]> git.proxmox.com Git - rustc.git/blob - src/librustc_borrowck/diagnostics.rs
New upstream version 1.12.0+dfsg1
[rustc.git] / src / librustc_borrowck / diagnostics.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![allow(non_snake_case)]
12
13 register_long_diagnostics! {
14
15 E0373: r##"
16 This error occurs when an attempt is made to use data captured by a closure,
17 when that data may no longer exist. It's most commonly seen when attempting to
18 return a closure:
19
20 ```compile_fail,E0373
21 fn foo() -> Box<Fn(u32) -> u32> {
22 let x = 0u32;
23 Box::new(|y| x + y)
24 }
25 ```
26
27 Notice that `x` is stack-allocated by `foo()`. By default, Rust captures
28 closed-over data by reference. This means that once `foo()` returns, `x` no
29 longer exists. An attempt to access `x` within the closure would thus be
30 unsafe.
31
32 Another situation where this might be encountered is when spawning threads:
33
34 ```compile_fail,E0373
35 fn foo() {
36 let x = 0u32;
37 let y = 1u32;
38
39 let thr = std::thread::spawn(|| {
40 x + y
41 });
42 }
43 ```
44
45 Since our new thread runs in parallel, the stack frame containing `x` and `y`
46 may well have disappeared by the time we try to use them. Even if we call
47 `thr.join()` within foo (which blocks until `thr` has completed, ensuring the
48 stack frame won't disappear), we will not succeed: the compiler cannot prove
49 that this behaviour is safe, and so won't let us do it.
50
51 The solution to this problem is usually to switch to using a `move` closure.
52 This approach moves (or copies, where possible) data into the closure, rather
53 than taking references to it. For example:
54
55 ```
56 fn foo() -> Box<Fn(u32) -> u32> {
57 let x = 0u32;
58 Box::new(move |y| x + y)
59 }
60 ```
61
62 Now that the closure has its own copy of the data, there's no need to worry
63 about safety.
64 "##,
65
66 E0381: r##"
67 It is not allowed to use or capture an uninitialized variable. For example:
68
69 ```compile_fail,E0381
70 fn main() {
71 let x: i32;
72 let y = x; // error, use of possibly uninitialized variable
73 }
74 ```
75
76 To fix this, ensure that any declared variables are initialized before being
77 used. Example:
78
79 ```
80 fn main() {
81 let x: i32 = 0;
82 let y = x; // ok!
83 }
84 ```
85 "##,
86
87 E0382: r##"
88 This error occurs when an attempt is made to use a variable after its contents
89 have been moved elsewhere. For example:
90
91 ```compile_fail,E0382
92 struct MyStruct { s: u32 }
93
94 fn main() {
95 let mut x = MyStruct{ s: 5u32 };
96 let y = x;
97 x.s = 6;
98 println!("{}", x.s);
99 }
100 ```
101
102 Since `MyStruct` is a type that is not marked `Copy`, the data gets moved out
103 of `x` when we set `y`. This is fundamental to Rust's ownership system: outside
104 of workarounds like `Rc`, a value cannot be owned by more than one variable.
105
106 If we own the type, the easiest way to address this problem is to implement
107 `Copy` and `Clone` on it, as shown below. This allows `y` to copy the
108 information in `x`, while leaving the original version owned by `x`. Subsequent
109 changes to `x` will not be reflected when accessing `y`.
110
111 ```
112 #[derive(Copy, Clone)]
113 struct MyStruct { s: u32 }
114
115 fn main() {
116 let mut x = MyStruct{ s: 5u32 };
117 let y = x;
118 x.s = 6;
119 println!("{}", x.s);
120 }
121 ```
122
123 Alternatively, if we don't control the struct's definition, or mutable shared
124 ownership is truly required, we can use `Rc` and `RefCell`:
125
126 ```
127 use std::cell::RefCell;
128 use std::rc::Rc;
129
130 struct MyStruct { s: u32 }
131
132 fn main() {
133 let mut x = Rc::new(RefCell::new(MyStruct{ s: 5u32 }));
134 let y = x.clone();
135 x.borrow_mut().s = 6;
136 println!("{}", x.borrow().s);
137 }
138 ```
139
140 With this approach, x and y share ownership of the data via the `Rc` (reference
141 count type). `RefCell` essentially performs runtime borrow checking: ensuring
142 that at most one writer or multiple readers can access the data at any one time.
