 extended precision, we want to make a NaN, not a
180 /// pseudo-NaN. Maybe we should expose the ability to make
181 /// pseudo-NaNs?
182 const QNAN_SIGNIFICAND: Limb = 0b11 << Self::QNAN_BIT;
183
184 /// Integer bit is explicit in this format. Intel hardware (387 and later)
185 /// does not support these bit patterns:
186 /// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
187 /// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
188 /// exponent = 0, integer bit 1 ("pseudodenormal")
189 /// exponent != 0 nor all 1's, integer bit 0 ("unnormal")
190 /// At the moment, the first two are treated as NaNs, the second two as Normal.
191 fn from_bits(bits: u128) -> IeeeFloat<Self> {
192 let sign = bits & (1 << (Self::BITS - 1));
193 let exponent = (bits & !sign) >> Self::PRECISION;
194 let mut r = IeeeFloat {
195 sig: [bits & ((1 << (Self::PRECISION - 1)) - 1)],
196 // Convert the exponent from its bias representation to a signed integer.
197 exp: (exponent as ExpInt) - Self::MAX_EXP,
198 category: Category::Zero,
199 sign: sign != 0,
200 marker: PhantomData,
201 };
202
203 if r.exp == Self::MIN_EXP - 1 && r.sig == [0] {
204 // Exponent, significand meaningless.
205 r.category = Category::Zero;
206 } else if r.exp == Self::MAX_EXP + 1 && r.sig == [1 << (Self::PRECISION - 1)] {
207 // Exponent, significand meaningless.
208 r.category = Category::Infinity;
209 } else if r.exp == Self::MAX_EXP + 1 && r.sig != [1 << (Self::PRECISION - 1)] {
210 // Sign, exponent, significand meaningless.
211 r.category = Category::NaN;
212 } else {
213 r.category = Category::Normal;
214 if r.exp == Self::MIN_EXP - 1 {
215 // Denormal.
216 r.exp = Self::MIN_EXP;
217 }
218 }
219
220 r
221 }
222
223 fn to_bits(x: IeeeFloat<Self>) -> u128 {
224 // Get integer bit from significand.
225 let integer_bit = sig::get_bit(&x.sig, Self::PRECISION - 1);
226 let mut significand = x.sig[0] & ((1 << Self::PRECISION) - 1);
227 let exponent = match x.category {
228 Category::Normal => {
229 if x.exp == Self::MIN_EXP && !integer_bit {
230 // Denormal.
231 Self::MIN_EXP - 1
232 } else {
233 x.exp
234 }
235 }
236 Category::Zero => {
237 // FIXME(eddyb) Maybe we should guarantee an invariant instead?
238 significand = 0;
239 Self::MIN_EXP - 1
240 }
241 Category::Infinity => {
242 // FIXME(eddyb) Maybe we should guarantee an invariant instead?
243 significand = 1 << (Self::PRECISION - 1);
244 Self::MAX_EXP + 1
245 }
246 Category::NaN => Self::MAX_EXP + 1,
247 };
248
249 // Convert the exponent from a signed integer to its bias representation.
250 let exponent = (exponent + Self::MAX_EXP) as u128;
251
252 ((x.sign as u128) << (Self::BITS - 1)) | (exponent << Self::PRECISION) | significand
253 }
254 }
255
256 float_common_impls!(IeeeFloat<S>);
257
258 impl<S: Semantics> PartialEq for IeeeFloat<S> {
259 fn eq(&self, rhs: &Self) -> bool {
260 self.partial_cmp(rhs) == Some(Ordering::Equal)
261 }
262 }
263
264 impl<S: Semantics> PartialOrd for IeeeFloat<S> {
265 fn partial_cmp(&self, rhs: &Self) -> Option<Ordering> {
266 match (self.category, rhs.category) {
267 (Category::NaN, _) | (_, Category::NaN) => None,
268
269 (Category::Infinity, Category::Infinity) => Some((!self.sign).cmp(&(!rhs.sign))),
270
271 (Category::Zero, Category::Zero) => Some(Ordering::Equal),
272
273 (Category::Infinity, _) | (Category::Normal, Category::Zero) => {
274 Some((!self.sign).cmp(&self.sign))
275 }
276
277 (_, Category::Infinity) | (Category::Zero, Category::Normal) => {
278 Some(rhs.sign.cmp(&(!rhs.sign)))
279 }
280
281 (Category::Normal, Category::Normal) => {
282 // Two normal numbers. Do they have the same sign?
283 Some((!self.sign).cmp(&(!rhs.sign)).then_with(|| {
284 // Compare absolute values; invert result if negative.
285 let result = self.cmp_abs_normal(*rhs);
286
287 if self.sign { result.reverse() } else { result }
288 }))
289 }
290 }
291 }
292 }
293
294 impl<S> Neg for IeeeFloat<S> {
295 type Output = Self;
296 fn neg(mut self) -> Self {
297 self.sign = !self.sign;
298 self
299 }
300 }
301
302 /// Prints this value as a decimal string.
303 ///
304 /// \param precision The maximum number of digits of
305 /// precision to output. If there are fewer digits available,
306 /// zero padding will not be used unless the value is
307 /// integral and small enough to be expressed in
308 /// precision digits. 0 means to use the natural
309 /// precision of the number.
310 /// \param width The maximum number of zeros to
311 /// consider inserting before falling back to scientific
312 /// notation. 0 means to always use scientific notation.
313 ///
314 /// \param alternate Indicate whether to remove the trailing zero in
315 /// fraction part or not. Also setting this parameter to true forces
316 /// producing of output more similar to default printf behavior.
317 /// Specifically the lower e is used as exponent delimiter and exponent
318 /// always contains no less than two digits.
319 ///
320 /// Number precision width Result
321 /// ------ --------- ----- ------
322 /// 1.01E+4 5 2 10100
323 /// 1.01E+4 4 2 1.01E+4
324 /// 1.01E+4 5 1 1.01E+4
325 /// 1.01E-2 5 2 0.0101
326 /// 1.01E-2 4 2 0.0101
327 /// 1.01E-2 4 1 1.01E-2
328 impl<S: Semantics> fmt::Display for IeeeFloat<S> {
329 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
330 let width = f.width().unwrap_or(3);
331 let alternate = f.alternate();
332
333 match self.category {
334 Category::Infinity => {
335 if self.sign {
336 return f.write_str("-Inf");
337 } else {
338 return f.write_str("+Inf");
339 }
340 }
341
342 Category::NaN => return f.write_str("NaN"),
343
344 Category::Zero => {
345 if self.sign {
346 f.write_char('-')?;
347 }
348
349 if width == 0 {
350 if alternate {
351 f.write_str("0.0")?;
352 if let Some(n) = f.precision() {
353 for _ in 1..n {
354 f.write_char('0')?;
355 }
356 }
357 f.write_str("e+00")?;
358 } else {
359 f.write_str("0.0E+0")?;
360 }
361 } else {
362 f.write_char('0')?;
363 }
364 return Ok(());
365 }
366
367 Category::Normal => {}
368 }
369
370 if self.sign {
371 f.write_char('-')?;
372 }
373
374 // We use enough digits so the number can be round-tripped back to an
375 // APFloat. The formula comes from "How to Print Floating-Point Numbers
376 // Accurately" by Steele and White.
377 // FIXME: Using a formula based purely on the precision is conservative;
378 // we can print fewer digits depending on the actual value being printed.
379
380 // precision = 2 + floor(S::PRECISION / lg_2(10))
381 let precision = f.precision().unwrap_or(2 + S::PRECISION * 59 / 196);
382
383 // Decompose the number into an APInt and an exponent.
384 let mut exp = self.exp - (S::PRECISION as ExpInt - 1);
385 let mut sig = vec![self.sig[0]];
386
387 // Ignore trailing binary zeros.
388 let trailing_zeros = sig[0].trailing_zeros();
389 let _: Loss = sig::shift_right(&mut sig, &mut exp, trailing_zeros as usize);
390
391 // Change the exponent from 2^e to 10^e.
392 if exp == 0 {
393 // Nothing to do.
394 } else if exp > 0 {
395 // Just shift left.
396 let shift = exp as usize;
397 sig.resize(limbs_for_bits(S::PRECISION + shift), 0);
398 sig::shift_left(&mut sig, &mut exp, shift);
399 } else {
400 // exp < 0
401 let mut texp = -exp as usize;
402
403 // We transform this using the identity:
404 // (N)(2^-e) == (N)(5^e)(10^-e)
405
406 // Multiply significand by 5^e.
407 // N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8)
408 let mut sig_scratch = vec![];
409 let mut p5 = vec![];
410 let mut p5_scratch = vec![];
411 while texp != 0 {
412 if p5.is_empty() {
413 p5.push(5);
414 } else {
415 p5_scratch.resize(p5.len() * 2, 0);
416 let _: Loss =
417 sig::mul(&mut p5_scratch, &mut 0, &p5, &p5, p5.len() * 2 * LIMB_BITS);
418 while p5_scratch.last() == Some(&0) {
419 p5_scratch.pop();
420 }
421 mem::swap(&mut p5, &mut p5_scratch);
422 }
423 if texp & 1 != 0 {
424 sig_scratch.resize(sig.len() + p5.len(), 0);
425 let _: Loss = sig::mul(
426 &mut sig_scratch,
427 &mut 0,
428 &sig,
429 &p5,
430 (sig.len() + p5.len()) * LIMB_BITS,
431 );
432 while sig_scratch.last() == Some(&0) {
433 sig_scratch.pop();
434 }
435 mem::swap(&mut sig, &mut sig_scratch);
436 }
437 texp >>= 1;
438 }
439 }
440
441 // Fill the buffer.
442 let mut buffer = vec![];
443
444 // Ignore digits from the significand until it is no more
445 // precise than is required for the desired precision.
446 // 196/59 is a very slight overestimate of lg_2(10).
447 let required = (precision * 196 + 58) / 59;
448 let mut discard_digits = sig::omsb(&sig).saturating_sub(required) * 59 / 196;
449 let mut in_trail = true;
450 while !sig.is_empty() {
451 // Perform short division by 10 to extract the rightmost digit.
452 // rem <- sig % 10
453 // sig <- sig / 10
454 let mut rem = 0;
455
456 // Use 64-bit division and remainder, with 32-bit chunks from sig.
457 sig::each_chunk(&mut sig, 32, |chunk| {
458 let chunk = chunk as u32;
459 let combined = ((rem as u64) << 32) | (chunk as u64);
460 rem = (combined % 10) as u8;
461 (combined / 10) as u32 as Limb
462 });
463
464 // Reduce the sigificand to avoid wasting time dividing 0's.
465 while sig.last() == Some(&0) {
466 sig.pop();
467 }
468
469 let digit = rem;
470
471 // Ignore digits we don't need.
472 if discard_digits > 0 {
473 discard_digits -= 1;
474 exp += 1;
475 continue;
476 }
477
478 // Drop trailing zeros.
479 if in_trail && digit == 0 {
480 exp += 1;
481 } else {
482 in_trail = false;
483 buffer.push(b'0' + digit);
484 }
485 }
486
487 assert!(!buffer.is_empty(), "no characters in buffer!");
488
489 // Drop down to precision.
490 // FIXME: don't do more precise calculations above than are required.
491 if buffer.len() > precision {
492 // The most significant figures are the last ones in the buffer.
493 let mut first_sig = buffer.len() - precision;
494
495 // Round.
496 // FIXME: this probably shouldn't use 'round half up'.
497
498 // Rounding down is just a truncation, except we also want to drop
499 // trailing zeros from the new result.
500 if buffer[first_sig - 1] < b'5' {
501 while first_sig < buffer.len() && buffer[first_sig] == b'0' {
502 first_sig += 1;
503 }
504 } else {
505 // Rounding up requires a decimal add-with-carry. If we continue
506 // the carry, the newly-introduced zeros will just be truncated.
