]> git.proxmox.com Git - rustc.git/blob - src/librustc_codegen_ssa/back/write.rs
New upstream version 1.41.1+dfsg1
[rustc.git] / src / librustc_codegen_ssa / back / write.rs
1 use crate::{ModuleCodegen, ModuleKind, CachedModuleCodegen, CompiledModule, CrateInfo,
2 CodegenResults, RLIB_BYTECODE_EXTENSION};
3 use super::linker::LinkerInfo;
4 use super::lto::{self, SerializedModule};
5 use super::link::{self, remove, get_linker};
6 use super::command::Command;
7 use super::symbol_export::ExportedSymbols;
8
9 use crate::traits::*;
10 use rustc_incremental::{copy_cgu_workproducts_to_incr_comp_cache_dir,
11 in_incr_comp_dir, in_incr_comp_dir_sess};
12 use rustc::dep_graph::{WorkProduct, WorkProductId, WorkProductFileKind};
13 use rustc_session::cgu_reuse_tracker::CguReuseTracker;
14 use rustc::middle::cstore::EncodedMetadata;
15 use rustc::session::config::{self, OutputFilenames, OutputType, Passes, Lto,
16 Sanitizer, SwitchWithOptPath};
17 use rustc::session::Session;
18 use rustc::util::nodemap::FxHashMap;
19 use rustc::hir::def_id::{CrateNum, LOCAL_CRATE};
20 use rustc::ty::TyCtxt;
21 use rustc::util::common::{time_depth, set_time_depth, print_time_passes_entry};
22 use rustc_data_structures::profiling::SelfProfilerRef;
23 use rustc_fs_util::link_or_copy;
24 use rustc_data_structures::svh::Svh;
25 use rustc_data_structures::sync::Lrc;
26 use rustc_errors::{Handler, Level, FatalError, DiagnosticId};
27 use syntax_pos::source_map::SourceMap;
28 use rustc_errors::emitter::{Emitter};
29 use rustc_target::spec::MergeFunctions;
30 use syntax::attr;
31 use syntax_pos::hygiene::ExpnId;
32 use syntax_pos::symbol::{Symbol, sym};
33 use jobserver::{Client, Acquired};
34
35 use std::any::Any;
36 use std::fs;
37 use std::io;
38 use std::mem;
39 use std::path::{Path, PathBuf};
40 use std::str;
41 use std::sync::Arc;
42 use std::sync::mpsc::{channel, Sender, Receiver};
43 use std::time::Instant;
44 use std::thread;
45
46 const PRE_LTO_BC_EXT: &str = "pre-lto.bc";
47
48 /// Module-specific configuration for `optimize_and_codegen`.
49 pub struct ModuleConfig {
50 /// Names of additional optimization passes to run.
51 pub passes: Vec<String>,
52 /// Some(level) to optimize at a certain level, or None to run
53 /// absolutely no optimizations (used for the metadata module).
54 pub opt_level: Option<config::OptLevel>,
55
56 /// Some(level) to optimize binary size, or None to not affect program size.
57 pub opt_size: Option<config::OptLevel>,
58
59 pub pgo_gen: SwitchWithOptPath,
60 pub pgo_use: Option<PathBuf>,
61
62 pub sanitizer: Option<Sanitizer>,
63 pub sanitizer_recover: Vec<Sanitizer>,
64 pub sanitizer_memory_track_origins: usize,
65
66 // Flags indicating which outputs to produce.
67 pub emit_pre_lto_bc: bool,
68 pub emit_no_opt_bc: bool,
69 pub emit_bc: bool,
70 pub emit_bc_compressed: bool,
71 pub emit_lto_bc: bool,
72 pub emit_ir: bool,
73 pub emit_asm: bool,
74 pub emit_obj: bool,
75 // Miscellaneous flags. These are mostly copied from command-line
76 // options.
77 pub verify_llvm_ir: bool,
78 pub no_prepopulate_passes: bool,
79 pub no_builtins: bool,
80 pub time_passes: bool,
81 pub vectorize_loop: bool,
82 pub vectorize_slp: bool,
83 pub merge_functions: bool,
84 pub inline_threshold: Option<usize>,
85 // Instead of creating an object file by doing LLVM codegen, just
86 // make the object file bitcode. Provides easy compatibility with
87 // emscripten's ecc compiler, when used as the linker.
88 pub obj_is_bitcode: bool,
89 pub no_integrated_as: bool,
90 pub embed_bitcode: bool,
91 pub embed_bitcode_marker: bool,
92 }
93
94 impl ModuleConfig {
95 fn new(passes: Vec<String>) -> ModuleConfig {
96 ModuleConfig {
97 passes,
98 opt_level: None,
99 opt_size: None,
100
101 pgo_gen: SwitchWithOptPath::Disabled,
102 pgo_use: None,
103
104 sanitizer: None,
105 sanitizer_recover: Default::default(),
106 sanitizer_memory_track_origins: 0,
107
108 emit_no_opt_bc: false,
109 emit_pre_lto_bc: false,
110 emit_bc: false,
111 emit_bc_compressed: false,
112 emit_lto_bc: false,
113 emit_ir: false,
114 emit_asm: false,
115 emit_obj: false,
116 obj_is_bitcode: false,
117 embed_bitcode: false,
118 embed_bitcode_marker: false,
119 no_integrated_as: false,
120
121 verify_llvm_ir: false,
122 no_prepopulate_passes: false,
123 no_builtins: false,
124 time_passes: false,
125 vectorize_loop: false,
126 vectorize_slp: false,
127 merge_functions: false,
128 inline_threshold: None
129 }
130 }
131
132 fn set_flags(&mut self, sess: &Session, no_builtins: bool) {
133 self.verify_llvm_ir = sess.verify_llvm_ir();
134 self.no_prepopulate_passes = sess.opts.cg.no_prepopulate_passes;
135 self.no_builtins = no_builtins || sess.target.target.options.no_builtins;
136 self.time_passes = sess.time_extended();
137 self.inline_threshold = sess.opts.cg.inline_threshold;
138 self.obj_is_bitcode = sess.target.target.options.obj_is_bitcode ||
139 sess.opts.cg.linker_plugin_lto.enabled();
140 let embed_bitcode = sess.target.target.options.embed_bitcode ||
141 sess.opts.debugging_opts.embed_bitcode;
142 if embed_bitcode {
143 match sess.opts.optimize {
144 config::OptLevel::No |
145 config::OptLevel::Less => {
146 self.embed_bitcode_marker = embed_bitcode;
147 }
148 _ => self.embed_bitcode = embed_bitcode,
149 }
150 }
151
152 // Copy what clang does by turning on loop vectorization at O2 and
153 // slp vectorization at O3. Otherwise configure other optimization aspects
154 // of this pass manager builder.
155 self.vectorize_loop = !sess.opts.cg.no_vectorize_loops &&
156 (sess.opts.optimize == config::OptLevel::Default ||
157 sess.opts.optimize == config::OptLevel::Aggressive);
158
159 self.vectorize_slp = !sess.opts.cg.no_vectorize_slp &&
160 sess.opts.optimize == config::OptLevel::Aggressive;
161
162 // Some targets (namely, NVPTX) interact badly with the MergeFunctions
163 // pass. This is because MergeFunctions can generate new function calls
164 // which may interfere with the target calling convention; e.g. for the
165 // NVPTX target, PTX kernels should not call other PTX kernels.
166 // MergeFunctions can also be configured to generate aliases instead,
167 // but aliases are not supported by some backends (again, NVPTX).
168 // Therefore, allow targets to opt out of the MergeFunctions pass,
169 // but otherwise keep the pass enabled (at O2 and O3) since it can be
170 // useful for reducing code size.
171 self.merge_functions = match sess.opts.debugging_opts.merge_functions
172 .unwrap_or(sess.target.target.options.merge_functions) {
173 MergeFunctions::Disabled => false,
174 MergeFunctions::Trampolines |
175 MergeFunctions::Aliases => {
176 sess.opts.optimize == config::OptLevel::Default ||
177 sess.opts.optimize == config::OptLevel::Aggressive
178 }
179 };
180 }
181
182 pub fn bitcode_needed(&self) -> bool {
183 self.emit_bc || self.obj_is_bitcode
184 || self.emit_bc_compressed || self.embed_bitcode
185 }
186 }
187
188 /// Assembler name and command used by codegen when no_integrated_as is enabled
189 pub struct AssemblerCommand {
190 name: PathBuf,
191 cmd: Command,
192 }
193
194 // HACK(eddyb) work around `#[derive]` producing wrong bounds for `Clone`.