143
144 If you wish to learn more about ownership in Rust, start with the chapter in the
145 Book:
146
147 https://doc.rust-lang.org/book/ownership.html
148 "##,
149
150 E0383: r##"
151 This error occurs when an attempt is made to partially reinitialize a
152 structure that is currently uninitialized.
153
154 For example, this can happen when a drop has taken place:
155
156 ```ignore
157 struct Foo {
158 a: u32,
159 }
160
161 let mut x = Foo { a: 1 };
162 drop(x); // `x` is now uninitialized
163 x.a = 2; // error, partial reinitialization of uninitialized structure `t`
164 ```
165
166 This error can be fixed by fully reinitializing the structure in question:
167
168 ```
169 struct Foo {
170 a: u32,
171 }
172
173 let mut x = Foo { a: 1 };
174 drop(x);
175 x = Foo { a: 2 };
176 ```
177 "##,
178
179 E0384: r##"
180 This error occurs when an attempt is made to reassign an immutable variable.
181 For example:
182
183 ```compile_fail,E0384
184 fn main() {
185 let x = 3;
186 x = 5; // error, reassignment of immutable variable
187 }
188 ```
189
190 By default, variables in Rust are immutable. To fix this error, add the keyword
191 `mut` after the keyword `let` when declaring the variable. For example:
192
193 ```
194 fn main() {
195 let mut x = 3;
196 x = 5;
197 }
198 ```
199 "##,
200
201 E0386: r##"
202 This error occurs when an attempt is made to mutate the target of a mutable
203 reference stored inside an immutable container.
204
205 For example, this can happen when storing a `&mut` inside an immutable `Box`:
206
207 ```compile_fail,E0386
208 let mut x: i64 = 1;
209 let y: Box<_> = Box::new(&mut x);
210 **y = 2; // error, cannot assign to data in an immutable container
211 ```
212
213 This error can be fixed by making the container mutable:
214
215 ```
216 let mut x: i64 = 1;
217 let mut y: Box<_> = Box::new(&mut x);
218 **y = 2;
219 ```
220
221 It can also be fixed by using a type with interior mutability, such as `Cell`
222 or `RefCell`:
223
224 ```
225 use std::cell::Cell;
226
227 let x: i64 = 1;
228 let y: Box<Cell<_>> = Box::new(Cell::new(x));
229 y.set(2);
230 ```
231 "##,
232
233 E0387: r##"
234 This error occurs when an attempt is made to mutate or mutably reference data
235 that a closure has captured immutably. Examples of this error are shown below:
236
237 ```compile_fail,E0387
238 // Accepts a function or a closure that captures its environment immutably.
239 // Closures passed to foo will not be able to mutate their closed-over state.
240 fn foo<F: Fn()>(f: F) { }
241
242 // Attempts to mutate closed-over data. Error message reads:
243 // `cannot assign to data in a captured outer variable...`
244 fn mutable() {
245 let mut x = 0u32;
246 foo(|| x = 2);
247 }
248
249 // Attempts to take a mutable reference to closed-over data. Error message
250 // reads: `cannot borrow data mutably in a captured outer variable...`
251 fn mut_addr() {
252 let mut x = 0u32;
253 foo(|| { let y = &mut x; });
254 }
255 ```
256
257 The problem here is that foo is defined as accepting a parameter of type `Fn`.
258 Closures passed into foo will thus be inferred to be of type `Fn`, meaning that
259 they capture their context immutably.