507 for x in &mut buffer[first_sig..] {
508 if *x == b'9' {
509 first_sig += 1;
510 } else {
511 *x += 1;
512 break;
513 }
514 }
515 }
516
517 exp += first_sig as ExpInt;
518 buffer.drain(..first_sig);
519
520 // If we carried through, we have exactly one digit of precision.
521 if buffer.is_empty() {
522 buffer.push(b'1');
523 }
524 }
525
526 let digits = buffer.len();
527
528 // Check whether we should use scientific notation.
529 let scientific = if width == 0 {
530 true
531 } else if exp >= 0 {
532 // 765e3 --> 765000
533 // ^^^
534 // But we shouldn't make the number look more precise than it is.
535 exp as usize > width || digits + exp as usize > precision
536 } else {
537 // Power of the most significant digit.
538 let msd = exp + (digits - 1) as ExpInt;
539 if msd >= 0 {
540 // 765e-2 == 7.65
541 false
542 } else {
543 // 765e-5 == 0.00765
544 // ^ ^^
545 -msd as usize > width
546 }
547 };
548
549 // Scientific formatting is pretty straightforward.
550 if scientific {
551 exp += digits as ExpInt - 1;
552
553 f.write_char(buffer[digits - 1] as char)?;
554 f.write_char('.')?;
555 let truncate_zero = !alternate;
556 if digits == 1 && truncate_zero {
557 f.write_char('0')?;
558 } else {
559 for &d in buffer[..digits - 1].iter().rev() {
560 f.write_char(d as char)?;
561 }
562 }
563 // Fill with zeros up to precision.
564 if !truncate_zero && precision > digits - 1 {
565 for _ in 0..=precision - digits {
566 f.write_char('0')?;
567 }
568 }
569 // For alternate we use lower 'e'.
570 f.write_char(if alternate { 'e' } else { 'E' })?;
571
572 // Exponent always at least two digits if we do not truncate zeros.
573 if truncate_zero {
574 write!(f, "{:+}", exp)?;
575 } else {
576 write!(f, "{:+03}", exp)?;
577 }
578
579 return Ok(());
580 }
581
582 // Non-scientific, positive exponents.
583 if exp >= 0 {
584 for &d in buffer.iter().rev() {
585 f.write_char(d as char)?;
586 }
587 for _ in 0..exp {
588 f.write_char('0')?;
589 }
590 return Ok(());
591 }
592
593 // Non-scientific, negative exponents.
594 let unit_place = -exp as usize;
595 if unit_place < digits {
596 for &d in buffer[unit_place..].iter().rev() {
597 f.write_char(d as char)?;
598 }
599 f.write_char('.')?;
600 for &d in buffer[..unit_place].iter().rev() {
601 f.write_char(d as char)?;
602 }
603 } else {
604 f.write_str("0.")?;
605 for _ in digits..unit_place {
606 f.write_char('0')?;
607 }
608 for &d in buffer.iter().rev() {
609 f.write_char(d as char)?;
610 }
611 }
612
613 Ok(())
614 }
615 }
616
617 impl<S: Semantics> fmt::Debug for IeeeFloat<S> {
618 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
619 write!(
620 f,
621 "{}({:?} | {}{:?} * 2^{})",
622 self,
623 self.category,
624 if self.sign { "-" } else { "+" },
625 self.sig,
626 self.exp
627 )
628 }
629 }
630
631 impl<S: Semantics> Float for IeeeFloat<S> {
632 const BITS: usize = S::BITS;
633 const PRECISION: usize = S::PRECISION;
634 const MAX_EXP: ExpInt = S::MAX_EXP;
635 const MIN_EXP: ExpInt = S::MIN_EXP;
636
637 const ZERO: Self = IeeeFloat {
638 sig: [0],
639 exp: S::MIN_EXP - 1,
640 category: Category::Zero,
641 sign: false,
642 marker: PhantomData,
643 };
644
645 const INFINITY: Self = IeeeFloat {
646 sig: [0],
647 exp: S::MAX_EXP + 1,
648 category: Category::Infinity,
649 sign: false,
650 marker: PhantomData,
651 };
652
653 // FIXME(eddyb) remove when qnan becomes const fn.
654 const NAN: Self = IeeeFloat {
655 sig: [S::QNAN_SIGNIFICAND],
656 exp: S::MAX_EXP + 1,
657 category: Category::NaN,
658 sign: false,
659 marker: PhantomData,
660 };
661
662 fn qnan(payload: Option<u128>) -> Self {
663 IeeeFloat {
664 sig: [S::QNAN_SIGNIFICAND
665 | payload.map_or(0, |payload| {
666 // Zero out the excess bits of the significand.
667 payload & ((1 << S::QNAN_BIT) - 1)
668 })],
669 exp: S::MAX_EXP + 1,
670 category: Category::NaN,
671 sign: false,
672 marker: PhantomData,
673 }
674 }
675
676 fn snan(payload: Option<u128>) -> Self {
677 let mut snan = Self::qnan(payload);
678
679 // We always have to clear the QNaN bit to make it an SNaN.
680 sig::clear_bit(&mut snan.sig, S::QNAN_BIT);
681
682 // If there are no bits set in the payload, we have to set
683 // *something* to make it a NaN instead of an infinity;
684 // conventionally, this is the next bit down from the QNaN bit.
685 if snan.sig[0] & !S::QNAN_SIGNIFICAND == 0 {
686 sig::set_bit(&mut snan.sig, S::QNAN_BIT - 1);
687 }
688
689 snan
690 }
691
692 fn largest() -> Self {
693 // We want (in interchange format):
694 // exponent = 1..10
695 // significand = 1..1
696 IeeeFloat {
697 sig: [(1 << S::PRECISION) - 1],
698 exp: S::MAX_EXP,
699 category: Category::Normal,
700 sign: false,
701 marker: PhantomData,
702 }
703 }
704
705 // We want (in interchange format):
706 // exponent = 0..0
707 // significand = 0..01
708 const SMALLEST: Self = IeeeFloat {
709 sig: [1],
710 exp: S::MIN_EXP,
711 category: Category::Normal,
712 sign: false,
713 marker: PhantomData,
714 };
715
716 fn smallest_normalized() -> Self {
717 // We want (in interchange format):
718 // exponent = 0..0
719 // significand = 10..0
720 IeeeFloat {
721 sig: [1 << (S::PRECISION - 1)],
722 exp: S::MIN_EXP,
723 category: Category::Normal,
724 sign: false,
725 marker: PhantomData,
726 }
727 }
728
729 fn add_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> {
730 let status = match (self.category, rhs.category) {
731 (Category::Infinity, Category::Infinity) => {
732 // Differently signed infinities can only be validly
733 // subtracted.
734 if self.sign != rhs.sign {
735 self = Self::NAN;
736 Status::INVALID_OP
737 } else {
738 Status::OK
739 }
740 }
741
742 // Sign may depend on rounding mode; handled below.
743 (_, Category::Zero) | (Category::NaN, _) | (Category::Infinity, Category::Normal) => {
744 Status::OK
745 }
746
747 (Category::Zero, _) | (_, Category::NaN | Category::Infinity) => {
748 self = rhs;
749 Status::OK
750 }
751
752 // This return code means it was not a simple case.
753 (Category::Normal, Category::Normal) => {
754 let loss = sig::add_or_sub(
755 &mut self.sig,
756 &mut self.exp,
757 &mut self.sign,
758 &mut [rhs.sig[0]],
759 rhs.exp,
760 rhs.sign,
761 );
762 let status;
763 self = unpack!(status=, self.normalize(round, loss));
764
765 // Can only be zero if we lost no fraction.
766 assert!(self.category != Category::Zero || loss == Loss::ExactlyZero);
767
768 status
769 }
770 };
771
772 // If two numbers add (exactly) to zero, IEEE 754 decrees it is a
773 // positive zero unless rounding to minus infinity, except that
774 // adding two like-signed zeroes gives that zero.
775 if self.category == Category::Zero
776 && (rhs.category != Category::Zero || self.sign != rhs.sign)
777 {
778 self.sign = round == Round::TowardNegative;
779 }
780
781 status.and(self)
782 }
783
784 fn mul_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> {
785 self.sign ^= rhs.sign;
786
787 match (self.category, rhs.category) {
788 (Category::NaN, _) => {
789 self.sign = false;
790 Status::OK.and(self)
791 }
792
793 (_, Category::NaN) => {
794 self.sign = false;
795 self.category = Category::NaN;
796 self.sig = rhs.sig;
797 Status::OK.and(self)
798 }
799
800 (Category::Zero, Category::Infinity) | (Category::Infinity, Category::Zero) => {
801 Status::INVALID_OP.and(Self::NAN)
802 }
803
804 (_, Category::Infinity) | (Category::Infinity, _) => {
805 self.category = Category::Infinity;
806 Status::OK.and(self)
807 }
808
809 (Category::Zero, _) | (_, Category::Zero) => {
810 self.category = Category::Zero;
811 Status::OK.and(self)
812 }
813
814 (Category::Normal, Category::Normal) => {
815 self.exp += rhs.exp;
816 let mut wide_sig = [0; 2];
817 let loss =
818 sig::mul(&mut wide_sig, &mut self.exp, &self.sig, &rhs.sig, S::PRECISION);
819 self.sig = [wide_sig[0]];
820 let mut status;
821 self = unpack!(status=, self.normalize(round, loss));
822 if loss != Loss::ExactlyZero {
823 status |= Status::INEXACT;
824 }
825 status.and(self)
826 }
827 }
828 }
829
830 fn mul_add_r(mut self, multiplicand: Self, addend: Self, round: Round) -> StatusAnd<Self> {
831 // If and only if all arguments are normal do we need to do an
832 // extended-precision calculation.
833 if !self.is_finite_non_zero() || !multiplicand.is_finite_non_zero() || !addend.is_finite() {
834 let mut status;
835 self = unpack!(status=, self.mul_r(multiplicand, round));
836
837 // FS can only be Status::OK or Status::INVALID_OP. There is no more work
838 // to do in the latter case. The IEEE-754R standard says it is
839 // implementation-defined in this case whether, if ADDEND is a
840 // quiet NaN, we raise invalid op; this implementation does so.
841 //
842 // If we need to do the addition we can do so with normal
843 // precision.
844 if status == Status::OK {
845 self = unpack!(status=, self.add_r(addend, round));
846 }
847 return status.and(self);
848 }
849
850 // Post-multiplication sign, before addition.
851 self.sign ^= multiplicand.sign;
852
853 // Allocate space for twice as many bits as the original significand, plus one
854 // extra bit for the addition to overflow into.
855 assert!(limbs_for_bits(S::PRECISION * 2 + 1) <= 2);
856 let mut wide_sig = sig::widening_mul(self.sig[0], multiplicand.sig[0]);
857
858 let mut loss = Loss::ExactlyZero;
859 let mut omsb = sig::omsb(&wide_sig);
860 self.exp += multiplicand.exp;
861
862 // Assume the operands involved in the multiplication are single-precision
863 // FP, and the two multiplicants are:
864 // lhs = a23 . a22 ... a0 * 2^e1
865 // rhs = b23 . b22 ... b0 * 2^e2
866 // the result of multiplication is:
867 // lhs = c48 c47 c46 . c45 ... c0 * 2^(e1+e2)
868 // Note that there are three significant bits at the left-hand side of the
869 // radix point: two for the multiplication, and an overflow bit for the
870 // addition (that will always be zero at this point). Move the radix point
871 // toward left by two bits, and adjust exponent accordingly.
872 self.exp += 2;
873
874 if addend.is_non_zero() {
875 // Normalize our MSB to one below the top bit to allow for overflow.
876 let ext_precision = 2 * S::PRECISION + 1;
877 if omsb != ext_precision - 1 {
878 assert!(ext_precision > omsb);
879 sig::shift_left(&mut wide_sig, &mut self.exp, (ext_precision - 1) - omsb);
880 }
881
882 // The intermediate result of the multiplication has "2 * S::PRECISION"
883 // significant bit; adjust the addend to be consistent with mul result.