195 pub struct TargetMachineFactory<B: WriteBackendMethods>(
196 pub Arc<dyn Fn() -> Result<B::TargetMachine, String> + Send + Sync>,
197 );
198
199 impl<B: WriteBackendMethods> Clone for TargetMachineFactory<B> {
200 fn clone(&self) -> Self {
201 TargetMachineFactory(self.0.clone())
202 }
203 }
204
205 /// Additional resources used by optimize_and_codegen (not module specific)
206 #[derive(Clone)]
207 pub struct CodegenContext<B: WriteBackendMethods> {
208 // Resources needed when running LTO
209 pub backend: B,
210 pub time_passes: bool,
211 pub prof: SelfProfilerRef,
212 pub lto: Lto,
213 pub no_landing_pads: bool,
214 pub save_temps: bool,
215 pub fewer_names: bool,
216 pub exported_symbols: Option<Arc<ExportedSymbols>>,
217 pub opts: Arc<config::Options>,
218 pub crate_types: Vec<config::CrateType>,
219 pub each_linked_rlib_for_lto: Vec<(CrateNum, PathBuf)>,
220 pub output_filenames: Arc<OutputFilenames>,
221 pub regular_module_config: Arc<ModuleConfig>,
222 pub metadata_module_config: Arc<ModuleConfig>,
223 pub allocator_module_config: Arc<ModuleConfig>,
224 pub tm_factory: TargetMachineFactory<B>,
225 pub msvc_imps_needed: bool,
226 pub target_pointer_width: String,
227 pub target_arch: String,
228 pub debuginfo: config::DebugInfo,
229
230 // Number of cgus excluding the allocator/metadata modules
231 pub total_cgus: usize,
232 // Handler to use for diagnostics produced during codegen.
233 pub diag_emitter: SharedEmitter,
234 // LLVM optimizations for which we want to print remarks.
235 pub remark: Passes,
236 // Worker thread number
237 pub worker: usize,
238 // The incremental compilation session directory, or None if we are not
239 // compiling incrementally
240 pub incr_comp_session_dir: Option<PathBuf>,
241 // Used to update CGU re-use information during the thinlto phase.
242 pub cgu_reuse_tracker: CguReuseTracker,
243 // Channel back to the main control thread to send messages to
244 pub coordinator_send: Sender<Box<dyn Any + Send>>,
245 // The assembler command if no_integrated_as option is enabled, None otherwise
246 pub assembler_cmd: Option<Arc<AssemblerCommand>>
247 }
248
249 impl<B: WriteBackendMethods> CodegenContext<B> {
250 pub fn create_diag_handler(&self) -> Handler {
251 Handler::with_emitter(true, None, Box::new(self.diag_emitter.clone()))
252 }
253
254 pub fn config(&self, kind: ModuleKind) -> &ModuleConfig {
255 match kind {
256 ModuleKind::Regular => &self.regular_module_config,
257 ModuleKind::Metadata => &self.metadata_module_config,
258 ModuleKind::Allocator => &self.allocator_module_config,
259 }
260 }
261 }
262
263 fn generate_lto_work<B: ExtraBackendMethods>(
264 cgcx: &CodegenContext<B>,
265 needs_fat_lto: Vec<FatLTOInput<B>>,
266 needs_thin_lto: Vec<(String, B::ThinBuffer)>,
267 import_only_modules: Vec<(SerializedModule<B::ModuleBuffer>, WorkProduct)>
268 ) -> Vec<(WorkItem<B>, u64)> {
269 let _prof_timer = cgcx.prof.generic_activity("codegen_generate_lto_work");
270
271 let (lto_modules, copy_jobs) = if !needs_fat_lto.is_empty() {
272 assert!(needs_thin_lto.is_empty());
273 let lto_module = B::run_fat_lto(
274 cgcx,
275 needs_fat_lto,
276 import_only_modules,
277 )
278 .unwrap_or_else(|e| e.raise());
279 (vec![lto_module], vec![])
280 } else {
281 assert!(needs_fat_lto.is_empty());
282 B::run_thin_lto(cgcx, needs_thin_lto, import_only_modules)
283 .unwrap_or_else(|e| e.raise())
284 };
285
286 let result = lto_modules.into_iter().map(|module| {
287 let cost = module.cost();
288 (WorkItem::LTO(module), cost)
289 }).chain(copy_jobs.into_iter().map(|wp| {
290 (WorkItem::CopyPostLtoArtifacts(CachedModuleCodegen {
291 name: wp.cgu_name.clone(),
292 source: wp,
293 }), 0)
294 })).collect();
295
296 result
297 }
298
299 pub struct CompiledModules {
300 pub modules: Vec<CompiledModule>,
301 pub metadata_module: Option<CompiledModule>,
302 pub allocator_module: Option<CompiledModule>,
303 }
304
305 fn need_crate_bitcode_for_rlib(sess: &Session) -> bool {
306 sess.crate_types.borrow().contains(&config::CrateType::Rlib) &&
307 sess.opts.output_types.contains_key(&OutputType::Exe)
308 }
309
310 fn need_pre_lto_bitcode_for_incr_comp(sess: &Session) -> bool {
311 if sess.opts.incremental.is_none() {
312 return false
313 }
314
315 match sess.lto() {
316 Lto::No => false,
317 Lto::Fat |
318 Lto::Thin |
319 Lto::ThinLocal => true,
320 }
321 }
322
323 pub fn start_async_codegen<B: ExtraBackendMethods>(
324 backend: B,
325 tcx: TyCtxt<'_>,
326 metadata: EncodedMetadata,
327 total_cgus: usize,
328 ) -> OngoingCodegen<B> {
329 let (coordinator_send, coordinator_receive) = channel();
330 let sess = tcx.sess;
331
332 let crate_name = tcx.crate_name(LOCAL_CRATE);
333 let crate_hash = tcx.crate_hash(LOCAL_CRATE);
334 let no_builtins = attr::contains_name(&tcx.hir().krate().attrs, sym::no_builtins);
335 let subsystem = attr::first_attr_value_str_by_name(&tcx.hir().krate().attrs,
336 sym::windows_subsystem);
337 let windows_subsystem = subsystem.map(|subsystem| {
338 if subsystem != sym::windows && subsystem != sym::console {
339 tcx.sess.fatal(&format!("invalid windows subsystem `{}`, only \
340 `windows` and `console` are allowed",
341 subsystem));
342 }
343 subsystem.to_string()
344 });
345
346 let linker_info = LinkerInfo::new(tcx);
347 let crate_info = CrateInfo::new(tcx);
348
349 // Figure out what we actually need to build.
350 let mut modules_config = ModuleConfig::new(sess.opts.cg.passes.clone());
351 let mut metadata_config = ModuleConfig::new(vec![]);
352 let mut allocator_config = ModuleConfig::new(vec![]);
353
354 if sess.opts.debugging_opts.profile {
355 modules_config.passes.push("insert-gcov-profiling".to_owned())
356 }
357
358 modules_config.pgo_gen = sess.opts.cg.profile_generate.clone();
359 modules_config.pgo_use = sess.opts.cg.profile_use.clone();
360 modules_config.sanitizer = sess.opts.debugging_opts.sanitizer.clone();
361 modules_config.sanitizer_recover = sess.opts.debugging_opts.sanitizer_recover.clone();
362 modules_config.sanitizer_memory_track_origins =
363 sess.opts.debugging_opts.sanitizer_memory_track_origins;
364 modules_config.opt_level = Some(sess.opts.optimize);
365 modules_config.opt_size = Some(sess.opts.optimize);
366
367 // Save all versions of the bytecode if we're saving our temporaries.
368 if sess.opts.cg.save_temps {
369 modules_config.emit_no_opt_bc = true;
370 modules_config.emit_pre_lto_bc = true;
371 modules_config.emit_bc = true;
372 modules_config.emit_lto_bc = true;
373 metadata_config.emit_bc = true;
374 allocator_config.emit_bc = true;
375 }
376
377 // Emit compressed bitcode files for the crate if we're emitting an rlib.
378 // Whenever an rlib is created, the bitcode is inserted into the archive in
379 // order to allow LTO against it.
380 if need_crate_bitcode_for_rlib(sess) {
381 modules_config.emit_bc_compressed = true;
382 allocator_config.emit_bc_compressed = true;
383 }
384
385 modules_config.emit_pre_lto_bc =
386 need_pre_lto_bitcode_for_incr_comp(sess);
387
388 modules_config.no_integrated_as = tcx.sess.opts.cg.no_integrated_as ||
389 tcx.sess.target.target.options.no_integrated_as;
390
391 for output_type in sess.opts.output_types.keys() {
392 match *output_type {
393 OutputType::Bitcode => { modules_config.emit_bc = true; }
394 OutputType::LlvmAssembly => { modules_config.emit_ir = true; }
395 OutputType::Assembly => {
396 modules_config.emit_asm = true;
397 // If we're not using the LLVM assembler, this function
398 // could be invoked specially with output_type_assembly, so
399 // in this case we still want the metadata object file.
400 if !sess.opts.output_types.contains_key(&OutputType::Assembly) {
401 metadata_config.emit_obj = true;
402 allocator_config.emit_obj = true;
403 }
404 }
405 OutputType::Object => { modules_config.emit_obj = true; }
406 OutputType::Metadata => { metadata_config.emit_obj = true; }
407 OutputType::Exe => {
408 modules_config.emit_obj = true;
409 metadata_config.emit_obj = true;
410 allocator_config.emit_obj = true;
411 },
412 OutputType::Mir => {}
413 OutputType::DepInfo => {}
414 }
415 }
416
417 modules_config.set_flags(sess, no_builtins);
418 metadata_config.set_flags(sess, no_builtins);
419 allocator_config.set_flags(sess, no_builtins);
420
421 // Exclude metadata and allocator modules from time_passes output, since
422 // they throw off the "LLVM passes" measurement.