260
261 If the definition of `foo` is under your control, the simplest solution is to
262 capture the data mutably. This can be done by defining `foo` to take FnMut
263 rather than Fn:
264
265 ```
266 fn foo<F: FnMut()>(f: F) { }
267 ```
268
269 Alternatively, we can consider using the `Cell` and `RefCell` types to achieve
270 interior mutability through a shared reference. Our example's `mutable`
271 function could be redefined as below:
272
273 ```
274 use std::cell::Cell;
275
276 fn foo<F: Fn()>(f: F) { }
277
278 fn mutable() {
279 let x = Cell::new(0u32);
280 foo(|| x.set(2));
281 }
282 ```
283
284 You can read more about cell types in the API documentation:
285
286 https://doc.rust-lang.org/std/cell/
287 "##,
288
289 E0388: r##"
290 A mutable borrow was attempted in a static location.
291
292 Erroneous code example:
293
294 ```compile_fail,E0388
295 static X: i32 = 1;
296
297 static STATIC_REF: &'static mut i32 = &mut X;
298 // error: cannot borrow data mutably in a static location
299
300 const CONST_REF: &'static mut i32 = &mut X;
301 // error: cannot borrow data mutably in a static location
302 ```
303
304 To fix this error, you have to use constant borrow:
305
306 ```
307 static X: i32 = 1;
308
309 static STATIC_REF: &'static i32 = &X;
310 ```
311 "##,
312
313 E0389: r##"
314 An attempt was made to mutate data using a non-mutable reference. This
315 commonly occurs when attempting to assign to a non-mutable reference of a
316 mutable reference (`&(&mut T)`).
317
318 Example of erroneous code:
319
320 ```compile_fail,E0389
321 struct FancyNum {
322 num: u8,
323 }
324
325 fn main() {
326 let mut fancy = FancyNum{ num: 5 };
327 let fancy_ref = &(&mut fancy);
328 fancy_ref.num = 6; // error: cannot assign to data in a `&` reference
329 println!("{}", fancy_ref.num);
330 }
331 ```
332
333 Here, `&mut fancy` is mutable, but `&(&mut fancy)` is not. Creating an
334 immutable reference to a value borrows it immutably. There can be multiple
335 references of type `&(&mut T)` that point to the same value, so they must be
336 immutable to prevent multiple mutable references to the same value.
337
338 To fix this, either remove the outer reference:
339
340 ```
341 struct FancyNum {
342 num: u8,
343 }
344
345 fn main() {
346 let mut fancy = FancyNum{ num: 5 };
347
348 let fancy_ref = &mut fancy;
349 // `fancy_ref` is now &mut FancyNum, rather than &(&mut FancyNum)
350
351 fancy_ref.num = 6; // No error!
352
353 println!("{}", fancy_ref.num);
354 }
355 ```
356
357 Or make the outer reference mutable:
358
359 ```
360 struct FancyNum {
361 num: u8
362 }
363
364 fn main() {
365 let mut fancy = FancyNum{ num: 5 };
366
367 let fancy_ref = &mut (&mut fancy);
368 // `fancy_ref` is now &mut(&mut FancyNum), rather than &(&mut FancyNum)
369
370 fancy_ref.num = 6; // No error!
371
372 println!("{}", fancy_ref.num);
373 }
374 ```
375 "##,
376
377 E0499: r##"
378 A variable was borrowed as mutable more than once. Erroneous code example:
379
380 ```compile_fail,E0499
381 let mut i = 0;
382 let mut x = &mut i;
383 let mut a = &mut i;
384 // error: cannot borrow `i` as mutable more than once at a time
385 ```
386
387 Please note that in rust, you can either have many immutable references, or one
388 mutable reference. Take a look at
389 https://doc.rust-lang.org/stable/book/references-and-borrowing.html for more
390 information. Example:
391
392
393 ```
394 let mut i = 0;
395 let mut x = &mut i; // ok!
396
397 // or:
398 let mut i = 0;
399 let a = &i; // ok!
400 let b = &i; // still ok!
401 let c = &i; // still ok!