884 let mut ext_addend_sig = [addend.sig[0], 0];
885
886 // Extend the addend significand to ext_precision - 1. This guarantees
887 // that the high bit of the significand is zero (same as wide_sig),
888 // so the addition will overflow (if it does overflow at all) into the top bit.
889 sig::shift_left(&mut ext_addend_sig, &mut 0, ext_precision - 1 - S::PRECISION);
890 loss = sig::add_or_sub(
891 &mut wide_sig,
892 &mut self.exp,
893 &mut self.sign,
894 &mut ext_addend_sig,
895 addend.exp + 1,
896 addend.sign,
897 );
898
899 omsb = sig::omsb(&wide_sig);
900 }
901
902 // Convert the result having "2 * S::PRECISION" significant-bits back to the one
903 // having "S::PRECISION" significant-bits. First, move the radix point from
904 // position "2*S::PRECISION - 1" to "S::PRECISION - 1". The exponent need to be
905 // adjusted by "2*S::PRECISION - 1" - "S::PRECISION - 1" = "S::PRECISION".
906 self.exp -= S::PRECISION as ExpInt + 1;
907
908 // In case MSB resides at the left-hand side of radix point, shift the
909 // mantissa right by some amount to make sure the MSB reside right before
910 // the radix point (i.e., "MSB . rest-significant-bits").
911 if omsb > S::PRECISION {
912 let bits = omsb - S::PRECISION;
913 loss = sig::shift_right(&mut wide_sig, &mut self.exp, bits).combine(loss);
914 }
915
916 self.sig[0] = wide_sig[0];
917
918 let mut status;
919 self = unpack!(status=, self.normalize(round, loss));
920 if loss != Loss::ExactlyZero {
921 status |= Status::INEXACT;
922 }
923
924 // If two numbers add (exactly) to zero, IEEE 754 decrees it is a
925 // positive zero unless rounding to minus infinity, except that
926 // adding two like-signed zeroes gives that zero.
927 if self.category == Category::Zero
928 && !status.intersects(Status::UNDERFLOW)
929 && self.sign != addend.sign
930 {
931 self.sign = round == Round::TowardNegative;
932 }
933
934 status.and(self)
935 }
936
937 fn div_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> {
938 self.sign ^= rhs.sign;
939
940 match (self.category, rhs.category) {
941 (Category::NaN, _) => {
942 self.sign = false;
943 Status::OK.and(self)
944 }
945
946 (_, Category::NaN) => {
947 self.category = Category::NaN;
948 self.sig = rhs.sig;
949 self.sign = false;
950 Status::OK.and(self)
951 }
952
953 (Category::Infinity, Category::Infinity) | (Category::Zero, Category::Zero) => {
954 Status::INVALID_OP.and(Self::NAN)
955 }
956
957 (Category::Infinity | Category::Zero, _) => Status::OK.and(self),
958
959 (Category::Normal, Category::Infinity) => {
960 self.category = Category::Zero;
961 Status::OK.and(self)
962 }
963
964 (Category::Normal, Category::Zero) => {
965 self.category = Category::Infinity;
966 Status::DIV_BY_ZERO.and(self)
967 }
968
969 (Category::Normal, Category::Normal) => {
970 self.exp -= rhs.exp;
971 let dividend = self.sig[0];
972 let loss = sig::div(
973 &mut self.sig,
974 &mut self.exp,
975 &mut [dividend],
976 &mut [rhs.sig[0]],
977 S::PRECISION,
978 );
979 let mut status;
980 self = unpack!(status=, self.normalize(round, loss));
981 if loss != Loss::ExactlyZero {
982 status |= Status::INEXACT;
983 }
984 status.and(self)
985 }
986 }
987 }
988
989 fn c_fmod(mut self, rhs: Self) -> StatusAnd<Self> {
990 match (self.category, rhs.category) {
991 (Category::NaN, _)
992 | (Category::Zero, Category::Infinity | Category::Normal)
993 | (Category::Normal, Category::Infinity) => Status::OK.and(self),
994
995 (_, Category::NaN) => {
996 self.sign = false;
997 self.category = Category::NaN;
998 self.sig = rhs.sig;
999 Status::OK.and(self)
1000 }
1001
1002 (Category::Infinity, _) | (_, Category::Zero) => Status::INVALID_OP.and(Self::NAN),
1003
1004 (Category::Normal, Category::Normal) => {
1005 while self.is_finite_non_zero()
1006 && rhs.is_finite_non_zero()
1007 && self.cmp_abs_normal(rhs) != Ordering::Less
1008 {
1009 let mut v = rhs.scalbn(self.ilogb() - rhs.ilogb());
1010 if self.cmp_abs_normal(v) == Ordering::Less {
1011 v = v.scalbn(-1);
1012 }
1013 v.sign = self.sign;
1014
1015 let status;
1016 self = unpack!(status=, self - v);
1017 assert_eq!(status, Status::OK);
1018 }
1019 Status::OK.and(self)
1020 }
1021 }
1022 }
1023
1024 fn round_to_integral(self, round: Round) -> StatusAnd<Self> {
1025 // If the exponent is large enough, we know that this value is already
1026 // integral, and the arithmetic below would potentially cause it to saturate
1027 // to +/-Inf. Bail out early instead.
1028 if self.is_finite_non_zero() && self.exp + 1 >= S::PRECISION as ExpInt {
1029 return Status::OK.and(self);
1030 }
1031
1032 // The algorithm here is quite simple: we add 2^(p-1), where p is the
1033 // precision of our format, and then subtract it back off again. The choice
1034 // of rounding modes for the addition/subtraction determines the rounding mode
1035 // for our integral rounding as well.
1036 // NOTE: When the input value is negative, we do subtraction followed by
1037 // addition instead.
1038 assert!(S::PRECISION <= 128);
1039 let mut status;
1040 let magic_const = unpack!(status=, Self::from_u128(1 << (S::PRECISION - 1)));
1041 let magic_const = magic_const.copy_sign(self);
1042
1043 if status != Status::OK {
1044 return status.and(self);
1045 }
1046
1047 let mut r = self;
1048 r = unpack!(status=, r.add_r(magic_const, round));
1049 if status != Status::OK && status != Status::INEXACT {
1050 return status.and(self);
1051 }
1052
1053 // Restore the input sign to handle 0.0/-0.0 cases correctly.
1054 r.sub_r(magic_const, round).map(|r| r.copy_sign(self))
1055 }
1056
1057 fn next_up(mut self) -> StatusAnd<Self> {
1058 // Compute nextUp(x), handling each float category separately.
1059 match self.category {
1060 Category::Infinity => {
1061 if self.sign {
1062 // nextUp(-inf) = -largest
1063 Status::OK.and(-Self::largest())
1064 } else {
1065 // nextUp(+inf) = +inf
1066 Status::OK.and(self)
1067 }
1068 }
1069 Category::NaN => {
1070 // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag.
1071 // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not
1072 // change the payload.
1073 if self.is_signaling() {
1074 // For consistency, propagate the sign of the sNaN to the qNaN.
1075 Status::INVALID_OP.and(Self::NAN.copy_sign(self))
1076 } else {
1077 Status::OK.and(self)
1078 }
1079 }
1080 Category::Zero => {
1081 // nextUp(pm 0) = +smallest
1082 Status::OK.and(Self::SMALLEST)
1083 }
1084 Category::Normal => {
1085 // nextUp(-smallest) = -0
1086 if self.is_smallest() && self.sign {
1087 return Status::OK.and(-Self::ZERO);
1088 }
1089
1090 // nextUp(largest) == INFINITY
1091 if self.is_largest() && !self.sign {
1092 return Status::OK.and(Self::INFINITY);
1093 }
1094
1095 // Excluding the integral bit. This allows us to test for binade boundaries.
1096 let sig_mask = (1 << (S::PRECISION - 1)) - 1;
1097
1098 // nextUp(normal) == normal + inc.
1099 if self.sign {
1100 // If we are negative, we need to decrement the significand.
1101
1102 // We only cross a binade boundary that requires adjusting the exponent
1103 // if:
1104 // 1. exponent != S::MIN_EXP. This implies we are not in the
1105 // smallest binade or are dealing with denormals.
1106 // 2. Our significand excluding the integral bit is all zeros.
1107 let crossing_binade_boundary =
1108 self.exp != S::MIN_EXP && self.sig[0] & sig_mask == 0;
1109
1110 // Decrement the significand.
1111 //
1112 // We always do this since:
1113 // 1. If we are dealing with a non-binade decrement, by definition we
1114 // just decrement the significand.
1115 // 2. If we are dealing with a normal -> normal binade decrement, since
1116 // we have an explicit integral bit the fact that all bits but the
1117 // integral bit are zero implies that subtracting one will yield a
1118 // significand with 0 integral bit and 1 in all other spots. Thus we
1119 // must just adjust the exponent and set the integral bit to 1.
1120 // 3. If we are dealing with a normal -> denormal binade decrement,
1121 // since we set the integral bit to 0 when we represent denormals, we
1122 // just decrement the significand.
1123 sig::decrement(&mut self.sig);
1124
1125 if crossing_binade_boundary {
1126 // Our result is a normal number. Do the following:
1127 // 1. Set the integral bit to 1.
1128 // 2. Decrement the exponent.
1129 sig::set_bit(&mut self.sig, S::PRECISION - 1);
1130 self.exp -= 1;
1131 }
1132 } else {
1133 // If we are positive, we need to increment the significand.
1134
1135 // We only cross a binade boundary that requires adjusting the exponent if
1136 // the input is not a denormal and all of said input's significand bits
1137 // are set. If all of said conditions are true: clear the significand, set
1138 // the integral bit to 1, and increment the exponent. If we have a
1139 // denormal always increment since moving denormals and the numbers in the
1140 // smallest normal binade have the same exponent in our representation.
1141 let crossing_binade_boundary =
1142 !self.is_denormal() && self.sig[0] & sig_mask == sig_mask;
1143
1144 if crossing_binade_boundary {
1145 self.sig = [0];
1146 sig::set_bit(&mut self.sig, S::PRECISION - 1);
1147 assert_ne!(
1148 self.exp,
1149 S::MAX_EXP,
1150 "We can not increment an exponent beyond the MAX_EXP \
1151 allowed by the given floating point semantics."
1152 );
1153 self.exp += 1;
1154 } else {
1155 sig::increment(&mut self.sig);
1156 }
1157 }
1158 Status::OK.and(self)
1159 }
1160 }
1161 }
1162
1163 fn from_bits(input: u128) -> Self {
1164 // Dispatch to semantics.
1165 S::from_bits(input)
1166 }
1167
1168 fn from_u128_r(input: u128, round: Round) -> StatusAnd<Self> {
1169 IeeeFloat {
1170 sig: [input],
1171 exp: S::PRECISION as ExpInt - 1,
1172 category: Category::Normal,
1173 sign: false,
1174 marker: PhantomData,
1175 }
1176 .normalize(round, Loss::ExactlyZero)
1177 }
1178
1179 fn from_str_r(mut s: &str, mut round: Round) -> Result<StatusAnd<Self>, ParseError> {
1180 if s.is_empty() {
1181 return Err(ParseError("Invalid string length"));
1182 }
1183
1184 // Handle special cases.
1185 match s {
1186 "inf" | "INFINITY" => return Ok(Status::OK.and(Self::INFINITY)),
1187 "-inf" | "-INFINITY" => return Ok(Status::OK.and(-Self::INFINITY)),
1188 "nan" | "NaN" => return Ok(Status::OK.and(Self::NAN)),
1189 "-nan" | "-NaN" => return Ok(Status::OK.and(-Self::NAN)),
1190 _ => {}
1191 }
1192
1193 // Handle a leading minus sign.
1194 let minus = s.starts_with('-');
1195 if minus || s.starts_with('+') {
1196 s = &s[1..];
1197 if s.is_empty() {
1198 return Err(ParseError("String has no digits"));
1199 }
1200 }
1201
1202 // Adjust the rounding mode for the absolute value below.