423 metadata_config.time_passes = false;
424 allocator_config.time_passes = false;
425
426 let (shared_emitter, shared_emitter_main) = SharedEmitter::new();
427 let (codegen_worker_send, codegen_worker_receive) = channel();
428
429 let coordinator_thread = start_executing_work(backend.clone(),
430 tcx,
431 &crate_info,
432 shared_emitter,
433 codegen_worker_send,
434 coordinator_receive,
435 total_cgus,
436 sess.jobserver.clone(),
437 Arc::new(modules_config),
438 Arc::new(metadata_config),
439 Arc::new(allocator_config),
440 coordinator_send.clone());
441
442 OngoingCodegen {
443 backend,
444 crate_name,
445 crate_hash,
446 metadata,
447 windows_subsystem,
448 linker_info,
449 crate_info,
450
451 coordinator_send,
452 codegen_worker_receive,
453 shared_emitter_main,
454 future: coordinator_thread,
455 output_filenames: tcx.output_filenames(LOCAL_CRATE),
456 }
457 }
458
459 fn copy_all_cgu_workproducts_to_incr_comp_cache_dir(
460 sess: &Session,
461 compiled_modules: &CompiledModules,
462 ) -> FxHashMap<WorkProductId, WorkProduct> {
463 let mut work_products = FxHashMap::default();
464
465 if sess.opts.incremental.is_none() {
466 return work_products;
467 }
468
469 for module in compiled_modules.modules.iter().filter(|m| m.kind == ModuleKind::Regular) {
470 let mut files = vec![];
471
472 if let Some(ref path) = module.object {
473 files.push((WorkProductFileKind::Object, path.clone()));
474 }
475 if let Some(ref path) = module.bytecode {
476 files.push((WorkProductFileKind::Bytecode, path.clone()));
477 }
478 if let Some(ref path) = module.bytecode_compressed {
479 files.push((WorkProductFileKind::BytecodeCompressed, path.clone()));
480 }
481
482 if let Some((id, product)) =
483 copy_cgu_workproducts_to_incr_comp_cache_dir(sess, &module.name, &files) {
484 work_products.insert(id, product);
485 }
486 }
487
488 work_products
489 }
490
491 fn produce_final_output_artifacts(sess: &Session,
492 compiled_modules: &CompiledModules,
493 crate_output: &OutputFilenames) {
494 let mut user_wants_bitcode = false;
495 let mut user_wants_objects = false;
496
497 // Produce final compile outputs.
498 let copy_gracefully = |from: &Path, to: &Path| {
499 if let Err(e) = fs::copy(from, to) {
500 sess.err(&format!("could not copy {:?} to {:?}: {}", from, to, e));
501 }
502 };
503
504 let copy_if_one_unit = |output_type: OutputType,
505 keep_numbered: bool| {
506 if compiled_modules.modules.len() == 1 {
507 // 1) Only one codegen unit. In this case it's no difficulty
508 // to copy `foo.0.x` to `foo.x`.
509 let module_name = Some(&compiled_modules.modules[0].name[..]);
510 let path = crate_output.temp_path(output_type, module_name);
511 copy_gracefully(&path,
512 &crate_output.path(output_type));
513 if !sess.opts.cg.save_temps && !keep_numbered {
514 // The user just wants `foo.x`, not `foo.#module-name#.x`.
515 remove(sess, &path);
516 }
517 } else {
518 let ext = crate_output.temp_path(output_type, None)
519 .extension()
520 .unwrap()
521 .to_str()
522 .unwrap()
523 .to_owned();
524
525 if crate_output.outputs.contains_key(&output_type) {
526 // 2) Multiple codegen units, with `--emit foo=some_name`. We have
527 // no good solution for this case, so warn the user.
528 sess.warn(&format!("ignoring emit path because multiple .{} files \
529 were produced", ext));
530 } else if crate_output.single_output_file.is_some() {
531 // 3) Multiple codegen units, with `-o some_name`. We have
532 // no good solution for this case, so warn the user.
533 sess.warn(&format!("ignoring -o because multiple .{} files \
534 were produced", ext));
535 } else {
536 // 4) Multiple codegen units, but no explicit name. We
537 // just leave the `foo.0.x` files in place.
538 // (We don't have to do any work in this case.)
539 }
540 }
541 };
542
543 // Flag to indicate whether the user explicitly requested bitcode.
544 // Otherwise, we produced it only as a temporary output, and will need
545 // to get rid of it.
546 for output_type in crate_output.outputs.keys() {
547 match *output_type {
548 OutputType::Bitcode => {
549 user_wants_bitcode = true;
550 // Copy to .bc, but always keep the .0.bc. There is a later
551 // check to figure out if we should delete .0.bc files, or keep
552 // them for making an rlib.
553 copy_if_one_unit(OutputType::Bitcode, true);
554 }
555 OutputType::LlvmAssembly => {
556 copy_if_one_unit(OutputType::LlvmAssembly, false);
557 }
558 OutputType::Assembly => {
559 copy_if_one_unit(OutputType::Assembly, false);
560 }
561 OutputType::Object => {
562 user_wants_objects = true;
563 copy_if_one_unit(OutputType::Object, true);
564 }
565 OutputType::Mir |
566 OutputType::Metadata |
567 OutputType::Exe |
568 OutputType::DepInfo => {}
569 }
570 }
571
572 // Clean up unwanted temporary files.
573
574 // We create the following files by default:
575 // - #crate#.#module-name#.bc
576 // - #crate#.#module-name#.o
577 // - #crate#.crate.metadata.bc
578 // - #crate#.crate.metadata.o
579 // - #crate#.o (linked from crate.##.o)
580 // - #crate#.bc (copied from crate.##.bc)
581 // We may create additional files if requested by the user (through
582 // `-C save-temps` or `--emit=` flags).
583
584 if !sess.opts.cg.save_temps {
585 // Remove the temporary .#module-name#.o objects. If the user didn't
586 // explicitly request bitcode (with --emit=bc), and the bitcode is not
587 // needed for building an rlib, then we must remove .#module-name#.bc as
588 // well.
589
590 // Specific rules for keeping .#module-name#.bc:
591 // - If the user requested bitcode (`user_wants_bitcode`), and
592 // codegen_units > 1, then keep it.
593 // - If the user requested bitcode but codegen_units == 1, then we
594 // can toss .#module-name#.bc because we copied it to .bc earlier.
595 // - If we're not building an rlib and the user didn't request
596 // bitcode, then delete .#module-name#.bc.
597 // If you change how this works, also update back::link::link_rlib,
598 // where .#module-name#.bc files are (maybe) deleted after making an
599 // rlib.
600 let needs_crate_object = crate_output.outputs.contains_key(&OutputType::Exe);
601
602 let keep_numbered_bitcode = user_wants_bitcode && sess.codegen_units() > 1;
603
604 let keep_numbered_objects = needs_crate_object ||
605 (user_wants_objects && sess.codegen_units() > 1);
606
607 for module in compiled_modules.modules.iter() {
608 if let Some(ref path) = module.object {
609 if !keep_numbered_objects {
610 remove(sess, path);
611 }
612 }
613
614 if let Some(ref path) = module.bytecode {
615 if !keep_numbered_bitcode {
616 remove(sess, path);
617 }
618 }
619 }
620
621 if !user_wants_bitcode {
622 if let Some(ref metadata_module) = compiled_modules.metadata_module {
623 if let Some(ref path) = metadata_module.bytecode {
624 remove(sess, &path);
625 }
626 }
627
628 if let Some(ref allocator_module) = compiled_modules.allocator_module {
629 if let Some(ref path) = allocator_module.bytecode {
630 remove(sess, path);
631 }
632 }
633 }
634 }
635
636 // We leave the following files around by default:
637 // - #crate#.o
638 // - #crate#.crate.metadata.o
639 // - #crate#.bc
640 // These are used in linking steps and will be cleaned up afterward.
641 }
642
643 pub fn dump_incremental_data(_codegen_results: &CodegenResults) {
644 // FIXME(mw): This does not work at the moment because the situation has
645 // become more complicated due to incremental LTO. Now a CGU
646 // can have more than two caching states.
647 // println!("[incremental] Re-using {} out of {} modules",
648 // codegen_results.modules.iter().filter(|m| m.pre_existing).count(),
649 // codegen_results.modules.len());
650 }
651
652 pub enum WorkItem<B: WriteBackendMethods> {
653 /// Optimize a newly codegened, totally unoptimized module.
654 Optimize(ModuleCodegen<B::Module>),
655 /// Copy the post-LTO artifacts from the incremental cache to the output
656 /// directory.
657 CopyPostLtoArtifacts(CachedModuleCodegen),
658 /// Performs (Thin)LTO on the given module.