402 ```
403 "##,
404
405 E0500: r##"
406 A borrowed variable was used in another closure. Example of erroneous code:
407
408 ```compile_fail
409 fn you_know_nothing(jon_snow: &mut i32) {
410 let nights_watch = || {
411 *jon_snow = 2;
412 };
413 let starks = || {
414 *jon_snow = 3; // error: closure requires unique access to `jon_snow`
415 // but it is already borrowed
416 };
417 }
418 ```
419
420 In here, `jon_snow` is already borrowed by the `nights_watch` closure, so it
421 cannot be borrowed by the `starks` closure at the same time. To fix this issue,
422 you can put the closure in its own scope:
423
424 ```
425 fn you_know_nothing(jon_snow: &mut i32) {
426 {
427 let nights_watch = || {
428 *jon_snow = 2;
429 };
430 } // At this point, `jon_snow` is free.
431 let starks = || {
432 *jon_snow = 3;
433 };
434 }
435 ```
436
437 Or, if the type implements the `Clone` trait, you can clone it between
438 closures:
439
440 ```
441 fn you_know_nothing(jon_snow: &mut i32) {
442 let mut jon_copy = jon_snow.clone();
443 let nights_watch = || {
444 jon_copy = 2;
445 };
446 let starks = || {
447 *jon_snow = 3;
448 };
449 }
450 ```
451 "##,
452
453 E0501: r##"
454 This error indicates that a mutable variable is being used while it is still
455 captured by a closure. Because the closure has borrowed the variable, it is not
456 available for use until the closure goes out of scope.
457
458 Note that a capture will either move or borrow a variable, but in this
459 situation, the closure is borrowing the variable. Take a look at
460 http://rustbyexample.com/fn/closures/capture.html for more information about
461 capturing.
462
463 Example of erroneous code:
464
465 ```compile_fail,E0501
466 fn inside_closure(x: &mut i32) {
467 // Actions which require unique access
468 }
469
470 fn outside_closure(x: &mut i32) {
471 // Actions which require unique access
472 }
473
474 fn foo(a: &mut i32) {
475 let bar = || {
476 inside_closure(a)
477 };
478 outside_closure(a); // error: cannot borrow `*a` as mutable because previous
479 // closure requires unique access.
480 }
481 ```
482
483 To fix this error, you can place the closure in its own scope:
484
485 ```
486 fn inside_closure(x: &mut i32) {}
487 fn outside_closure(x: &mut i32) {}
488
489 fn foo(a: &mut i32) {
490 {
491 let bar = || {
492 inside_closure(a)
493 };
494 } // borrow on `a` ends.
495 outside_closure(a); // ok!
496 }
497 ```
498
499 Or you can pass the variable as a parameter to the closure:
500
501 ```
502 fn inside_closure(x: &mut i32) {}
503 fn outside_closure(x: &mut i32) {}
504
505 fn foo(a: &mut i32) {
506 let bar = |s: &mut i32| {
507 inside_closure(s)
508 };
509 outside_closure(a);
510 bar(a);
511 }
512 ```
513
514 It may be possible to define the closure later:
515
516 ```
517 fn inside_closure(x: &mut i32) {}
518 fn outside_closure(x: &mut i32) {}
519
520 fn foo(a: &mut i32) {
521 outside_closure(a);
522 let bar = || {
523 inside_closure(a)
524 };
525 }
526 ```
527 "##,
528
529 E0502: r##"
530 This error indicates that you are trying to borrow a variable as mutable when it
531 has already been borrowed as immutable.
532
533 Example of erroneous code:
534
535 ```compile_fail,E0502
536 fn bar(x: &mut i32) {}
537 fn foo(a: &mut i32) {
538 let ref y = a; // a is borrowed as immutable.
539 bar(a); // error: cannot borrow `*a` as mutable because `a` is also borrowed
540 // as immutable
541 }
542 ```
543
544 To fix this error, ensure that you don't have any other references to the
545 variable before trying to access it mutably:
546
547 ```
548 fn bar(x: &mut i32) {}
549 fn foo(a: &mut i32) {
550 bar(a);
551 let ref y = a; // ok!
552 }
553 ```
554
555 For more information on the rust ownership system, take a look at
556 https://doc.rust-lang.org/stable/book/references-and-borrowing.html.