1203 if minus {
1204 round = -round;
1205 }
1206
1207 let r = if s.starts_with("0x") || s.starts_with("0X") {
1208 s = &s[2..];
1209 if s.is_empty() {
1210 return Err(ParseError("Invalid string"));
1211 }
1212 Self::from_hexadecimal_string(s, round)?
1213 } else {
1214 Self::from_decimal_string(s, round)?
1215 };
1216
1217 Ok(r.map(|r| if minus { -r } else { r }))
1218 }
1219
1220 fn to_bits(self) -> u128 {
1221 // Dispatch to semantics.
1222 S::to_bits(self)
1223 }
1224
1225 fn to_u128_r(self, width: usize, round: Round, is_exact: &mut bool) -> StatusAnd<u128> {
1226 // The result of trying to convert a number too large.
1227 let overflow = if self.sign {
1228 // Negative numbers cannot be represented as unsigned.
1229 0
1230 } else {
1231 // Largest unsigned integer of the given width.
1232 !0 >> (128 - width)
1233 };
1234
1235 *is_exact = false;
1236
1237 match self.category {
1238 Category::NaN => Status::INVALID_OP.and(0),
1239
1240 Category::Infinity => Status::INVALID_OP.and(overflow),
1241
1242 Category::Zero => {
1243 // Negative zero can't be represented as an int.
1244 *is_exact = !self.sign;
1245 Status::OK.and(0)
1246 }
1247
1248 Category::Normal => {
1249 let mut r = 0;
1250
1251 // Step 1: place our absolute value, with any fraction truncated, in
1252 // the destination.
1253 let truncated_bits = if self.exp < 0 {
1254 // Our absolute value is less than one; truncate everything.
1255 // For exponent -1 the integer bit represents .5, look at that.
1256 // For smaller exponents leftmost truncated bit is 0.
1257 S::PRECISION - 1 + (-self.exp) as usize
1258 } else {
1259 // We want the most significant (exponent + 1) bits; the rest are
1260 // truncated.
1261 let bits = self.exp as usize + 1;
1262
1263 // Hopelessly large in magnitude?
1264 if bits > width {
1265 return Status::INVALID_OP.and(overflow);
1266 }
1267
1268 if bits < S::PRECISION {
1269 // We truncate (S::PRECISION - bits) bits.
1270 r = self.sig[0] >> (S::PRECISION - bits);
1271 S::PRECISION - bits
1272 } else {
1273 // We want at least as many bits as are available.
1274 r = self.sig[0] << (bits - S::PRECISION);
1275 0
1276 }
1277 };
1278
1279 // Step 2: work out any lost fraction, and increment the absolute
1280 // value if we would round away from zero.
1281 let mut loss = Loss::ExactlyZero;
1282 if truncated_bits > 0 {
1283 loss = Loss::through_truncation(&self.sig, truncated_bits);
1284 if loss != Loss::ExactlyZero
1285 && self.round_away_from_zero(round, loss, truncated_bits)
1286 {
1287 r = r.wrapping_add(1);
1288 if r == 0 {
1289 return Status::INVALID_OP.and(overflow); // Overflow.
1290 }
1291 }
1292 }
1293
1294 // Step 3: check if we fit in the destination.
1295 if r > overflow {
1296 return Status::INVALID_OP.and(overflow);
1297 }
1298
1299 if loss == Loss::ExactlyZero {
1300 *is_exact = true;
1301 Status::OK.and(r)
1302 } else {
1303 Status::INEXACT.and(r)
1304 }
1305 }
1306 }
1307 }
1308
1309 fn cmp_abs_normal(self, rhs: Self) -> Ordering {
1310 assert!(self.is_finite_non_zero());
1311 assert!(rhs.is_finite_non_zero());
1312
1313 // If exponents are equal, do an unsigned comparison of the significands.
1314 self.exp.cmp(&rhs.exp).then_with(|| sig::cmp(&self.sig, &rhs.sig))
1315 }
1316
1317 fn bitwise_eq(self, rhs: Self) -> bool {
1318 if self.category != rhs.category || self.sign != rhs.sign {
1319 return false;
1320 }
1321
1322 if self.category == Category::Zero || self.category == Category::Infinity {
1323 return true;
1324 }
1325
1326 if self.is_finite_non_zero() && self.exp != rhs.exp {
1327 return false;
1328 }
1329
1330 self.sig == rhs.sig
1331 }
1332
1333 fn is_negative(self) -> bool {
1334 self.sign
1335 }
1336
1337 fn is_denormal(self) -> bool {
1338 self.is_finite_non_zero()
1339 && self.exp == S::MIN_EXP
1340 && !sig::get_bit(&self.sig, S::PRECISION - 1)
1341 }
1342
1343 fn is_signaling(self) -> bool {
1344 // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the
1345 // first bit of the trailing significand being 0.
1346 self.is_nan() && !sig::get_bit(&self.sig, S::QNAN_BIT)
1347 }
1348
1349 fn category(self) -> Category {
1350 self.category
1351 }
1352
1353 fn get_exact_inverse(self) -> Option<Self> {
1354 // Special floats and denormals have no exact inverse.
1355 if !self.is_finite_non_zero() {
1356 return None;
1357 }
1358
1359 // Check that the number is a power of two by making sure that only the
1360 // integer bit is set in the significand.
1361 if self.sig != [1 << (S::PRECISION - 1)] {
1362 return None;
1363 }
1364
1365 // Get the inverse.
1366 let mut reciprocal = Self::from_u128(1).value;
1367 let status;
1368 reciprocal = unpack!(status=, reciprocal / self);
1369 if status != Status::OK {
1370 return None;
1371 }
1372
1373 // Avoid multiplication with a denormal, it is not safe on all platforms and
1374 // may be slower than a normal division.
1375 if reciprocal.is_denormal() {
1376 return None;
1377 }
1378
1379 assert!(reciprocal.is_finite_non_zero());
1380 assert_eq!(reciprocal.sig, [1 << (S::PRECISION - 1)]);
1381
1382 Some(reciprocal)
1383 }
1384
1385 fn ilogb(mut self) -> ExpInt {
1386 if self.is_nan() {
1387 return IEK_NAN;
1388 }
1389 if self.is_zero() {
1390 return IEK_ZERO;
1391 }
1392 if self.is_infinite() {
1393 return IEK_INF;
1394 }
1395 if !self.is_denormal() {
1396 return self.exp;
1397 }
1398
1399 let sig_bits = (S::PRECISION - 1) as ExpInt;
1400 self.exp += sig_bits;
1401 self = self.normalize(Round::NearestTiesToEven, Loss::ExactlyZero).value;
1402 self.exp - sig_bits
1403 }
1404
1405 fn scalbn_r(mut self, exp: ExpInt, round: Round) -> Self {
1406 // If exp is wildly out-of-scale, simply adding it to self.exp will
1407 // overflow; clamp it to a safe range before adding, but ensure that the range
1408 // is large enough that the clamp does not change the result. The range we
1409 // need to support is the difference between the largest possible exponent and
1410 // the normalized exponent of half the smallest denormal.
1411
1412 let sig_bits = (S::PRECISION - 1) as i32;
1413 let max_change = S::MAX_EXP as i32 - (S::MIN_EXP as i32 - sig_bits) + 1;
1414
1415 // Clamp to one past the range ends to let normalize handle overflow.
1416 let exp_change = cmp::min(cmp::max(exp as i32, -max_change - 1), max_change);
1417 self.exp = self.exp.saturating_add(exp_change as ExpInt);
1418 self = self.normalize(round, Loss::ExactlyZero).value;
1419 if self.is_nan() {
1420 sig::set_bit(&mut self.sig, S::QNAN_BIT);
1421 }
1422 self
1423 }
1424
1425 fn frexp_r(mut self, exp: &mut ExpInt, round: Round) -> Self {
1426 *exp = self.ilogb();
1427
1428 // Quiet signalling nans.
1429 if *exp == IEK_NAN {
1430 sig::set_bit(&mut self.sig, S::QNAN_BIT);
1431 return self;
1432 }
1433
1434 if *exp == IEK_INF {
1435 return self;
1436 }
1437
1438 // 1 is added because frexp is defined to return a normalized fraction in
1439 // +/-[0.5, 1.0), rather than the usual +/-[1.0, 2.0).
1440 if *exp == IEK_ZERO {
1441 *exp = 0;
1442 } else {
1443 *exp += 1;
1444 }
1445 self.scalbn_r(-*exp, round)
1446 }
1447 }
1448
1449 impl<S: Semantics, T: Semantics> FloatConvert<IeeeFloat<T>> for IeeeFloat<S> {
1450 fn convert_r(self, round: Round, loses_info: &mut bool) -> StatusAnd<IeeeFloat<T>> {
1451 let mut r = IeeeFloat {
1452 sig: self.sig,
1453 exp: self.exp,
1454 category: self.category,
1455 sign: self.sign,
1456 marker: PhantomData,
1457 };
1458
1459 // x86 has some unusual NaNs which cannot be represented in any other
1460 // format; note them here.
1461 fn is_x87_double_extended<S: Semantics>() -> bool {
1462 S::QNAN_SIGNIFICAND == X87DoubleExtendedS::QNAN_SIGNIFICAND
1463 }
1464 let x87_special_nan = is_x87_double_extended::<S>()
1465 && !is_x87_double_extended::<T>()
1466 && r.category == Category::NaN
1467 && (r.sig[0] & S::QNAN_SIGNIFICAND) != S::QNAN_SIGNIFICAND;
1468
1469 // If this is a truncation of a denormal number, and the target semantics
1470 // has larger exponent range than the source semantics (this can happen
1471 // when truncating from PowerPC double-double to double format), the
1472 // right shift could lose result mantissa bits. Adjust exponent instead
1473 // of performing excessive shift.
1474 let mut shift = T::PRECISION as ExpInt - S::PRECISION as ExpInt;
1475 if shift < 0 && r.is_finite_non_zero() {
1476 let mut exp_change = sig::omsb(&r.sig) as ExpInt - S::PRECISION as ExpInt;
1477 if r.exp + exp_change < T::MIN_EXP {
1478 exp_change = T::MIN_EXP - r.exp;
1479 }
1480 if exp_change < shift {
1481 exp_change = shift;
1482 }
1483 if exp_change < 0 {
1484 shift -= exp_change;
1485 r.exp += exp_change;
1486 }
1487 }
1488
1489 // If this is a truncation, perform the shift.
1490 let loss = if shift < 0 && (r.is_finite_non_zero() || r.category == Category::NaN) {
1491 sig::shift_right(&mut r.sig, &mut 0, -shift as usize)
1492 } else {
1493 Loss::ExactlyZero
1494 };
1495
1496 // If this is an extension, perform the shift.
1497 if shift > 0 && (r.is_finite_non_zero() || r.category == Category::NaN) {
1498 sig::shift_left(&mut r.sig, &mut 0, shift as usize);
1499 }
1500
1501 let status;
1502 if r.is_finite_non_zero() {
1503 r = unpack!(status=, r.normalize(round, loss));
1504 *loses_info = status != Status::OK;
1505 } else if r.category == Category::NaN {
1506 *loses_info = loss != Loss::ExactlyZero || x87_special_nan;
1507
1508 // For x87 extended precision, we want to make a NaN, not a special NaN if
1509 // the input wasn't special either.
1510 if !x87_special_nan && is_x87_double_extended::<T>() {
1511 sig::set_bit(&mut r.sig, T::PRECISION - 1);
1512 }
1513
1514 // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
1515 // does not give you back the same bits. This is dubious, and we
1516 // don't currently do it. You're really supposed to get
1517 // an invalid operation signal at runtime, but nobody does that.
1518 status = Status::OK;
1519 } else {
1520 *loses_info = false;
1521 status = Status::OK;
1522 }
1523
1524 status.and(r)
1525 }
1526 }
1527
1528 impl<S: Semantics> IeeeFloat<S> {
1529 /// Handle positive overflow. We either return infinity or
1530 /// the largest finite number. For negative overflow,
1531 /// negate the `round` argument before calling.