659 LTO(lto::LtoModuleCodegen<B>),
660 }
661
662 impl<B: WriteBackendMethods> WorkItem<B> {
663 pub fn module_kind(&self) -> ModuleKind {
664 match *self {
665 WorkItem::Optimize(ref m) => m.kind,
666 WorkItem::CopyPostLtoArtifacts(_) |
667 WorkItem::LTO(_) => ModuleKind::Regular,
668 }
669 }
670
671 fn profiling_event_id(&self) -> &'static str {
672 match *self {
673 WorkItem::Optimize(_) => "codegen_module_optimize",
674 WorkItem::CopyPostLtoArtifacts(_) => "codegen_copy_artifacts_from_incr_cache",
675 WorkItem::LTO(_) => "codegen_module_perform_lto",
676 }
677 }
678 }
679
680 enum WorkItemResult<B: WriteBackendMethods> {
681 Compiled(CompiledModule),
682 NeedsFatLTO(FatLTOInput<B>),
683 NeedsThinLTO(String, B::ThinBuffer),
684 }
685
686 pub enum FatLTOInput<B: WriteBackendMethods> {
687 Serialized {
688 name: String,
689 buffer: B::ModuleBuffer,
690 },
691 InMemory(ModuleCodegen<B::Module>),
692 }
693
694 fn execute_work_item<B: ExtraBackendMethods>(
695 cgcx: &CodegenContext<B>,
696 work_item: WorkItem<B>,
697 ) -> Result<WorkItemResult<B>, FatalError> {
698 let module_config = cgcx.config(work_item.module_kind());
699
700 match work_item {
701 WorkItem::Optimize(module) => {
702 execute_optimize_work_item(cgcx, module, module_config)
703 }
704 WorkItem::CopyPostLtoArtifacts(module) => {
705 execute_copy_from_cache_work_item(cgcx, module, module_config)
706 }
707 WorkItem::LTO(module) => {
708 execute_lto_work_item(cgcx, module, module_config)
709 }
710 }
711 }
712
713 // Actual LTO type we end up chosing based on multiple factors.
714 enum ComputedLtoType {
715 No,
716 Thin,
717 Fat,
718 }
719
720 fn execute_optimize_work_item<B: ExtraBackendMethods>(
721 cgcx: &CodegenContext<B>,
722 module: ModuleCodegen<B::Module>,
723 module_config: &ModuleConfig,
724 ) -> Result<WorkItemResult<B>, FatalError> {
725 let diag_handler = cgcx.create_diag_handler();
726
727 unsafe {
728 B::optimize(cgcx, &diag_handler, &module, module_config)?;
729 }
730
731 // After we've done the initial round of optimizations we need to
732 // decide whether to synchronously codegen this module or ship it
733 // back to the coordinator thread for further LTO processing (which
734 // has to wait for all the initial modules to be optimized).
735
736 // If the linker does LTO, we don't have to do it. Note that we
737 // keep doing full LTO, if it is requested, as not to break the
738 // assumption that the output will be a single module.
739 let linker_does_lto = cgcx.opts.cg.linker_plugin_lto.enabled();
740
741 // When we're automatically doing ThinLTO for multi-codegen-unit
742 // builds we don't actually want to LTO the allocator modules if
743 // it shows up. This is due to various linker shenanigans that
744 // we'll encounter later.
745 let is_allocator = module.kind == ModuleKind::Allocator;
746
747 // We ignore a request for full crate grath LTO if the cate type
748 // is only an rlib, as there is no full crate graph to process,
749 // that'll happen later.
750 //
751 // This use case currently comes up primarily for targets that
752 // require LTO so the request for LTO is always unconditionally
753 // passed down to the backend, but we don't actually want to do
754 // anything about it yet until we've got a final product.
755 let is_rlib = cgcx.crate_types.len() == 1
756 && cgcx.crate_types[0] == config::CrateType::Rlib;
757
758 // Metadata modules never participate in LTO regardless of the lto
759 // settings.
760 let lto_type = if module.kind == ModuleKind::Metadata {
761 ComputedLtoType::No
762 } else {
763 match cgcx.lto {
764 Lto::ThinLocal if !linker_does_lto && !is_allocator
765 => ComputedLtoType::Thin,
766 Lto::Thin if !linker_does_lto && !is_rlib
767 => ComputedLtoType::Thin,
768 Lto::Fat if !is_rlib => ComputedLtoType::Fat,
769 _ => ComputedLtoType::No,
770 }
771 };
772
773 // If we're doing some form of incremental LTO then we need to be sure to
774 // save our module to disk first.
775 let bitcode = if cgcx.config(module.kind).emit_pre_lto_bc {
776 let filename = pre_lto_bitcode_filename(&module.name);
777 cgcx.incr_comp_session_dir.as_ref().map(|path| path.join(&filename))
778 } else {
779 None
780 };
781
782 Ok(match lto_type {
783 ComputedLtoType::No => {
784 let module = unsafe {
785 B::codegen(cgcx, &diag_handler, module, module_config)?
786 };
787 WorkItemResult::Compiled(module)
788 }
789 ComputedLtoType::Thin => {
790 let (name, thin_buffer) = B::prepare_thin(module);
791 if let Some(path) = bitcode {
792 fs::write(&path, thin_buffer.data()).unwrap_or_else(|e| {
793 panic!("Error writing pre-lto-bitcode file `{}`: {}",
794 path.display(),
795 e);
796 });
797 }
798 WorkItemResult::NeedsThinLTO(name, thin_buffer)
799 }
800 ComputedLtoType::Fat => {
801 match bitcode {
802 Some(path) => {
803 let (name, buffer) = B::serialize_module(module);
804 fs::write(&path, buffer.data()).unwrap_or_else(|e| {
805 panic!("Error writing pre-lto-bitcode file `{}`: {}",
806 path.display(),
807 e);
808 });
809 WorkItemResult::NeedsFatLTO(FatLTOInput::Serialized { name, buffer })
810 }
811 None => WorkItemResult::NeedsFatLTO(FatLTOInput::InMemory(module)),
812 }
813 }
814 })
815 }
816
817 fn execute_copy_from_cache_work_item<B: ExtraBackendMethods>(
818 cgcx: &CodegenContext<B>,
819 module: CachedModuleCodegen,
820 module_config: &ModuleConfig,
821 ) -> Result<WorkItemResult<B>, FatalError> {
822 let incr_comp_session_dir = cgcx.incr_comp_session_dir
823 .as_ref()
824 .unwrap();
825 let mut object = None;
826 let mut bytecode = None;
827 let mut bytecode_compressed = None;
828 for (kind, saved_file) in &module.source.saved_files {
829 let obj_out = match kind {
830 WorkProductFileKind::Object => {
831 let path = cgcx.output_filenames.temp_path(OutputType::Object,
832 Some(&module.name));
833 object = Some(path.clone());
834 path
835 }
836 WorkProductFileKind::Bytecode => {
837 let path = cgcx.output_filenames.temp_path(OutputType::Bitcode,
838 Some(&module.name));
839 bytecode = Some(path.clone());
840 path
841 }
842 WorkProductFileKind::BytecodeCompressed => {
843 let path = cgcx.output_filenames.temp_path(OutputType::Bitcode,
844 Some(&module.name))
845 .with_extension(RLIB_BYTECODE_EXTENSION);
846 bytecode_compressed = Some(path.clone());
847 path
848 }
849 };
850 let source_file = in_incr_comp_dir(&incr_comp_session_dir,
851 &saved_file);
852 debug!("copying pre-existing module `{}` from {:?} to {}",
853 module.name,
854 source_file,
855 obj_out.display());
856 if let Err(err) = link_or_copy(&source_file, &obj_out) {
857 let diag_handler = cgcx.create_diag_handler();
858 diag_handler.err(&format!("unable to copy {} to {}: {}",
859 source_file.display(),
860 obj_out.display(),
861 err));
862 }
863 }
864
865 assert_eq!(object.is_some(), module_config.emit_obj);
866 assert_eq!(bytecode.is_some(), module_config.emit_bc);
867 assert_eq!(bytecode_compressed.is_some(), module_config.emit_bc_compressed);
868
869 Ok(WorkItemResult::Compiled(CompiledModule {
870 name: module.name,
871 kind: ModuleKind::Regular,
872 object,
873 bytecode,
874 bytecode_compressed,
875 }))
876 }
877
878 fn execute_lto_work_item<B: ExtraBackendMethods>(
879 cgcx: &CodegenContext<B>,
880 mut module: lto::LtoModuleCodegen<B>,
881 module_config: &ModuleConfig,
882 ) -> Result<WorkItemResult<B>, FatalError> {
883 let diag_handler = cgcx.create_diag_handler();
884
885 unsafe {
886 let module = module.optimize(cgcx)?;
887 let module = B::codegen(cgcx, &diag_handler, module, module_config)?;
888 Ok(WorkItemResult::Compiled(module))
889 }
890 }
891
892 pub enum Message<B: WriteBackendMethods> {
893 Token(io::Result<Acquired>),
894 NeedsFatLTO {
895 result: FatLTOInput<B>,
896 worker_id: usize,
897 },
898 NeedsThinLTO {
899 name: String,
900 thin_buffer: B::ThinBuffer,
901 worker_id: usize,
902 },
903 Done {
904 result: Result<CompiledModule, ()>,
905 worker_id: usize,
906 },
907 CodegenDone {
908 llvm_work_item: WorkItem<B>,
909 cost: u64,
910 },
911 AddImportOnlyModule {
912 module_data: SerializedModule<B::ModuleBuffer>,
913 work_product: WorkProduct,
914 },
915 CodegenComplete,