557 "##,
558
559 E0503: r##"
560 A value was used after it was mutably borrowed.
561
562 Example of erroneous code:
563
564 ```compile_fail,E0503
565 fn main() {
566 let mut value = 3;
567 // Create a mutable borrow of `value`. This borrow
568 // lives until the end of this function.
569 let _borrow = &mut value;
570 let _sum = value + 1; // error: cannot use `value` because
571 // it was mutably borrowed
572 }
573 ```
574
575 In this example, `value` is mutably borrowed by `borrow` and cannot be
576 used to calculate `sum`. This is not possible because this would violate
577 Rust's mutability rules.
578
579 You can fix this error by limiting the scope of the borrow:
580
581 ```
582 fn main() {
583 let mut value = 3;
584 // By creating a new block, you can limit the scope
585 // of the reference.
586 {
587 let _borrow = &mut value; // Use `_borrow` inside this block.
588 }
589 // The block has ended and with it the borrow.
590 // You can now use `value` again.
591 let _sum = value + 1;
592 }
593 ```
594
595 Or by cloning `value` before borrowing it:
596
597 ```
598 fn main() {
599 let mut value = 3;
600 // We clone `value`, creating a copy.
601 let value_cloned = value.clone();
602 // The mutable borrow is a reference to `value` and
603 // not to `value_cloned`...
604 let _borrow = &mut value;
605 // ... which means we can still use `value_cloned`,
606 let _sum = value_cloned + 1;
607 // even though the borrow only ends here.
608 }
609 ```
610
611 You can find more information about borrowing in the rust-book:
612 http://doc.rust-lang.org/stable/book/references-and-borrowing.html
613 "##,
614
615 E0504: r##"
616 This error occurs when an attempt is made to move a borrowed variable into a
617 closure.
618
619 Example of erroneous code:
620
621 ```compile_fail,E0504
622 struct FancyNum {
623 num: u8,
624 }
625
626 fn main() {
627 let fancy_num = FancyNum { num: 5 };
628 let fancy_ref = &fancy_num;
629
630 let x = move || {
631 println!("child function: {}", fancy_num.num);
632 // error: cannot move `fancy_num` into closure because it is borrowed
633 };
634
635 x();
636 println!("main function: {}", fancy_ref.num);
637 }
638 ```
639
640 Here, `fancy_num` is borrowed by `fancy_ref` and so cannot be moved into
641 the closure `x`. There is no way to move a value into a closure while it is
642 borrowed, as that would invalidate the borrow.
643
644 If the closure can't outlive the value being moved, try using a reference
645 rather than moving:
646
647 ```
648 struct FancyNum {
649 num: u8,
650 }
651
652 fn main() {
653 let fancy_num = FancyNum { num: 5 };
654 let fancy_ref = &fancy_num;
655
656 let x = move || {
657 // fancy_ref is usable here because it doesn't move `fancy_num`
658 println!("child function: {}", fancy_ref.num);
659 };
660
661 x();
662
663 println!("main function: {}", fancy_num.num);
664 }
665 ```
666
667 If the value has to be borrowed and then moved, try limiting the lifetime of
668 the borrow using a scoped block:
669
670 ```
671 struct FancyNum {
672 num: u8,
673 }
674
675 fn main() {
676 let fancy_num = FancyNum { num: 5 };
677
678 {
679 let fancy_ref = &fancy_num;
680 println!("main function: {}", fancy_ref.num);
681 // `fancy_ref` goes out of scope here
682 }
683
684 let x = move || {
685 // `fancy_num` can be moved now (no more references exist)
686 println!("child function: {}", fancy_num.num);
687 };
688
689 x();
690 }
691 ```
692
693 If the lifetime of a reference isn't enough, such as in the case of threading,
694 consider using an `Arc` to create a reference-counted value:
695
696 ```
697 use std::sync::Arc;
698 use std::thread;
699
700 struct FancyNum {
701 num: u8,
702 }
703
704 fn main() {
705 let fancy_ref1 = Arc::new(FancyNum { num: 5 });
706 let fancy_ref2 = fancy_ref1.clone();
707
708 let x = thread::spawn(move || {
709 // `fancy_ref1` can be moved and has a `'static` lifetime
710 println!("child thread: {}", fancy_ref1.num);
711 });
712
713 x.join().expect("child thread should finish");
714 println!("main thread: {}", fancy_ref2.num);