1532 fn overflow_result(round: Round) -> StatusAnd<Self> {
1533 match round {
1534 // Infinity?
1535 Round::NearestTiesToEven | Round::NearestTiesToAway | Round::TowardPositive => {
1536 (Status::OVERFLOW | Status::INEXACT).and(Self::INFINITY)
1537 }
1538 // Otherwise we become the largest finite number.
1539 Round::TowardNegative | Round::TowardZero => Status::INEXACT.and(Self::largest()),
1540 }
1541 }
1542
1543 /// Returns `true` if, when truncating the current number, with `bit` the
1544 /// new LSB, with the given lost fraction and rounding mode, the result
1545 /// would need to be rounded away from zero (i.e., by increasing the
1546 /// signficand). This routine must work for `Category::Zero` of both signs, and
1547 /// `Category::Normal` numbers.
1548 fn round_away_from_zero(&self, round: Round, loss: Loss, bit: usize) -> bool {
1549 // NaNs and infinities should not have lost fractions.
1550 assert!(self.is_finite_non_zero() || self.is_zero());
1551
1552 // Current callers never pass this so we don't handle it.
1553 assert_ne!(loss, Loss::ExactlyZero);
1554
1555 match round {
1556 Round::NearestTiesToAway => loss == Loss::ExactlyHalf || loss == Loss::MoreThanHalf,
1557 Round::NearestTiesToEven => {
1558 if loss == Loss::MoreThanHalf {
1559 return true;
1560 }
1561
1562 // Our zeros don't have a significand to test.
1563 if loss == Loss::ExactlyHalf && self.category != Category::Zero {
1564 return sig::get_bit(&self.sig, bit);
1565 }
1566
1567 false
1568 }
1569 Round::TowardZero => false,
1570 Round::TowardPositive => !self.sign,
1571 Round::TowardNegative => self.sign,
1572 }
1573 }
1574
1575 fn normalize(mut self, round: Round, mut loss: Loss) -> StatusAnd<Self> {
1576 if !self.is_finite_non_zero() {
1577 return Status::OK.and(self);
1578 }
1579
1580 // Before rounding normalize the exponent of Category::Normal numbers.
1581 let mut omsb = sig::omsb(&self.sig);
1582
1583 if omsb > 0 {
1584 // OMSB is numbered from 1. We want to place it in the integer
1585 // bit numbered PRECISION if possible, with a compensating change in
1586 // the exponent.
1587 let mut final_exp = self.exp.saturating_add(omsb as ExpInt - S::PRECISION as ExpInt);
1588
1589 // If the resulting exponent is too high, overflow according to
1590 // the rounding mode.
1591 if final_exp > S::MAX_EXP {
1592 let round = if self.sign { -round } else { round };
1593 return Self::overflow_result(round).map(|r| r.copy_sign(self));
1594 }
1595
1596 // Subnormal numbers have exponent MIN_EXP, and their MSB
1597 // is forced based on that.
1598 if final_exp < S::MIN_EXP {
1599 final_exp = S::MIN_EXP;
1600 }
1601
1602 // Shifting left is easy as we don't lose precision.
1603 if final_exp < self.exp {
1604 assert_eq!(loss, Loss::ExactlyZero);
1605
1606 let exp_change = (self.exp - final_exp) as usize;
1607 sig::shift_left(&mut self.sig, &mut self.exp, exp_change);
1608
1609 return Status::OK.and(self);
1610 }
1611
1612 // Shift right and capture any new lost fraction.
1613 if final_exp > self.exp {
1614 let exp_change = (final_exp - self.exp) as usize;
1615 loss = sig::shift_right(&mut self.sig, &mut self.exp, exp_change).combine(loss);
1616
1617 // Keep OMSB up-to-date.
1618 omsb = omsb.saturating_sub(exp_change);
1619 }
1620 }
1621
1622 // Now round the number according to round given the lost
1623 // fraction.
1624
1625 // As specified in IEEE 754, since we do not trap we do not report
1626 // underflow for exact results.
1627 if loss == Loss::ExactlyZero {
1628 // Canonicalize zeros.
1629 if omsb == 0 {
1630 self.category = Category::Zero;
1631 }
1632
1633 return Status::OK.and(self);
1634 }
1635
1636 // Increment the significand if we're rounding away from zero.
1637 if self.round_away_from_zero(round, loss, 0) {
1638 if omsb == 0 {
1639 self.exp = S::MIN_EXP;
1640 }
1641
1642 // We should never overflow.
1643 assert_eq!(sig::increment(&mut self.sig), 0);
1644 omsb = sig::omsb(&self.sig);
1645
1646 // Did the significand increment overflow?
1647 if omsb == S::PRECISION + 1 {
1648 // Renormalize by incrementing the exponent and shifting our
1649 // significand right one. However if we already have the
1650 // maximum exponent we overflow to infinity.
1651 if self.exp == S::MAX_EXP {
1652 self.category = Category::Infinity;
1653
1654 return (Status::OVERFLOW | Status::INEXACT).and(self);
1655 }
1656
1657 let _: Loss = sig::shift_right(&mut self.sig, &mut self.exp, 1);
1658
1659 return Status::INEXACT.and(self);
1660 }
1661 }
1662
1663 // The normal case - we were and are not denormal, and any
1664 // significand increment above didn't overflow.
1665 if omsb == S::PRECISION {
1666 return Status::INEXACT.and(self);
1667 }
1668
1669 // We have a non-zero denormal.
1670 assert!(omsb < S::PRECISION);
1671
1672 // Canonicalize zeros.
1673 if omsb == 0 {
1674 self.category = Category::Zero;
1675 }
1676
1677 // The Category::Zero case is a denormal that underflowed to zero.
1678 (Status::UNDERFLOW | Status::INEXACT).and(self)
1679 }
1680
1681 fn from_hexadecimal_string(s: &str, round: Round) -> Result<StatusAnd<Self>, ParseError> {
1682 let mut r = IeeeFloat {
1683 sig: [0],
1684 exp: 0,
1685 category: Category::Normal,
1686 sign: false,
1687 marker: PhantomData,
1688 };
1689
1690 let mut any_digits = false;
1691 let mut has_exp = false;
1692 let mut bit_pos = LIMB_BITS as isize;
1693 let mut loss = None;
1694
1695 // Without leading or trailing zeros, irrespective of the dot.
1696 let mut first_sig_digit = None;
1697 let mut dot = s.len();
1698
1699 for (p, c) in s.char_indices() {
1700 // Skip leading zeros and any (hexa)decimal point.
1701 if c == '.' {
1702 if dot != s.len() {
1703 return Err(ParseError("String contains multiple dots"));
1704 }
1705 dot = p;
1706 } else if let Some(hex_value) = c.to_digit(16) {
1707 any_digits = true;
1708
1709 if first_sig_digit.is_none() {
1710 if hex_value == 0 {
1711 continue;
1712 }
1713 first_sig_digit = Some(p);
1714 }
1715
1716 // Store the number while we have space.
1717 bit_pos -= 4;
1718 if bit_pos >= 0 {
1719 r.sig[0] |= (hex_value as Limb) << bit_pos;
1720 // If zero or one-half (the hexadecimal digit 8) are followed
1721 // by non-zero, they're a little more than zero or one-half.
1722 } else if let Some(ref mut loss) = loss {
1723 if hex_value != 0 {
1724 if *loss == Loss::ExactlyZero {
1725 *loss = Loss::LessThanHalf;
1726 }
1727 if *loss == Loss::ExactlyHalf {
1728 *loss = Loss::MoreThanHalf;
1729 }
1730 }
1731 } else {
1732 loss = Some(match hex_value {
1733 0 => Loss::ExactlyZero,
1734 1..=7 => Loss::LessThanHalf,
1735 8 => Loss::ExactlyHalf,
1736 9..=15 => Loss::MoreThanHalf,
1737 _ => unreachable!(),
1738 });
1739 }
1740 } else if c == 'p' || c == 'P' {
1741 if !any_digits {
1742 return Err(ParseError("Significand has no digits"));
1743 }
1744
1745 if dot == s.len() {
1746 dot = p;
1747 }
1748
1749 let mut chars = s[p + 1..].chars().peekable();
1750
1751 // Adjust for the given exponent.
1752 let exp_minus = chars.peek() == Some(&'-');
1753 if exp_minus || chars.peek() == Some(&'+') {
1754 chars.next();
1755 }
1756
1757 for c in chars {
1758 if let Some(value) = c.to_digit(10) {
1759 has_exp = true;
1760 r.exp = r.exp.saturating_mul(10).saturating_add(value as ExpInt);
1761 } else {
1762 return Err(ParseError("Invalid character in exponent"));
1763 }
1764 }
1765 if !has_exp {
1766 return Err(ParseError("Exponent has no digits"));
1767 }
1768
1769 if exp_minus {
1770 r.exp = -r.exp;
1771 }
1772
1773 break;
1774 } else {
1775 return Err(ParseError("Invalid character in significand"));
1776 }
1777 }
1778 if !any_digits {
1779 return Err(ParseError("Significand has no digits"));
1780 }
1781
1782 // Hex floats require an exponent but not a hexadecimal point.
1783 if !has_exp {
1784 return Err(ParseError("Hex strings require an exponent"));
1785 }
1786
1787 // Ignore the exponent if we are zero.
1788 let first_sig_digit = match first_sig_digit {
1789 Some(p) => p,
1790 None => return Ok(Status::OK.and(Self::ZERO)),
1791 };
1792
1793 // Calculate the exponent adjustment implicit in the number of
1794 // significant digits and adjust for writing the significand starting
1795 // at the most significant nibble.
1796 let exp_adjustment = if dot > first_sig_digit {
1797 ExpInt::try_from(dot - first_sig_digit).unwrap()
1798 } else {
1799 -ExpInt::try_from(first_sig_digit - dot - 1).unwrap()
1800 };
1801 let exp_adjustment = exp_adjustment
1802 .saturating_mul(4)
1803 .saturating_sub(1)
1804 .saturating_add(S::PRECISION as ExpInt)
1805 .saturating_sub(LIMB_BITS as ExpInt);
1806 r.exp = r.exp.saturating_add(exp_adjustment);
1807
1808 Ok(r.normalize(round, loss.unwrap_or(Loss::ExactlyZero)))
1809 }
1810
1811 fn from_decimal_string(s: &str, round: Round) -> Result<StatusAnd<Self>, ParseError> {
1812 // Given a normal decimal floating point number of the form
1813 //
1814 // dddd.dddd[eE][+-]ddd
1815 //
1816 // where the decimal point and exponent are optional, fill out the
1817 // variables below. Exponent is appropriate if the significand is
1818 // treated as an integer, and normalized_exp if the significand
1819 // is taken to have the decimal point after a single leading
1820 // non-zero digit.
1821 //
1822 // If the value is zero, first_sig_digit is None.
1823
1824 let mut any_digits = false;
1825 let mut dec_exp = 0i32;
1826
1827 // Without leading or trailing zeros, irrespective of the dot.
1828 let mut first_sig_digit = None;
1829 let mut last_sig_digit = 0;
1830 let mut dot = s.len();
1831
1832 for (p, c) in s.char_indices() {
1833 if c == '.' {
1834 if dot != s.len() {
1835 return Err(ParseError("String contains multiple dots"));
1836 }
1837 dot = p;
1838 } else if let Some(dec_value) = c.to_digit(10) {
1839 any_digits = true;
1840
1841 if dec_value != 0 {
1842 if first_sig_digit.is_none() {
1843 first_sig_digit = Some(p);
1844 }
1845 last_sig_digit = p;
1846 }
1847 } else if c == 'e' || c == 'E' {
1848 if !any_digits {
1849 return Err(ParseError("Significand has no digits"));
1850 }
1851
1852 if dot == s.len() {
1853 dot = p;
1854 }
1855
1856 let mut chars = s[p + 1..].chars().peekable();
1857
1858 // Adjust for the given exponent.