916 CodegenItem,
917 CodegenAborted,
918 }
919
920 struct Diagnostic {
921 msg: String,
922 code: Option<DiagnosticId>,
923 lvl: Level,
924 }
925
926 #[derive(PartialEq, Clone, Copy, Debug)]
927 enum MainThreadWorkerState {
928 Idle,
929 Codegenning,
930 LLVMing,
931 }
932
933 fn start_executing_work<B: ExtraBackendMethods>(
934 backend: B,
935 tcx: TyCtxt<'_>,
936 crate_info: &CrateInfo,
937 shared_emitter: SharedEmitter,
938 codegen_worker_send: Sender<Message<B>>,
939 coordinator_receive: Receiver<Box<dyn Any + Send>>,
940 total_cgus: usize,
941 jobserver: Client,
942 modules_config: Arc<ModuleConfig>,
943 metadata_config: Arc<ModuleConfig>,
944 allocator_config: Arc<ModuleConfig>,
945 tx_to_llvm_workers: Sender<Box<dyn Any + Send>>,
946 ) -> thread::JoinHandle<Result<CompiledModules, ()>> {
947 let coordinator_send = tx_to_llvm_workers;
948 let sess = tcx.sess;
949
950 // Compute the set of symbols we need to retain when doing LTO (if we need to)
951 let exported_symbols = {
952 let mut exported_symbols = FxHashMap::default();
953
954 let copy_symbols = |cnum| {
955 let symbols = tcx.exported_symbols(cnum)
956 .iter()
957 .map(|&(s, lvl)| (s.symbol_name(tcx).to_string(), lvl))
958 .collect();
959 Arc::new(symbols)
960 };
961
962 match sess.lto() {
963 Lto::No => None,
964 Lto::ThinLocal => {
965 exported_symbols.insert(LOCAL_CRATE, copy_symbols(LOCAL_CRATE));
966 Some(Arc::new(exported_symbols))
967 }
968 Lto::Fat | Lto::Thin => {
969 exported_symbols.insert(LOCAL_CRATE, copy_symbols(LOCAL_CRATE));
970 for &cnum in tcx.crates().iter() {
971 exported_symbols.insert(cnum, copy_symbols(cnum));
972 }
973 Some(Arc::new(exported_symbols))
974 }
975 }
976 };
977
978 // First up, convert our jobserver into a helper thread so we can use normal
979 // mpsc channels to manage our messages and such.
980 // After we've requested tokens then we'll, when we can,
981 // get tokens on `coordinator_receive` which will
982 // get managed in the main loop below.
983 let coordinator_send2 = coordinator_send.clone();
984 let helper = jobserver.into_helper_thread(move |token| {
985 drop(coordinator_send2.send(Box::new(Message::Token::<B>(token))));
986 }).expect("failed to spawn helper thread");
987
988 let mut each_linked_rlib_for_lto = Vec::new();
989 drop(link::each_linked_rlib(crate_info, &mut |cnum, path| {
990 if link::ignored_for_lto(sess, crate_info, cnum) {
991 return
992 }
993 each_linked_rlib_for_lto.push((cnum, path.to_path_buf()));
994 }));
995
996 let assembler_cmd = if modules_config.no_integrated_as {
997 // HACK: currently we use linker (gcc) as our assembler
998 let (linker, flavor) = link::linker_and_flavor(sess);
999
1000 let (name, mut cmd) = get_linker(sess, &linker, flavor);
1001 cmd.args(&sess.target.target.options.asm_args);
1002 Some(Arc::new(AssemblerCommand {
1003 name,
1004 cmd,
1005 }))
1006 } else {
1007 None
1008 };
1009
1010 let ol = if tcx.sess.opts.debugging_opts.no_codegen
1011 || !tcx.sess.opts.output_types.should_codegen() {
1012 // If we know that we won’t be doing codegen, create target machines without optimisation.
1013 config::OptLevel::No
1014 } else {
1015 tcx.backend_optimization_level(LOCAL_CRATE)
1016 };
1017 let cgcx = CodegenContext::<B> {
1018 backend: backend.clone(),
1019 crate_types: sess.crate_types.borrow().clone(),
1020 each_linked_rlib_for_lto,
1021 lto: sess.lto(),
1022 no_landing_pads: sess.no_landing_pads(),
1023 fewer_names: sess.fewer_names(),
1024 save_temps: sess.opts.cg.save_temps,
1025 opts: Arc::new(sess.opts.clone()),
1026 time_passes: sess.time_extended(),
1027 prof: sess.prof.clone(),
1028 exported_symbols,
1029 remark: sess.opts.cg.remark.clone(),
1030 worker: 0,
1031 incr_comp_session_dir: sess.incr_comp_session_dir_opt().map(|r| r.clone()),
1032 cgu_reuse_tracker: sess.cgu_reuse_tracker.clone(),
1033 coordinator_send,
1034 diag_emitter: shared_emitter.clone(),
1035 output_filenames: tcx.output_filenames(LOCAL_CRATE),
1036 regular_module_config: modules_config,
1037 metadata_module_config: metadata_config,
1038 allocator_module_config: allocator_config,
1039 tm_factory: TargetMachineFactory(backend.target_machine_factory(tcx.sess, ol, false)),
1040 total_cgus,
1041 msvc_imps_needed: msvc_imps_needed(tcx),
1042 target_pointer_width: tcx.sess.target.target.target_pointer_width.clone(),
1043 target_arch: tcx.sess.target.target.arch.clone(),
1044 debuginfo: tcx.sess.opts.debuginfo,
1045 assembler_cmd,
1046 };
1047
1048 // This is the "main loop" of parallel work happening for parallel codegen.
1049 // It's here that we manage parallelism, schedule work, and work with
1050 // messages coming from clients.
1051 //
1052 // There are a few environmental pre-conditions that shape how the system
1053 // is set up:
1054 //
1055 // - Error reporting only can happen on the main thread because that's the
1056 // only place where we have access to the compiler `Session`.
1057 // - LLVM work can be done on any thread.
1058 // - Codegen can only happen on the main thread.
1059 // - Each thread doing substantial work most be in possession of a `Token`
1060 // from the `Jobserver`.
1061 // - The compiler process always holds one `Token`. Any additional `Tokens`
1062 // have to be requested from the `Jobserver`.
1063 //
1064 // Error Reporting
1065 // ===============
1066 // The error reporting restriction is handled separately from the rest: We
1067 // set up a `SharedEmitter` the holds an open channel to the main thread.
1068 // When an error occurs on any thread, the shared emitter will send the
1069 // error message to the receiver main thread (`SharedEmitterMain`). The
1070 // main thread will periodically query this error message queue and emit
1071 // any error messages it has received. It might even abort compilation if
1072 // has received a fatal error. In this case we rely on all other threads
1073 // being torn down automatically with the main thread.
1074 // Since the main thread will often be busy doing codegen work, error
1075 // reporting will be somewhat delayed, since the message queue can only be
1076 // checked in between to work packages.
1077 //
1078 // Work Processing Infrastructure
1079 // ==============================
1080 // The work processing infrastructure knows three major actors:
1081 //
1082 // - the coordinator thread,
1083 // - the main thread, and
1084 // - LLVM worker threads
1085 //
1086 // The coordinator thread is running a message loop. It instructs the main
1087 // thread about what work to do when, and it will spawn off LLVM worker
1088 // threads as open LLVM WorkItems become available.
1089 //
1090 // The job of the main thread is to codegen CGUs into LLVM work package
1091 // (since the main thread is the only thread that can do this). The main
1092 // thread will block until it receives a message from the coordinator, upon
1093 // which it will codegen one CGU, send it to the coordinator and block
1094 // again. This way the coordinator can control what the main thread is
1095 // doing.
1096 //
1097 // The coordinator keeps a queue of LLVM WorkItems, and when a `Token` is
1098 // available, it will spawn off a new LLVM worker thread and let it process
1099 // that a WorkItem. When a LLVM worker thread is done with its WorkItem,
1100 // it will just shut down, which also frees all resources associated with
1101 // the given LLVM module, and sends a message to the coordinator that the
1102 // has been completed.
1103 //
1104 // Work Scheduling
1105 // ===============
1106 // The scheduler's goal is to minimize the time it takes to complete all
1107 // work there is, however, we also want to keep memory consumption low
1108 // if possible. These two goals are at odds with each other: If memory
1109 // consumption were not an issue, we could just let the main thread produce
1110 // LLVM WorkItems at full speed, assuring maximal utilization of
1111 // Tokens/LLVM worker threads. However, since codegen usual is faster
1112 // than LLVM processing, the queue of LLVM WorkItems would fill up and each
1113 // WorkItem potentially holds on to a substantial amount of memory.