715 }
716 ```
717 "##,
718
719 E0505: r##"
720 A value was moved out while it was still borrowed.
721
722 Erroneous code example:
723
724 ```compile_fail,E0505
725 struct Value {}
726
727 fn eat(val: Value) {}
728
729 fn main() {
730 let x = Value{};
731 {
732 let _ref_to_val: &Value = &x;
733 eat(x);
734 }
735 }
736 ```
737
738 Here, the function `eat` takes the ownership of `x`. However,
739 `x` cannot be moved because it was borrowed to `_ref_to_val`.
740 To fix that you can do few different things:
741
742 * Try to avoid moving the variable.
743 * Release borrow before move.
744 * Implement the `Copy` trait on the type.
745
746 Examples:
747
748 ```
749 struct Value {}
750
751 fn eat(val: &Value) {}
752
753 fn main() {
754 let x = Value{};
755 {
756 let _ref_to_val: &Value = &x;
757 eat(&x); // pass by reference, if it's possible
758 }
759 }
760 ```
761
762 Or:
763
764 ```
765 struct Value {}
766
767 fn eat(val: Value) {}
768
769 fn main() {
770 let x = Value{};
771 {
772 let _ref_to_val: &Value = &x;
773 }
774 eat(x); // release borrow and then move it.
775 }
776 ```
777
778 Or:
779
780 ```
781 #[derive(Clone, Copy)] // implement Copy trait
782 struct Value {}
783
784 fn eat(val: Value) {}
785
786 fn main() {
787 let x = Value{};
788 {
789 let _ref_to_val: &Value = &x;
790 eat(x); // it will be copied here.
791 }
792 }
793 ```
794
795 You can find more information about borrowing in the rust-book:
796 http://doc.rust-lang.org/stable/book/references-and-borrowing.html
797 "##,
798
799 E0506: r##"
800 This error occurs when an attempt is made to assign to a borrowed value.
801
802 Example of erroneous code:
803
804 ```compile_fail,E0506
805 struct FancyNum {
806 num: u8,
807 }
808
809 fn main() {
810 let mut fancy_num = FancyNum { num: 5 };
811 let fancy_ref = &fancy_num;
812 fancy_num = FancyNum { num: 6 };
813 // error: cannot assign to `fancy_num` because it is borrowed
814
815 println!("Num: {}, Ref: {}", fancy_num.num, fancy_ref.num);
816 }
817 ```
818
819 Because `fancy_ref` still holds a reference to `fancy_num`, `fancy_num` can't
820 be assigned to a new value as it would invalidate the reference.