1859 let exp_minus = chars.peek() == Some(&'-');
1860 if exp_minus || chars.peek() == Some(&'+') {
1861 chars.next();
1862 }
1863
1864 any_digits = false;
1865 for c in chars {
1866 if let Some(value) = c.to_digit(10) {
1867 any_digits = true;
1868 dec_exp = dec_exp.saturating_mul(10).saturating_add(value as i32);
1869 } else {
1870 return Err(ParseError("Invalid character in exponent"));
1871 }
1872 }
1873 if !any_digits {
1874 return Err(ParseError("Exponent has no digits"));
1875 }
1876
1877 if exp_minus {
1878 dec_exp = -dec_exp;
1879 }
1880
1881 break;
1882 } else {
1883 return Err(ParseError("Invalid character in significand"));
1884 }
1885 }
1886 if !any_digits {
1887 return Err(ParseError("Significand has no digits"));
1888 }
1889
1890 // Test if we have a zero number allowing for non-zero exponents.
1891 let first_sig_digit = match first_sig_digit {
1892 Some(p) => p,
1893 None => return Ok(Status::OK.and(Self::ZERO)),
1894 };
1895
1896 // Adjust the exponents for any decimal point.
1897 if dot > last_sig_digit {
1898 dec_exp = dec_exp.saturating_add((dot - last_sig_digit - 1) as i32);
1899 } else {
1900 dec_exp = dec_exp.saturating_sub((last_sig_digit - dot) as i32);
1901 }
1902 let significand_digits = last_sig_digit - first_sig_digit + 1
1903 - (dot > first_sig_digit && dot < last_sig_digit) as usize;
1904 let normalized_exp = dec_exp.saturating_add(significand_digits as i32 - 1);
1905
1906 // Handle the cases where exponents are obviously too large or too
1907 // small. Writing L for log 10 / log 2, a number d.ddddd*10^dec_exp
1908 // definitely overflows if
1909 //
1910 // (dec_exp - 1) * L >= MAX_EXP
1911 //
1912 // and definitely underflows to zero where
1913 //
1914 // (dec_exp + 1) * L <= MIN_EXP - PRECISION
1915 //
1916 // With integer arithmetic the tightest bounds for L are
1917 //
1918 // 93/28 < L < 196/59 [ numerator <= 256 ]
1919 // 42039/12655 < L < 28738/8651 [ numerator <= 65536 ]
1920
1921 // Check for MAX_EXP.
1922 if normalized_exp.saturating_sub(1).saturating_mul(42039) >= 12655 * S::MAX_EXP as i32 {
1923 // Overflow and round.
1924 return Ok(Self::overflow_result(round));
1925 }
1926
1927 // Check for MIN_EXP.
1928 if normalized_exp.saturating_add(1).saturating_mul(28738)
1929 <= 8651 * (S::MIN_EXP as i32 - S::PRECISION as i32)
1930 {
1931 // Underflow to zero and round.
1932 let r =
1933 if round == Round::TowardPositive { IeeeFloat::SMALLEST } else { IeeeFloat::ZERO };
1934 return Ok((Status::UNDERFLOW | Status::INEXACT).and(r));
1935 }
1936
1937 // A tight upper bound on number of bits required to hold an
1938 // N-digit decimal integer is N * 196 / 59. Allocate enough space
1939 // to hold the full significand, and an extra limb required by
1940 // tcMultiplyPart.
1941 let max_limbs = limbs_for_bits(1 + 196 * significand_digits / 59);
1942 let mut dec_sig: SmallVec<[Limb; 1]> = SmallVec::with_capacity(max_limbs);
1943
1944 // Convert to binary efficiently - we do almost all multiplication
1945 // in a Limb. When this would overflow do we do a single
1946 // bignum multiplication, and then revert again to multiplication
1947 // in a Limb.
1948 let mut chars = s[first_sig_digit..=last_sig_digit].chars();
1949 loop {
1950 let mut val = 0;
1951 let mut multiplier = 1;
1952
1953 loop {
1954 let dec_value = match chars.next() {
1955 Some('.') => continue,
1956 Some(c) => c.to_digit(10).unwrap(),
1957 None => break,
1958 };
1959
1960 multiplier *= 10;
1961 val = val * 10 + dec_value as Limb;
1962
1963 // The maximum number that can be multiplied by ten with any
1964 // digit added without overflowing a Limb.
1965 if multiplier > (!0 - 9) / 10 {
1966 break;
1967 }
1968 }
1969
1970 // If we've consumed no digits, we're done.
1971 if multiplier == 1 {
1972 break;
1973 }
1974
1975 // Multiply out the current limb.
1976 let mut carry = val;
1977 for x in &mut dec_sig {
1978 let [low, mut high] = sig::widening_mul(*x, multiplier);
1979
1980 // Now add carry.
1981 let (low, overflow) = low.overflowing_add(carry);
1982 high += overflow as Limb;
1983
1984 *x = low;
1985 carry = high;
1986 }
1987
1988 // If we had carry, we need another limb (likely but not guaranteed).
1989 if carry > 0 {
1990 dec_sig.push(carry);
1991 }
1992 }
1993
1994 // Calculate pow(5, abs(dec_exp)) into `pow5_full`.
1995 // The *_calc Vec's are reused scratch space, as an optimization.
1996 let (pow5_full, mut pow5_calc, mut sig_calc, mut sig_scratch_calc) = {
1997 let mut power = dec_exp.abs() as usize;
1998
1999 const FIRST_EIGHT_POWERS: [Limb; 8] = [1, 5, 25, 125, 625, 3125, 15625, 78125];
2000
2001 let mut p5_scratch = smallvec![];
2002 let mut p5: SmallVec<[Limb; 1]> = smallvec![FIRST_EIGHT_POWERS[4]];
2003
2004 let mut r_scratch = smallvec![];
2005 let mut r: SmallVec<[Limb; 1]> = smallvec![FIRST_EIGHT_POWERS[power & 7]];
2006 power >>= 3;
2007
2008 while power > 0 {
2009 // Calculate pow(5,pow(2,n+3)).
2010 p5_scratch.resize(p5.len() * 2, 0);
2011 let _: Loss = sig::mul(&mut p5_scratch, &mut 0, &p5, &p5, p5.len() * 2 * LIMB_BITS);
2012 while p5_scratch.last() == Some(&0) {
2013 p5_scratch.pop();
2014 }
2015 mem::swap(&mut p5, &mut p5_scratch);
2016
2017 if power & 1 != 0 {
2018 r_scratch.resize(r.len() + p5.len(), 0);
2019 let _: Loss =
2020 sig::mul(&mut r_scratch, &mut 0, &r, &p5, (r.len() + p5.len()) * LIMB_BITS);
2021 while r_scratch.last() == Some(&0) {
2022 r_scratch.pop();
2023 }
2024 mem::swap(&mut r, &mut r_scratch);
2025 }
2026
2027 power >>= 1;
2028 }
2029
2030 (r, r_scratch, p5, p5_scratch)
2031 };
2032
2033 // Attempt dec_sig * 10^dec_exp with increasing precision.
2034 let mut attempt = 0;
2035 loop {
2036 let calc_precision = (LIMB_BITS << attempt) - 1;
2037 attempt += 1;
2038
2039 let calc_normal_from_limbs = |sig: &mut SmallVec<[Limb; 1]>,
2040 limbs: &[Limb]|
2041 -> StatusAnd<ExpInt> {
2042 sig.resize(limbs_for_bits(calc_precision), 0);
2043 let (mut loss, mut exp) = sig::from_limbs(sig, limbs, calc_precision);
2044
2045 // Before rounding normalize the exponent of Category::Normal numbers.
2046 let mut omsb = sig::omsb(sig);
2047
2048 assert_ne!(omsb, 0);
2049
2050 // OMSB is numbered from 1. We want to place it in the integer
2051 // bit numbered PRECISION if possible, with a compensating change in
2052 // the exponent.
2053 let final_exp = exp.saturating_add(omsb as ExpInt - calc_precision as ExpInt);
2054
2055 // Shifting left is easy as we don't lose precision.
2056 if final_exp < exp {
2057 assert_eq!(loss, Loss::ExactlyZero);
2058
2059 let exp_change = (exp - final_exp) as usize;
2060 sig::shift_left(sig, &mut exp, exp_change);
2061
2062 return Status::OK.and(exp);
2063 }
2064
2065 // Shift right and capture any new lost fraction.
2066 if final_exp > exp {
2067 let exp_change = (final_exp - exp) as usize;
2068 loss = sig::shift_right(sig, &mut exp, exp_change).combine(loss);
2069
2070 // Keep OMSB up-to-date.
2071 omsb = omsb.saturating_sub(exp_change);
2072 }
2073
2074 assert_eq!(omsb, calc_precision);
2075
2076 // Now round the number according to round given the lost
2077 // fraction.
2078
2079 // As specified in IEEE 754, since we do not trap we do not report
2080 // underflow for exact results.
2081 if loss == Loss::ExactlyZero {
2082 return Status::OK.and(exp);
2083 }
2084
2085 // Increment the significand if we're rounding away from zero.
2086 if loss == Loss::MoreThanHalf || loss == Loss::ExactlyHalf && sig::get_bit(sig, 0) {
2087 // We should never overflow.
2088 assert_eq!(sig::increment(sig), 0);
2089 omsb = sig::omsb(sig);
2090
2091 // Did the significand increment overflow?
2092 if omsb == calc_precision + 1 {
2093 let _: Loss = sig::shift_right(sig, &mut exp, 1);
2094
2095 return Status::INEXACT.and(exp);
2096 }
2097 }
2098
2099 // The normal case - we were and are not denormal, and any
2100 // significand increment above didn't overflow.
2101 Status::INEXACT.and(exp)
2102 };
2103
2104 let status;
2105 let mut exp = unpack!(status=,
2106 calc_normal_from_limbs(&mut sig_calc, &dec_sig));
2107 let pow5_status;
2108 let pow5_exp = unpack!(pow5_status=,
2109 calc_normal_from_limbs(&mut pow5_calc, &pow5_full));
2110
2111 // Add dec_exp, as 10^n = 5^n * 2^n.
2112 exp += dec_exp as ExpInt;
2113
2114 let mut used_bits = S::PRECISION;
2115 let mut truncated_bits = calc_precision - used_bits;
2116
2117 let half_ulp_err1 = (status != Status::OK) as Limb;
2118 let (calc_loss, half_ulp_err2);
2119 if dec_exp >= 0 {
2120 exp += pow5_exp;
2121
2122 sig_scratch_calc.resize(sig_calc.len() + pow5_calc.len(), 0);
2123 calc_loss = sig::mul(
2124 &mut sig_scratch_calc,
2125 &mut exp,
2126 &sig_calc,
2127 &pow5_calc,
2128 calc_precision,
2129 );
2130 mem::swap(&mut sig_calc, &mut sig_scratch_calc);
2131
2132 half_ulp_err2 = (pow5_status != Status::OK) as Limb;
2133 } else {
2134 exp -= pow5_exp;
2135
2136 sig_scratch_calc.resize(sig_calc.len(), 0);
2137 calc_loss = sig::div(
2138 &mut sig_scratch_calc,
2139 &mut exp,
2140 &mut sig_calc,
2141 &mut pow5_calc,
2142 calc_precision,
2143 );
2144 mem::swap(&mut sig_calc, &mut sig_scratch_calc);
2145
2146 // Denormal numbers have less precision.
2147 if exp < S::MIN_EXP {
2148 truncated_bits += (S::MIN_EXP - exp) as usize;
2149 used_bits = calc_precision.saturating_sub(truncated_bits);
2150 }
2151 // Extra half-ulp lost in reciprocal of exponent.
2152 half_ulp_err2 =
2153 2 * (pow5_status != Status::OK || calc_loss != Loss::ExactlyZero) as Limb;
2154 }
2155
2156 // Both sig::mul and sig::div return the
2157 // result with the integer bit set.