1114 //
1115 // So the actual goal is to always produce just enough LLVM WorkItems as
1116 // not to starve our LLVM worker threads. That means, once we have enough
1117 // WorkItems in our queue, we can block the main thread, so it does not
1118 // produce more until we need them.
1119 //
1120 // Doing LLVM Work on the Main Thread
1121 // ----------------------------------
1122 // Since the main thread owns the compiler processes implicit `Token`, it is
1123 // wasteful to keep it blocked without doing any work. Therefore, what we do
1124 // in this case is: We spawn off an additional LLVM worker thread that helps
1125 // reduce the queue. The work it is doing corresponds to the implicit
1126 // `Token`. The coordinator will mark the main thread as being busy with
1127 // LLVM work. (The actual work happens on another OS thread but we just care
1128 // about `Tokens`, not actual threads).
1129 //
1130 // When any LLVM worker thread finishes while the main thread is marked as
1131 // "busy with LLVM work", we can do a little switcheroo: We give the Token
1132 // of the just finished thread to the LLVM worker thread that is working on
1133 // behalf of the main thread's implicit Token, thus freeing up the main
1134 // thread again. The coordinator can then again decide what the main thread
1135 // should do. This allows the coordinator to make decisions at more points
1136 // in time.
1137 //
1138 // Striking a Balance between Throughput and Memory Consumption
1139 // ------------------------------------------------------------
1140 // Since our two goals, (1) use as many Tokens as possible and (2) keep
1141 // memory consumption as low as possible, are in conflict with each other,
1142 // we have to find a trade off between them. Right now, the goal is to keep
1143 // all workers busy, which means that no worker should find the queue empty
1144 // when it is ready to start.
1145 // How do we do achieve this? Good question :) We actually never know how
1146 // many `Tokens` are potentially available so it's hard to say how much to
1147 // fill up the queue before switching the main thread to LLVM work. Also we
1148 // currently don't have a means to estimate how long a running LLVM worker
1149 // will still be busy with it's current WorkItem. However, we know the
1150 // maximal count of available Tokens that makes sense (=the number of CPU
1151 // cores), so we can take a conservative guess. The heuristic we use here
1152 // is implemented in the `queue_full_enough()` function.
1153 //
1154 // Some Background on Jobservers
1155 // -----------------------------
1156 // It's worth also touching on the management of parallelism here. We don't
1157 // want to just spawn a thread per work item because while that's optimal
1158 // parallelism it may overload a system with too many threads or violate our
1159 // configuration for the maximum amount of cpu to use for this process. To
1160 // manage this we use the `jobserver` crate.
1161 //
1162 // Job servers are an artifact of GNU make and are used to manage
1163 // parallelism between processes. A jobserver is a glorified IPC semaphore
1164 // basically. Whenever we want to run some work we acquire the semaphore,
1165 // and whenever we're done with that work we release the semaphore. In this
1166 // manner we can ensure that the maximum number of parallel workers is
1167 // capped at any one point in time.
1168 //
1169 // LTO and the coordinator thread
1170 // ------------------------------
1171 //
1172 // The final job the coordinator thread is responsible for is managing LTO
1173 // and how that works. When LTO is requested what we'll to is collect all
1174 // optimized LLVM modules into a local vector on the coordinator. Once all
1175 // modules have been codegened and optimized we hand this to the `lto`
1176 // module for further optimization. The `lto` module will return back a list
1177 // of more modules to work on, which the coordinator will continue to spawn
1178 // work for.
1179 //
1180 // Each LLVM module is automatically sent back to the coordinator for LTO if
1181 // necessary. There's already optimizations in place to avoid sending work
1182 // back to the coordinator if LTO isn't requested.
1183 return thread::spawn(move || {
1184 // We pretend to be within the top-level LLVM time-passes task here:
1185 set_time_depth(1);
1186
1187 let max_workers = ::num_cpus::get();
1188 let mut worker_id_counter = 0;
1189 let mut free_worker_ids = Vec::new();
1190 let mut get_worker_id = |free_worker_ids: &mut Vec<usize>| {
1191 if let Some(id) = free_worker_ids.pop() {
1192 id
1193 } else {
1194 let id = worker_id_counter;
1195 worker_id_counter += 1;
1196 id
1197 }
1198 };
1199
1200 // This is where we collect codegen units that have gone all the way
1201 // through codegen and LLVM.
1202 let mut compiled_modules = vec![];
1203 let mut compiled_metadata_module = None;
1204 let mut compiled_allocator_module = None;
1205 let mut needs_fat_lto = Vec::new();
1206 let mut needs_thin_lto = Vec::new();
1207 let mut lto_import_only_modules = Vec::new();
1208 let mut started_lto = false;
1209 let mut codegen_aborted = false;
1210
1211 // This flag tracks whether all items have gone through codegens
1212 let mut codegen_done = false;
1213
1214 // This is the queue of LLVM work items that still need processing.
1215 let mut work_items = Vec::<(WorkItem<B>, u64)>::new();
1216
1217 // This are the Jobserver Tokens we currently hold. Does not include
1218 // the implicit Token the compiler process owns no matter what.
1219 let mut tokens = Vec::new();
1220
1221 let mut main_thread_worker_state = MainThreadWorkerState::Idle;
1222 let mut running = 0;
1223
1224 let mut llvm_start_time = None;
1225
1226 // Run the message loop while there's still anything that needs message
1227 // processing. Note that as soon as codegen is aborted we simply want to
1228 // wait for all existing work to finish, so many of the conditions here
1229 // only apply if codegen hasn't been aborted as they represent pending
1230 // work to be done.
1231 while !codegen_done ||
1232 running > 0 ||
1233 (!codegen_aborted && (
1234 work_items.len() > 0 ||
1235 needs_fat_lto.len() > 0 ||
1236 needs_thin_lto.len() > 0 ||
1237 lto_import_only_modules.len() > 0 ||
1238 main_thread_worker_state != MainThreadWorkerState::Idle
1239 ))
1240 {
1241
1242 // While there are still CGUs to be codegened, the coordinator has
1243 // to decide how to utilize the compiler processes implicit Token:
1244 // For codegenning more CGU or for running them through LLVM.
1245 if !codegen_done {
1246 if main_thread_worker_state == MainThreadWorkerState::Idle {
1247 if !queue_full_enough(work_items.len(), running, max_workers) {
1248 // The queue is not full enough, codegen more items:
1249 if let Err(_) = codegen_worker_send.send(Message::CodegenItem) {
1250 panic!("Could not send Message::CodegenItem to main thread")
1251 }
1252 main_thread_worker_state = MainThreadWorkerState::Codegenning;
1253 } else {
1254 // The queue is full enough to not let the worker
1255 // threads starve. Use the implicit Token to do some
1256 // LLVM work too.
1257 let (item, _) = work_items.pop()
1258 .expect("queue empty - queue_full_enough() broken?");
1259 let cgcx = CodegenContext {
1260 worker: get_worker_id(&mut free_worker_ids),
1261 .. cgcx.clone()
1262 };
1263 maybe_start_llvm_timer(cgcx.config(item.module_kind()),
1264 &mut llvm_start_time);
1265 main_thread_worker_state = MainThreadWorkerState::LLVMing;
1266 spawn_work(cgcx, item);
1267 }
1268 }
1269 } else if codegen_aborted {
1270 // don't queue up any more work if codegen was aborted, we're
1271 // just waiting for our existing children to finish
1272 } else {
1273 // If we've finished everything related to normal codegen
1274 // then it must be the case that we've got some LTO work to do.
1275 // Perform the serial work here of figuring out what we're
1276 // going to LTO and then push a bunch of work items onto our
1277 // queue to do LTO
1278 if work_items.len() == 0 &&
1279 running == 0 &&
1280 main_thread_worker_state == MainThreadWorkerState::Idle {
1281 assert!(!started_lto);
1282 started_lto = true;
1283
1284 let needs_fat_lto = mem::take(&mut needs_fat_lto);
1285 let needs_thin_lto = mem::take(&mut needs_thin_lto);
1286 let import_only_modules = mem::take(&mut lto_import_only_modules);
1287
1288 for (work, cost) in generate_lto_work(&cgcx, needs_fat_lto,
1289 needs_thin_lto, import_only_modules) {
1290 let insertion_index = work_items
1291 .binary_search_by_key(&cost, |&(_, cost)| cost)
1292 .unwrap_or_else(|e| e);
1293 work_items.insert(insertion_index, (work, cost));
1294 if !cgcx.opts.debugging_opts.no_parallel_llvm {
1295 helper.request_token();
1296 }
1297 }
1298 }
1299
1300 // In this branch, we know that everything has been codegened,
1301 // so it's just a matter of determining whether the implicit
1302 // Token is free to use for LLVM work.
1303 match main_thread_worker_state {
1304 MainThreadWorkerState::Idle => {
1305 if let Some((item, _)) = work_items.pop() {
1306 let cgcx = CodegenContext {
1307 worker: get_worker_id(&mut free_worker_ids),
1308 .. cgcx.clone()
1309 };
1310 maybe_start_llvm_timer(cgcx.config(item.module_kind()),
1311 &mut llvm_start_time);
1312 main_thread_worker_state = MainThreadWorkerState::LLVMing;
1313 spawn_work(cgcx, item);
1314 } else {
1315 // There is no unstarted work, so let the main thread
1316 // take over for a running worker. Otherwise the
1317 // implicit token would just go to waste.