821
822 Alternatively, we can move out of `fancy_num` into a second `fancy_num`:
823
824 ```
825 struct FancyNum {
826 num: u8,
827 }
828
829 fn main() {
830 let mut fancy_num = FancyNum { num: 5 };
831 let moved_num = fancy_num;
832 fancy_num = FancyNum { num: 6 };
833
834 println!("Num: {}, Moved num: {}", fancy_num.num, moved_num.num);
835 }
836 ```
837
838 If the value has to be borrowed, try limiting the lifetime of the borrow using
839 a scoped block:
840
841 ```
842 struct FancyNum {
843 num: u8,
844 }
845
846 fn main() {
847 let mut fancy_num = FancyNum { num: 5 };
848
849 {
850 let fancy_ref = &fancy_num;
851 println!("Ref: {}", fancy_ref.num);
852 }
853
854 // Works because `fancy_ref` is no longer in scope
855 fancy_num = FancyNum { num: 6 };
856 println!("Num: {}", fancy_num.num);
857 }
858 ```
859
860 Or by moving the reference into a function:
861
862 ```
863 struct FancyNum {
864 num: u8,
865 }
866
867 fn main() {
868 let mut fancy_num = FancyNum { num: 5 };
869
870 print_fancy_ref(&fancy_num);
871
872 // Works because function borrow has ended
873 fancy_num = FancyNum { num: 6 };
874 println!("Num: {}", fancy_num.num);
875 }
876
877 fn print_fancy_ref(fancy_ref: &FancyNum){
878 println!("Ref: {}", fancy_ref.num);
879 }
880 ```
881 "##,
882
883 E0507: r##"
884 You tried to move out of a value which was borrowed. Erroneous code example:
885
886 ```compile_fail,E0507
887 use std::cell::RefCell;
888
889 struct TheDarkKnight;
890
891 impl TheDarkKnight {
892 fn nothing_is_true(self) {}
893 }
894
895 fn main() {
896 let x = RefCell::new(TheDarkKnight);
897
898 x.borrow().nothing_is_true(); // error: cannot move out of borrowed content
899 }
900 ```
901
902 Here, the `nothing_is_true` method takes the ownership of `self`. However,
903 `self` cannot be moved because `.borrow()` only provides an `&TheDarkKnight`,
904 which is a borrow of the content owned by the `RefCell`. To fix this error,
905 you have three choices:
906
907 * Try to avoid moving the variable.
908 * Somehow reclaim the ownership.
909 * Implement the `Copy` trait on the type.
910
911 Examples:
912
913 ```
914 use std::cell::RefCell;
915
916 struct TheDarkKnight;
917
918 impl TheDarkKnight {
919 fn nothing_is_true(&self) {} // First case, we don't take ownership
920 }
921
922 fn main() {
923 let x = RefCell::new(TheDarkKnight);
924
925 x.borrow().nothing_is_true(); // ok!
926 }
927 ```
928
929 Or:
930
931 ```
932 use std::cell::RefCell;
933
934 struct TheDarkKnight;
935
936 impl TheDarkKnight {
937 fn nothing_is_true(self) {}
938 }
939
940 fn main() {
941 let x = RefCell::new(TheDarkKnight);
942 let x = x.into_inner(); // we get back ownership
943
944 x.nothing_is_true(); // ok!
945 }
946 ```
947
948 Or:
949
950 ```
951 use std::cell::RefCell;
952
953 #[derive(Clone, Copy)] // we implement the Copy trait
954 struct TheDarkKnight;
955
956 impl TheDarkKnight {
957 fn nothing_is_true(self) {}
958 }
959
960 fn main() {
961 let x = RefCell::new(TheDarkKnight);
962
963 x.borrow().nothing_is_true(); // ok!
964 }
965 ```
966
967 Moving out of a member of a mutably borrowed struct is fine if you put something
968 back. `mem::replace` can be used for that:
969
970 ```ignore
971 struct TheDarkKnight;
972
973 impl TheDarkKnight {
974 fn nothing_is_true(self) {}
975 }
976
977 struct Batcave {
978 knight: TheDarkKnight
979 }
980
981 fn main() {
982 use std::mem;
983
984 let mut cave = Batcave {
985 knight: TheDarkKnight
986 };
987 let borrowed = &mut cave;
988
989 borrowed.knight.nothing_is_true(); // E0507
990 mem::replace(&mut borrowed.knight, TheDarkKnight).nothing_is_true(); // ok!
991 }
992 ```
993
994 You can find more information about borrowing in the rust-book:
995 http://doc.rust-lang.org/stable/book/references-and-borrowing.html
996 "##,
997
998 E0508: r##"
999 A value was moved out of a non-copy fixed-size array.
1000
1001 Example of erroneous code:
1002
1003 ```compile_fail,E0508
1004 struct NonCopy;
1005
1006 fn main() {
1007 let array = [NonCopy; 1];
1008 let _value = array[0]; // error: cannot move out of type `[NonCopy; 1]`,
1009 // a non-copy fixed-size array
1010 }
1011 ```
1012
1013 The first element was moved out of the array, but this is not
1014 possible because `NonCopy` does not implement the `Copy` trait.