2158 assert!(sig::get_bit(&sig_calc, calc_precision - 1));
2159
2160 // The error from the true value, in half-ulps, on multiplying two
2161 // floating point numbers, which differ from the value they
2162 // approximate by at most half_ulp_err1 and half_ulp_err2 half-ulps, is strictly less
2163 // than the returned value.
2164 //
2165 // See "How to Read Floating Point Numbers Accurately" by William D Clinger.
2166 assert!(half_ulp_err1 < 2 || half_ulp_err2 < 2 || (half_ulp_err1 + half_ulp_err2 < 8));
2167
2168 let inexact = (calc_loss != Loss::ExactlyZero) as Limb;
2169 let half_ulp_err = if half_ulp_err1 + half_ulp_err2 == 0 {
2170 inexact * 2 // <= inexact half-ulps.
2171 } else {
2172 inexact + 2 * (half_ulp_err1 + half_ulp_err2)
2173 };
2174
2175 let ulps_from_boundary = {
2176 let bits = calc_precision - used_bits - 1;
2177
2178 let i = bits / LIMB_BITS;
2179 let limb = sig_calc[i] & (!0 >> (LIMB_BITS - 1 - bits % LIMB_BITS));
2180 let boundary = match round {
2181 Round::NearestTiesToEven | Round::NearestTiesToAway => 1 << (bits % LIMB_BITS),
2182 _ => 0,
2183 };
2184 if i == 0 {
2185 let delta = limb.wrapping_sub(boundary);
2186 cmp::min(delta, delta.wrapping_neg())
2187 } else if limb == boundary {
2188 if !sig::is_all_zeros(&sig_calc[1..i]) {
2189 !0 // A lot.
2190 } else {
2191 sig_calc[0]
2192 }
2193 } else if limb == boundary.wrapping_sub(1) {
2194 if sig_calc[1..i].iter().any(|&x| x.wrapping_neg() != 1) {
2195 !0 // A lot.
2196 } else {
2197 sig_calc[0].wrapping_neg()
2198 }
2199 } else {
2200 !0 // A lot.
2201 }
2202 };
2203
2204 // Are we guaranteed to round correctly if we truncate?
2205 if ulps_from_boundary.saturating_mul(2) >= half_ulp_err {
2206 let mut r = IeeeFloat {
2207 sig: [0],
2208 exp,
2209 category: Category::Normal,
2210 sign: false,
2211 marker: PhantomData,
2212 };
2213 sig::extract(&mut r.sig, &sig_calc, used_bits, calc_precision - used_bits);
2214 // If we extracted less bits above we must adjust our exponent
2215 // to compensate for the implicit right shift.
2216 r.exp += (S::PRECISION - used_bits) as ExpInt;
2217 let loss = Loss::through_truncation(&sig_calc, truncated_bits);
2218 return Ok(r.normalize(round, loss));
2219 }
2220 }
2221 }
2222 }
2223
2224 impl Loss {
2225 /// Combine the effect of two lost fractions.
2226 fn combine(self, less_significant: Loss) -> Loss {
2227 let mut more_significant = self;
2228 if less_significant != Loss::ExactlyZero {
2229 if more_significant == Loss::ExactlyZero {
2230 more_significant = Loss::LessThanHalf;
2231 } else if more_significant == Loss::ExactlyHalf {
2232 more_significant = Loss::MoreThanHalf;
2233 }
2234 }
2235
2236 more_significant
2237 }
2238
2239 /// Returns the fraction lost were a bignum truncated losing the least
2240 /// significant `bits` bits.
2241 fn through_truncation(limbs: &[Limb], bits: usize) -> Loss {
2242 if bits == 0 {
2243 return Loss::ExactlyZero;
2244 }
2245
2246 let half_bit = bits - 1;
2247 let half_limb = half_bit / LIMB_BITS;
2248 let (half_limb, rest) = if half_limb < limbs.len() {
2249 (limbs[half_limb], &limbs[..half_limb])
2250 } else {
2251 (0, limbs)
2252 };
2253 let half = 1 << (half_bit % LIMB_BITS);
2254 let has_half = half_limb & half != 0;
2255 let has_rest = half_limb & (half - 1) != 0 || !sig::is_all_zeros(rest);
2256
2257 match (has_half, has_rest) {
2258 (false, false) => Loss::ExactlyZero,
2259 (false, true) => Loss::LessThanHalf,
2260 (true, false) => Loss::ExactlyHalf,
2261 (true, true) => Loss::MoreThanHalf,
2262 }
2263 }
2264 }
2265
2266 /// Implementation details of IeeeFloat significands, such as big integer arithmetic.
2267 /// As a rule of thumb, no functions in this module should dynamically allocate.
2268 mod sig {
2269 use super::{limbs_for_bits, ExpInt, Limb, Loss, LIMB_BITS};
2270 use core::cmp::Ordering;
2271 use core::mem;
2272
2273 pub(super) fn is_all_zeros(limbs: &[Limb]) -> bool {
2274 limbs.iter().all(|&l| l == 0)
2275 }
2276
2277 /// One, not zero, based LSB. That is, returns 0 for a zeroed significand.
2278 pub(super) fn olsb(limbs: &[Limb]) -> usize {
2279 limbs
2280 .iter()
2281 .enumerate()
2282 .find(|(_, &limb)| limb != 0)
2283 .map_or(0, |(i, limb)| i * LIMB_BITS + limb.trailing_zeros() as usize + 1)
2284 }
2285
2286 /// One, not zero, based MSB. That is, returns 0 for a zeroed significand.
2287 pub(super) fn omsb(limbs: &[Limb]) -> usize {
2288 limbs
2289 .iter()
2290 .enumerate()
2291 .rfind(|(_, &limb)| limb != 0)
2292 .map_or(0, |(i, limb)| (i + 1) * LIMB_BITS - limb.leading_zeros() as usize)
2293 }
2294
2295 /// Comparison (unsigned) of two significands.
2296 pub(super) fn cmp(a: &[Limb], b: &[Limb]) -> Ordering {
2297 assert_eq!(a.len(), b.len());
2298 for (a, b) in a.iter().zip(b).rev() {
2299 match a.cmp(b) {
2300 Ordering::Equal => {}
2301 o => return o,
2302 }
2303 }
2304
2305 Ordering::Equal
2306 }
2307
2308 /// Extracts the given bit.
2309 pub(super) fn get_bit(limbs: &[Limb], bit: usize) -> bool {
2310 limbs[bit / LIMB_BITS] & (1 << (bit % LIMB_BITS)) != 0
2311 }
2312
2313 /// Sets the given bit.
2314 pub(super) fn set_bit(limbs: &mut [Limb], bit: usize) {
2315 limbs[bit / LIMB_BITS] |= 1 << (bit % LIMB_BITS);
2316 }
2317
2318 /// Clear the given bit.
2319 pub(super) fn clear_bit(limbs: &mut [Limb], bit: usize) {
2320 limbs[bit / LIMB_BITS] &= !(1 << (bit % LIMB_BITS));
2321 }
2322
2323 /// Shifts `dst` left `bits` bits, subtract `bits` from its exponent.
2324 pub(super) fn shift_left(dst: &mut [Limb], exp: &mut ExpInt, bits: usize) {
2325 if bits > 0 {
2326 // Our exponent should not underflow.
2327 *exp = exp.checked_sub(bits as ExpInt).unwrap();
2328
2329 // Jump is the inter-limb jump; shift is the intra-limb shift.
2330 let jump = bits / LIMB_BITS;
2331 let shift = bits % LIMB_BITS;
2332
2333 for i in (0..dst.len()).rev() {
2334 let mut limb;
2335
2336 if i < jump {
2337 limb = 0;
2338 } else {
2339 // dst[i] comes from the two limbs src[i - jump] and, if we have
2340 // an intra-limb shift, src[i - jump - 1].
2341 limb = dst[i - jump];
2342 if shift > 0 {
2343 limb <<= shift;
2344 if i > jump {
2345 limb |= dst[i - jump - 1] >> (LIMB_BITS - shift);
2346 }
2347 }
2348 }
2349
2350 dst[i] = limb;
2351 }
2352 }
2353 }
2354
2355 /// Shifts `dst` right `bits` bits noting lost fraction.
2356 pub(super) fn shift_right(dst: &mut [Limb], exp: &mut ExpInt, bits: usize) -> Loss {
2357 let loss = Loss::through_truncation(dst, bits);
2358
2359 if bits > 0 {
2360 // Our exponent should not overflow.
2361 *exp = exp.checked_add(bits as ExpInt).unwrap();
2362
2363 // Jump is the inter-limb jump; shift is the intra-limb shift.
2364 let jump = bits / LIMB_BITS;
2365 let shift = bits % LIMB_BITS;
2366
2367 // Perform the shift. This leaves the most significant `bits` bits
2368 // of the result at zero.
2369 for i in 0..dst.len() {
2370 let mut limb;
2371
2372 if i + jump >= dst.len() {
2373 limb = 0;
2374 } else {
2375 limb = dst[i + jump];
2376 if shift > 0 {
2377 limb >>= shift;
2378 if i + jump + 1 < dst.len() {
2379 limb |= dst[i + jump + 1] << (LIMB_BITS - shift);
2380 }
2381 }
2382 }
2383
2384 dst[i] = limb;
2385 }
2386 }
2387
2388 loss
2389 }
2390
2391 /// Copies the bit vector of width `src_bits` from `src`, starting at bit SRC_LSB,
2392 /// to `dst`, such that the bit SRC_LSB becomes the least significant bit of `dst`.
2393 /// All high bits above `src_bits` in `dst` are zero-filled.
2394 pub(super) fn extract(dst: &mut [Limb], src: &[Limb], src_bits: usize, src_lsb: usize) {
2395 if src_bits == 0 {
2396 return;
2397 }
2398
2399 let dst_limbs = limbs_for_bits(src_bits);
2400 assert!(dst_limbs <= dst.len());
2401
2402 let src = &src[src_lsb / LIMB_BITS..];
2403 dst[..dst_limbs].copy_from_slice(&src[..dst_limbs]);
2404
2405 let shift = src_lsb % LIMB_BITS;
2406 let _: Loss = shift_right(&mut dst[..dst_limbs], &mut 0, shift);
2407
2408 // We now have (dst_limbs * LIMB_BITS - shift) bits from `src`
2409 // in `dst`. If this is less that src_bits, append the rest, else
2410 // clear the high bits.
2411 let n = dst_limbs * LIMB_BITS - shift;
2412 if n < src_bits {
2413 let mask = (1 << (src_bits - n)) - 1;
2414 dst[dst_limbs - 1] |= (src[dst_limbs] & mask) << (n % LIMB_BITS);
2415 } else if n > src_bits && src_bits % LIMB_BITS > 0 {
2416 dst[dst_limbs - 1] &= (1 << (src_bits % LIMB_BITS)) - 1;
2417 }
2418
2419 // Clear high limbs.
2420 for x in &mut dst[dst_limbs..] {
2421 *x = 0;
2422 }
2423 }
2424
2425 /// We want the most significant PRECISION bits of `src`. There may not
2426 /// be that many; extract what we can.
2427 pub(super) fn from_limbs(dst: &mut [Limb], src: &[Limb], precision: usize) -> (Loss, ExpInt) {
2428 let omsb = omsb(src);
2429
2430 if precision <= omsb {
2431 extract(dst, src, precision, omsb - precision);
2432 (Loss::through_truncation(src, omsb - precision), omsb as ExpInt - 1)
2433 } else {
2434 extract(dst, src, omsb, 0);
2435 (Loss::ExactlyZero, precision as ExpInt - 1)
2436 }
2437 }
2438
2439 /// For every consecutive chunk of `bits` bits from `limbs`,
2440 /// going from most significant to the least significant bits,
2441 /// call `f` to transform those bits and store the result back.
2442 pub(super) fn each_chunk<F: FnMut(Limb) -> Limb>(limbs: &mut [Limb], bits: usize, mut f: F) {
2443 assert_eq!(LIMB_BITS % bits, 0);
2444 for limb in limbs.iter_mut().rev() {
2445 let mut r = 0;
2446 for i in (0..LIMB_BITS / bits).rev() {
2447 r |= f((*limb >> (i * bits)) & ((1 << bits) - 1)) << (i * bits);
2448 }
2449 *limb = r;
2450 }
2451 }
2452
2453 /// Increment in-place, return the carry flag.