1318 // We reduce the `running` counter by one. The
1319 // `tokens.truncate()` below will take care of
1320 // giving the Token back.
1321 debug_assert!(running > 0);
1322 running -= 1;
1323 main_thread_worker_state = MainThreadWorkerState::LLVMing;
1324 }
1325 }
1326 MainThreadWorkerState::Codegenning => {
1327 bug!("codegen worker should not be codegenning after \
1328 codegen was already completed")
1329 }
1330 MainThreadWorkerState::LLVMing => {
1331 // Already making good use of that token
1332 }
1333 }
1334 }
1335
1336 // Spin up what work we can, only doing this while we've got available
1337 // parallelism slots and work left to spawn.
1338 while !codegen_aborted && work_items.len() > 0 && running < tokens.len() {
1339 let (item, _) = work_items.pop().unwrap();
1340
1341 maybe_start_llvm_timer(cgcx.config(item.module_kind()),
1342 &mut llvm_start_time);
1343
1344 let cgcx = CodegenContext {
1345 worker: get_worker_id(&mut free_worker_ids),
1346 .. cgcx.clone()
1347 };
1348
1349 spawn_work(cgcx, item);
1350 running += 1;
1351 }
1352
1353 // Relinquish accidentally acquired extra tokens
1354 tokens.truncate(running);
1355
1356 // If a thread exits successfully then we drop a token associated
1357 // with that worker and update our `running` count. We may later
1358 // re-acquire a token to continue running more work. We may also not
1359 // actually drop a token here if the worker was running with an
1360 // "ephemeral token"
1361 let mut free_worker = |worker_id| {
1362 if main_thread_worker_state == MainThreadWorkerState::LLVMing {
1363 main_thread_worker_state = MainThreadWorkerState::Idle;
1364 } else {
1365 running -= 1;
1366 }
1367
1368 free_worker_ids.push(worker_id);
1369 };
1370
1371 let msg = coordinator_receive.recv().unwrap();
1372 match *msg.downcast::<Message<B>>().ok().unwrap() {
1373 // Save the token locally and the next turn of the loop will use
1374 // this to spawn a new unit of work, or it may get dropped
1375 // immediately if we have no more work to spawn.
1376 Message::Token(token) => {
1377 match token {
1378 Ok(token) => {
1379 tokens.push(token);
1380
1381 if main_thread_worker_state == MainThreadWorkerState::LLVMing {
1382 // If the main thread token is used for LLVM work
1383 // at the moment, we turn that thread into a regular
1384 // LLVM worker thread, so the main thread is free
1385 // to react to codegen demand.
1386 main_thread_worker_state = MainThreadWorkerState::Idle;
1387 running += 1;
1388 }
1389 }
1390 Err(e) => {
1391 let msg = &format!("failed to acquire jobserver token: {}", e);
1392 shared_emitter.fatal(msg);
1393 // Exit the coordinator thread
1394 panic!("{}", msg)
1395 }
1396 }
1397 }
1398
1399 Message::CodegenDone { llvm_work_item, cost } => {
1400 // We keep the queue sorted by estimated processing cost,
1401 // so that more expensive items are processed earlier. This
1402 // is good for throughput as it gives the main thread more
1403 // time to fill up the queue and it avoids scheduling
1404 // expensive items to the end.
1405 // Note, however, that this is not ideal for memory
1406 // consumption, as LLVM module sizes are not evenly
1407 // distributed.
1408 let insertion_index =
1409 work_items.binary_search_by_key(&cost, |&(_, cost)| cost);
1410 let insertion_index = match insertion_index {
1411 Ok(idx) | Err(idx) => idx
1412 };
1413 work_items.insert(insertion_index, (llvm_work_item, cost));
1414
1415 if !cgcx.opts.debugging_opts.no_parallel_llvm {
1416 helper.request_token();
1417 }
1418 assert!(!codegen_aborted);
1419 assert_eq!(main_thread_worker_state,
1420 MainThreadWorkerState::Codegenning);
1421 main_thread_worker_state = MainThreadWorkerState::Idle;
1422 }
1423
1424 Message::CodegenComplete => {
1425 codegen_done = true;
1426 assert!(!codegen_aborted);
1427 assert_eq!(main_thread_worker_state,
1428 MainThreadWorkerState::Codegenning);
1429 main_thread_worker_state = MainThreadWorkerState::Idle;
1430 }
1431
1432 // If codegen is aborted that means translation was aborted due
1433 // to some normal-ish compiler error. In this situation we want
1434 // to exit as soon as possible, but we want to make sure all
1435 // existing work has finished. Flag codegen as being done, and
1436 // then conditions above will ensure no more work is spawned but
1437 // we'll keep executing this loop until `running` hits 0.
1438 Message::CodegenAborted => {
1439 assert!(!codegen_aborted);
1440 codegen_done = true;
1441 codegen_aborted = true;
1442 assert_eq!(main_thread_worker_state,
1443 MainThreadWorkerState::Codegenning);
1444 }
1445 Message::Done { result: Ok(compiled_module), worker_id } => {
1446 free_worker(worker_id);
1447 match compiled_module.kind {
1448 ModuleKind::Regular => {
1449 compiled_modules.push(compiled_module);
1450 }
1451 ModuleKind::Metadata => {
1452 assert!(compiled_metadata_module.is_none());
1453 compiled_metadata_module = Some(compiled_module);
1454 }
1455 ModuleKind::Allocator => {
1456 assert!(compiled_allocator_module.is_none());
1457 compiled_allocator_module = Some(compiled_module);
1458 }
1459 }
1460 }
1461 Message::NeedsFatLTO { result, worker_id } => {
1462 assert!(!started_lto);
1463 free_worker(worker_id);
1464 needs_fat_lto.push(result);
1465 }
1466 Message::NeedsThinLTO { name, thin_buffer, worker_id } => {
1467 assert!(!started_lto);
1468 free_worker(worker_id);
1469 needs_thin_lto.push((name, thin_buffer));
1470 }
1471 Message::AddImportOnlyModule { module_data, work_product } => {
1472 assert!(!started_lto);
1473 assert!(!codegen_done);
1474 assert_eq!(main_thread_worker_state,
1475 MainThreadWorkerState::Codegenning);
1476 lto_import_only_modules.push((module_data, work_product));
1477 main_thread_worker_state = MainThreadWorkerState::Idle;
1478 }
1479 // If the thread failed that means it panicked, so we abort immediately.
1480 Message::Done { result: Err(()), worker_id: _ } => {
1481 bug!("worker thread panicked");
1482 }
1483 Message::CodegenItem => {
1484 bug!("the coordinator should not receive codegen requests")
1485 }
1486 }
1487 }
1488
1489 if let Some(llvm_start_time) = llvm_start_time {
1490 let total_llvm_time = Instant::now().duration_since(llvm_start_time);
1491 // This is the top-level timing for all of LLVM, set the time-depth
1492 // to zero.
1493 set_time_depth(1);
1494 print_time_passes_entry(cgcx.time_passes,
1495 "LLVM passes",
1496 total_llvm_time);
1497 }
1498
1499 // Regardless of what order these modules completed in, report them to
1500 // the backend in the same order every time to ensure that we're handing
1501 // out deterministic results.
1502 compiled_modules.sort_by(|a, b| a.name.cmp(&b.name));
1503
1504 Ok(CompiledModules {
1505 modules: compiled_modules,
1506 metadata_module: compiled_metadata_module,
1507 allocator_module: compiled_allocator_module,
1508 })
1509 });
1510
1511 // A heuristic that determines if we have enough LLVM WorkItems in the
1512 // queue so that the main thread can do LLVM work instead of codegen
1513 fn queue_full_enough(items_in_queue: usize,
1514 workers_running: usize,
1515 max_workers: usize) -> bool {
1516 // Tune me, plz.
1517 items_in_queue > 0 &&
1518 items_in_queue >= max_workers.saturating_sub(workers_running / 2)
1519 }
1520
1521 fn maybe_start_llvm_timer(config: &ModuleConfig,
1522 llvm_start_time: &mut Option<Instant>) {
1523 // We keep track of the -Ztime-passes output manually,
1524 // since the closure-based interface does not fit well here.
1525 if config.time_passes {
1526 if llvm_start_time.is_none() {
1527 *llvm_start_time = Some(Instant::now());
1528 }
1529 }
1530 }
1531 }
1532
1533 pub const CODEGEN_WORKER_ID: usize = ::std::usize::MAX;
1534
1535 fn spawn_work<B: ExtraBackendMethods>(
1536 cgcx: CodegenContext<B>,
1537 work: WorkItem<B>
1538 ) {
1539 let depth = time_depth();
1540
1541 thread::spawn(move || {
1542 set_time_depth(depth);
1543
1544 // Set up a destructor which will fire off a message that we're done as
1545 // we exit.