1015
1016 Consider borrowing the element instead of moving it:
1017
1018 ```
1019 struct NonCopy;
1020
1021 fn main() {
1022 let array = [NonCopy; 1];
1023 let _value = &array[0]; // Borrowing is allowed, unlike moving.
1024 }
1025 ```
1026
1027 Alternatively, if your type implements `Clone` and you need to own the value,
1028 consider borrowing and then cloning:
1029
1030 ```
1031 #[derive(Clone)]
1032 struct NonCopy;
1033
1034 fn main() {
1035 let array = [NonCopy; 1];
1036 // Now you can clone the array element.
1037 let _value = array[0].clone();
1038 }
1039 ```
1040 "##,
1041
1042 E0509: r##"
1043 This error occurs when an attempt is made to move out of a value whose type
1044 implements the `Drop` trait.
1045
1046 Example of erroneous code:
1047
1048 ```compile_fail,E0509
1049 struct FancyNum {
1050 num: usize
1051 }
1052
1053 struct DropStruct {
1054 fancy: FancyNum
1055 }
1056
1057 impl Drop for DropStruct {
1058 fn drop(&mut self) {
1059 // Destruct DropStruct, possibly using FancyNum
1060 }
1061 }
1062
1063 fn main() {
1064 let drop_struct = DropStruct{fancy: FancyNum{num: 5}};
1065 let fancy_field = drop_struct.fancy; // Error E0509
1066 println!("Fancy: {}", fancy_field.num);
1067 // implicit call to `drop_struct.drop()` as drop_struct goes out of scope
1068 }
1069 ```
1070
1071 Here, we tried to move a field out of a struct of type `DropStruct` which
1072 implements the `Drop` trait. However, a struct cannot be dropped if one or
1073 more of its fields have been moved.
1074
1075 Structs implementing the `Drop` trait have an implicit destructor that gets
1076 called when they go out of scope. This destructor may use the fields of the
1077 struct, so moving out of the struct could make it impossible to run the
1078 destructor. Therefore, we must think of all values whose type implements the
1079 `Drop` trait as single units whose fields cannot be moved.
1080
1081 This error can be fixed by creating a reference to the fields of a struct,
1082 enum, or tuple using the `ref` keyword:
1083
1084 ```
1085 struct FancyNum {
1086 num: usize
1087 }
1088
1089 struct DropStruct {
1090 fancy: FancyNum
1091 }
1092
1093 impl Drop for DropStruct {
1094 fn drop(&mut self) {
1095 // Destruct DropStruct, possibly using FancyNum
1096 }
1097 }
1098
1099 fn main() {
1100 let drop_struct = DropStruct{fancy: FancyNum{num: 5}};
1101 let ref fancy_field = drop_struct.fancy; // No more errors!
1102 println!("Fancy: {}", fancy_field.num);
1103 // implicit call to `drop_struct.drop()` as drop_struct goes out of scope
1104 }
1105 ```
1106
1107 Note that this technique can also be used in the arms of a match expression:
1108
1109 ```
1110 struct FancyNum {
1111 num: usize
1112 }
1113
1114 enum DropEnum {
1115 Fancy(FancyNum)
1116 }
1117
1118 impl Drop for DropEnum {
1119 fn drop(&mut self) {
1120 // Destruct DropEnum, possibly using FancyNum
1121 }
1122 }
1123
1124 fn main() {
1125 // Creates and enum of type `DropEnum`, which implements `Drop`
1126 let drop_enum = DropEnum::Fancy(FancyNum{num: 10});
1127 match drop_enum {
1128 // Creates a reference to the inside of `DropEnum::Fancy`
1129 DropEnum::Fancy(ref fancy_field) => // No error!
1130 println!("It was fancy-- {}!", fancy_field.num),
1131 }
1132 // implicit call to `drop_enum.drop()` as drop_enum goes out of scope
1133 }
1134 ```
1135 "##,
1136
1137 }
1138
1139 register_diagnostics! {
1140 E0385, // {} in an aliasable location
1141 E0524, // two closures require unique access to `..` at the same time
1142 }