2454 pub(super) fn increment(dst: &mut [Limb]) -> Limb {
2455 for x in dst {
2456 *x = x.wrapping_add(1);
2457 if *x != 0 {
2458 return 0;
2459 }
2460 }
2461
2462 1
2463 }
2464
2465 /// Decrement in-place, return the borrow flag.
2466 pub(super) fn decrement(dst: &mut [Limb]) -> Limb {
2467 for x in dst {
2468 *x = x.wrapping_sub(1);
2469 if *x != !0 {
2470 return 0;
2471 }
2472 }
2473
2474 1
2475 }
2476
2477 /// `a += b + c` where `c` is zero or one. Returns the carry flag.
2478 pub(super) fn add(a: &mut [Limb], b: &[Limb], mut c: Limb) -> Limb {
2479 assert!(c <= 1);
2480
2481 for (a, &b) in a.iter_mut().zip(b) {
2482 let (r, overflow) = a.overflowing_add(b);
2483 let (r, overflow2) = r.overflowing_add(c);
2484 *a = r;
2485 c = (overflow | overflow2) as Limb;
2486 }
2487
2488 c
2489 }
2490
2491 /// `a -= b + c` where `c` is zero or one. Returns the borrow flag.
2492 pub(super) fn sub(a: &mut [Limb], b: &[Limb], mut c: Limb) -> Limb {
2493 assert!(c <= 1);
2494
2495 for (a, &b) in a.iter_mut().zip(b) {
2496 let (r, overflow) = a.overflowing_sub(b);
2497 let (r, overflow2) = r.overflowing_sub(c);
2498 *a = r;
2499 c = (overflow | overflow2) as Limb;
2500 }
2501
2502 c
2503 }
2504
2505 /// `a += b` or `a -= b`. Does not preserve `b`.
2506 pub(super) fn add_or_sub(
2507 a_sig: &mut [Limb],
2508 a_exp: &mut ExpInt,
2509 a_sign: &mut bool,
2510 b_sig: &mut [Limb],
2511 b_exp: ExpInt,
2512 b_sign: bool,
2513 ) -> Loss {
2514 // Are we bigger exponent-wise than the RHS?
2515 let bits = *a_exp - b_exp;
2516
2517 // Determine if the operation on the absolute values is effectively
2518 // an addition or subtraction.
2519 // Subtraction is more subtle than one might naively expect.
2520 if *a_sign ^ b_sign {
2521 let (reverse, loss);
2522
2523 if bits == 0 {
2524 reverse = cmp(a_sig, b_sig) == Ordering::Less;
2525 loss = Loss::ExactlyZero;
2526 } else if bits > 0 {
2527 loss = shift_right(b_sig, &mut 0, (bits - 1) as usize);
2528 shift_left(a_sig, a_exp, 1);
2529 reverse = false;
2530 } else {
2531 loss = shift_right(a_sig, a_exp, (-bits - 1) as usize);
2532 shift_left(b_sig, &mut 0, 1);
2533 reverse = true;
2534 }
2535
2536 let borrow = (loss != Loss::ExactlyZero) as Limb;
2537 if reverse {
2538 // The code above is intended to ensure that no borrow is necessary.
2539 assert_eq!(sub(b_sig, a_sig, borrow), 0);
2540 a_sig.copy_from_slice(b_sig);
2541 *a_sign = !*a_sign;
2542 } else {
2543 // The code above is intended to ensure that no borrow is necessary.
2544 assert_eq!(sub(a_sig, b_sig, borrow), 0);
2545 }
2546
2547 // Invert the lost fraction - it was on the RHS and subtracted.
2548 match loss {
2549 Loss::LessThanHalf => Loss::MoreThanHalf,
2550 Loss::MoreThanHalf => Loss::LessThanHalf,
2551 _ => loss,
2552 }
2553 } else {
2554 let loss = if bits > 0 {
2555 shift_right(b_sig, &mut 0, bits as usize)
2556 } else {
2557 shift_right(a_sig, a_exp, -bits as usize)
2558 };
2559 // We have a guard bit; generating a carry cannot happen.
2560 assert_eq!(add(a_sig, b_sig, 0), 0);
2561 loss
2562 }
2563 }
2564
2565 /// `[low, high] = a * b`.
2566 ///
2567 /// This cannot overflow, because
2568 ///
2569 /// `(n - 1) * (n - 1) + 2 * (n - 1) == (n - 1) * (n + 1)`
2570 ///
2571 /// which is less than n<sup>2</sup>.
2572 pub(super) fn widening_mul(a: Limb, b: Limb) -> [Limb; 2] {
2573 let mut wide = [0, 0];
2574
2575 if a == 0 || b == 0 {
2576 return wide;
2577 }
2578
2579 const HALF_BITS: usize = LIMB_BITS / 2;
2580
2581 let select = |limb, i| (limb >> (i * HALF_BITS)) & ((1 << HALF_BITS) - 1);
2582 for i in 0..2 {
2583 for j in 0..2 {
2584 let mut x = [select(a, i) * select(b, j), 0];
2585 shift_left(&mut x, &mut 0, (i + j) * HALF_BITS);
2586 assert_eq!(add(&mut wide, &x, 0), 0);
2587 }
2588 }
2589
2590 wide
2591 }
2592
2593 /// `dst = a * b` (for normal `a` and `b`). Returns the lost fraction.
2594 pub(super) fn mul<'a>(
2595 dst: &mut [Limb],
2596 exp: &mut ExpInt,
2597 mut a: &'a [Limb],
2598 mut b: &'a [Limb],
2599 precision: usize,
2600 ) -> Loss {
2601 // Put the narrower number on the `a` for less loops below.
2602 if a.len() > b.len() {
2603 mem::swap(&mut a, &mut b);
2604 }
2605
2606 for x in &mut dst[..b.len()] {
2607 *x = 0;
2608 }
2609
2610 for i in 0..a.len() {
2611 let mut carry = 0;
2612 for j in 0..b.len() {
2613 let [low, mut high] = widening_mul(a[i], b[j]);
2614
2615 // Now add carry.
2616 let (low, overflow) = low.overflowing_add(carry);
2617 high += overflow as Limb;
2618
2619 // And now `dst[i + j]`, and store the new low part there.
2620 let (low, overflow) = low.overflowing_add(dst[i + j]);
2621 high += overflow as Limb;
2622
2623 dst[i + j] = low;
2624 carry = high;
2625 }
2626 dst[i + b.len()] = carry;
2627 }
2628
2629 // Assume the operands involved in the multiplication are single-precision
2630 // FP, and the two multiplicants are:
2631 // a = a23 . a22 ... a0 * 2^e1
2632 // b = b23 . b22 ... b0 * 2^e2
2633 // the result of multiplication is:
2634 // dst = c48 c47 c46 . c45 ... c0 * 2^(e1+e2)
2635 // Note that there are three significant bits at the left-hand side of the
2636 // radix point: two for the multiplication, and an overflow bit for the
2637 // addition (that will always be zero at this point). Move the radix point
2638 // toward left by two bits, and adjust exponent accordingly.
2639 *exp += 2;
2640
2641 // Convert the result having "2 * precision" significant-bits back to the one
2642 // having "precision" significant-bits. First, move the radix point from
2643 // poision "2*precision - 1" to "precision - 1". The exponent need to be
2644 // adjusted by "2*precision - 1" - "precision - 1" = "precision".
2645 *exp -= precision as ExpInt + 1;
2646
2647 // In case MSB resides at the left-hand side of radix point, shift the
2648 // mantissa right by some amount to make sure the MSB reside right before
2649 // the radix point (i.e., "MSB . rest-significant-bits").
2650 //
2651 // Note that the result is not normalized when "omsb < precision". So, the
2652 // caller needs to call IeeeFloat::normalize() if normalized value is
2653 // expected.
2654 let omsb = omsb(dst);
2655 if omsb <= precision { Loss::ExactlyZero } else { shift_right(dst, exp, omsb - precision) }
2656 }
2657
2658 /// `quotient = dividend / divisor`. Returns the lost fraction.
2659 /// Does not preserve `dividend` or `divisor`.
2660 pub(super) fn div(
2661 quotient: &mut [Limb],
2662 exp: &mut ExpInt,
2663 dividend: &mut [Limb],
2664 divisor: &mut [Limb],
2665 precision: usize,
2666 ) -> Loss {
2667 // Normalize the divisor.
2668 let bits = precision - omsb(divisor);
2669 shift_left(divisor, &mut 0, bits);
2670 *exp += bits as ExpInt;
2671
2672 // Normalize the dividend.
2673 let bits = precision - omsb(dividend);
2674 shift_left(dividend, exp, bits);
2675
2676 // Division by 1.
2677 let olsb_divisor = olsb(divisor);
2678 if olsb_divisor == precision {
2679 quotient.copy_from_slice(dividend);
2680 return Loss::ExactlyZero;
2681 }
2682
2683 // Ensure the dividend >= divisor initially for the loop below.
2684 // Incidentally, this means that the division loop below is
2685 // guaranteed to set the integer bit to one.
2686 if cmp(dividend, divisor) == Ordering::Less {
2687 shift_left(dividend, exp, 1);
2688 assert_ne!(cmp(dividend, divisor), Ordering::Less)
2689 }
2690
2691 // Helper for figuring out the lost fraction.
2692 let lost_fraction = |dividend: &[Limb], divisor: &[Limb]| match cmp(dividend, divisor) {
2693 Ordering::Greater => Loss::MoreThanHalf,
2694 Ordering::Equal => Loss::ExactlyHalf,
2695 Ordering::Less => {
2696 if is_all_zeros(dividend) {
2697 Loss::ExactlyZero
2698 } else {
2699 Loss::LessThanHalf
2700 }
2701 }
2702 };
2703
2704 // Try to perform a (much faster) short division for small divisors.
2705 let divisor_bits = precision - (olsb_divisor - 1);
2706 macro_rules! try_short_div {
2707 ($W:ty, $H:ty, $half:expr) => {
2708 if divisor_bits * 2 <= $half {
2709 // Extract the small divisor.
2710 let _: Loss = shift_right(divisor, &mut 0, olsb_divisor - 1);
2711 let divisor = divisor[0] as $H as $W;
2712
2713 // Shift the dividend to produce a quotient with the unit bit set.
2714 let top_limb = *dividend.last().unwrap();
2715 let mut rem = (top_limb >> (LIMB_BITS - (divisor_bits - 1))) as $H;
2716 shift_left(dividend, &mut 0, divisor_bits - 1);
2717
2718 // Apply short division in place on $H (of $half bits) chunks.
2719 each_chunk(dividend, $half, |chunk| {
2720 let chunk = chunk as $H;
2721 let combined = ((rem as $W) << $half) | (chunk as $W);
2722 rem = (combined % divisor) as $H;
2723 (combined / divisor) as $H as Limb
2724 });
2725 quotient.copy_from_slice(dividend);
2726
2727 return lost_fraction(&[(rem as Limb) << 1], &[divisor as Limb]);
2728 }
2729 };
2730 }
2731
2732 try_short_div!(u32, u16, 16);
2733 try_short_div!(u64, u32, 32);
2734 try_short_div!(u128, u64, 64);
2735
2736 // Zero the quotient before setting bits in it.
2737 for x in &mut quotient[..limbs_for_bits(precision)] {
2738 *x = 0;
2739 }
2740
2741 // Long division.
2742 for bit in (0..precision).rev() {
2743 if cmp(dividend, divisor) != Ordering::Less {
2744 sub(dividend, divisor, 0);
2745 set_bit(quotient, bit);
2746 }
2747 shift_left(dividend, &mut 0, 1);
2748 }
2749
2750 lost_fraction(dividend, divisor)
2751 }
2752 }