1546 struct Bomb<B: ExtraBackendMethods> {
1547 coordinator_send: Sender<Box<dyn Any + Send>>,
1548 result: Option<WorkItemResult<B>>,
1549 worker_id: usize,
1550 }
1551 impl<B: ExtraBackendMethods> Drop for Bomb<B> {
1552 fn drop(&mut self) {
1553 let worker_id = self.worker_id;
1554 let msg = match self.result.take() {
1555 Some(WorkItemResult::Compiled(m)) => {
1556 Message::Done::<B> { result: Ok(m), worker_id }
1557 }
1558 Some(WorkItemResult::NeedsFatLTO(m)) => {
1559 Message::NeedsFatLTO::<B> { result: m, worker_id }
1560 }
1561 Some(WorkItemResult::NeedsThinLTO(name, thin_buffer)) => {
1562 Message::NeedsThinLTO::<B> { name, thin_buffer, worker_id }
1563 }
1564 None => Message::Done::<B> { result: Err(()), worker_id }
1565 };
1566 drop(self.coordinator_send.send(Box::new(msg)));
1567 }
1568 }
1569
1570 let mut bomb = Bomb::<B> {
1571 coordinator_send: cgcx.coordinator_send.clone(),
1572 result: None,
1573 worker_id: cgcx.worker,
1574 };
1575
1576 // Execute the work itself, and if it finishes successfully then flag
1577 // ourselves as a success as well.
1578 //
1579 // Note that we ignore any `FatalError` coming out of `execute_work_item`,
1580 // as a diagnostic was already sent off to the main thread - just
1581 // surface that there was an error in this worker.
1582 bomb.result = {
1583 let _prof_timer = cgcx.prof.generic_activity(work.profiling_event_id());
1584 execute_work_item(&cgcx, work).ok()
1585 };
1586 });
1587 }
1588
1589 pub fn run_assembler<B: ExtraBackendMethods>(
1590 cgcx: &CodegenContext<B>,
1591 handler: &Handler,
1592 assembly: &Path,
1593 object: &Path
1594 ) {
1595 let assembler = cgcx.assembler_cmd
1596 .as_ref()
1597 .expect("cgcx.assembler_cmd is missing?");
1598
1599 let pname = &assembler.name;
1600 let mut cmd = assembler.cmd.clone();
1601 cmd.arg("-c").arg("-o").arg(object).arg(assembly);
1602 debug!("{:?}", cmd);
1603
1604 match cmd.output() {
1605 Ok(prog) => {
1606 if !prog.status.success() {
1607 let mut note = prog.stderr.clone();
1608 note.extend_from_slice(&prog.stdout);
1609
1610 handler.struct_err(&format!("linking with `{}` failed: {}",
1611 pname.display(),
1612 prog.status))
1613 .note(&format!("{:?}", &cmd))
1614 .note(str::from_utf8(&note[..]).unwrap())
1615 .emit();
1616 handler.abort_if_errors();
1617 }
1618 },
1619 Err(e) => {
1620 handler.err(&format!("could not exec the linker `{}`: {}", pname.display(), e));
1621 handler.abort_if_errors();
1622 }
1623 }
1624 }
1625
1626
1627 enum SharedEmitterMessage {
1628 Diagnostic(Diagnostic),
1629 InlineAsmError(u32, String),
1630 AbortIfErrors,
1631 Fatal(String),
1632 }
1633
1634 #[derive(Clone)]
1635 pub struct SharedEmitter {
1636 sender: Sender<SharedEmitterMessage>,
1637 }
1638
1639 pub struct SharedEmitterMain {
1640 receiver: Receiver<SharedEmitterMessage>,
1641 }
1642
1643 impl SharedEmitter {
1644 pub fn new() -> (SharedEmitter, SharedEmitterMain) {
1645 let (sender, receiver) = channel();
1646
1647 (SharedEmitter { sender }, SharedEmitterMain { receiver })
1648 }
1649
1650 pub fn inline_asm_error(&self, cookie: u32, msg: String) {
1651 drop(self.sender.send(SharedEmitterMessage::InlineAsmError(cookie, msg)));
1652 }
1653
1654 pub fn fatal(&self, msg: &str) {
1655 drop(self.sender.send(SharedEmitterMessage::Fatal(msg.to_string())));
1656 }
1657 }
1658
1659 impl Emitter for SharedEmitter {
1660 fn emit_diagnostic(&mut self, diag: &rustc_errors::Diagnostic) {
1661 drop(self.sender.send(SharedEmitterMessage::Diagnostic(Diagnostic {
1662 msg: diag.message(),
1663 code: diag.code.clone(),
1664 lvl: diag.level,
1665 })));
1666 for child in &diag.children {
1667 drop(self.sender.send(SharedEmitterMessage::Diagnostic(Diagnostic {
1668 msg: child.message(),
1669 code: None,
1670 lvl: child.level,
1671 })));
1672 }
1673 drop(self.sender.send(SharedEmitterMessage::AbortIfErrors));
1674 }
1675 fn source_map(&self) -> Option<&Lrc<SourceMap>> {
1676 None
1677 }
1678 }
1679
1680 impl SharedEmitterMain {
1681 pub fn check(&self, sess: &Session, blocking: bool) {
1682 loop {
1683 let message = if blocking {
1684 match self.receiver.recv() {
1685 Ok(message) => Ok(message),
1686 Err(_) => Err(()),
1687 }
1688 } else {
1689 match self.receiver.try_recv() {
1690 Ok(message) => Ok(message),
1691 Err(_) => Err(()),
1692 }
1693 };
1694
1695 match message {
1696 Ok(SharedEmitterMessage::Diagnostic(diag)) => {
1697 let handler = sess.diagnostic();
1698 let mut d = rustc_errors::Diagnostic::new(diag.lvl, &diag.msg);
1699 if let Some(code) = diag.code {
1700 d.code(code);
1701 }
1702 handler.emit_diagnostic(&d);
1703 handler.abort_if_errors_and_should_abort();
1704 }
1705 Ok(SharedEmitterMessage::InlineAsmError(cookie, msg)) => {
1706 sess.span_err(ExpnId::from_u32(cookie).expn_data().call_site, &msg)
1707 }
1708 Ok(SharedEmitterMessage::AbortIfErrors) => {
1709 sess.abort_if_errors();
1710 }
1711 Ok(SharedEmitterMessage::Fatal(msg)) => {
1712 sess.fatal(&msg);
1713 }
1714 Err(_) => {
1715 break;
1716 }
1717 }
1718
1719 }
1720 }
1721 }
1722
1723 pub struct OngoingCodegen<B: ExtraBackendMethods> {
1724 pub backend: B,
1725 pub crate_name: Symbol,
1726 pub crate_hash: Svh,
1727 pub metadata: EncodedMetadata,
1728 pub windows_subsystem: Option<String>,
1729 pub linker_info: LinkerInfo,
1730 pub crate_info: CrateInfo,
1731 pub coordinator_send: Sender<Box<dyn Any + Send>>,
1732 pub codegen_worker_receive: Receiver<Message<B>>,
1733 pub shared_emitter_main: SharedEmitterMain,
1734 pub future: thread::JoinHandle<Result<CompiledModules, ()>>,
1735 pub output_filenames: Arc<OutputFilenames>,
1736 }
1737
1738 impl<B: ExtraBackendMethods> OngoingCodegen<B> {
1739 pub fn join(
1740 self,
1741 sess: &Session
1742 ) -> (CodegenResults, FxHashMap<WorkProductId, WorkProduct>) {
1743 self.shared_emitter_main.check(sess, true);
1744 let compiled_modules = match self.future.join() {
1745 Ok(Ok(compiled_modules)) => compiled_modules,
1746 Ok(Err(())) => {
1747 sess.abort_if_errors();
1748 panic!("expected abort due to worker thread errors")
1749 },
1750 Err(_) => {
1751 bug!("panic during codegen/LLVM phase");
1752 }
1753 };
1754
1755 sess.cgu_reuse_tracker.check_expected_reuse(sess.diagnostic());
1756
1757 sess.abort_if_errors();
1758
1759 let work_products =
1760 copy_all_cgu_workproducts_to_incr_comp_cache_dir(sess,
1761 &compiled_modules);
1762 produce_final_output_artifacts(sess,
1763 &compiled_modules,
1764 &self.output_filenames);
1765
1766 // FIXME: time_llvm_passes support - does this use a global context or
1767 // something?
1768 if sess.codegen_units() == 1 && sess.time_llvm_passes() {
1769 self.backend.print_pass_timings()
1770 }
1771
1772 (CodegenResults {
1773 crate_name: self.crate_name,
1774 crate_hash: self.crate_hash,
1775 metadata: self.metadata,
1776 windows_subsystem: self.windows_subsystem,
1777 linker_info: self.linker_info,
1778 crate_info: self.crate_info,
1779
1780 modules: compiled_modules.modules,
1781 allocator_module: compiled_modules.allocator_module,
1782 metadata_module: compiled_modules.metadata_module,
1783 }, work_products)
1784 }
1785
1786 pub fn submit_pre_codegened_module_to_llvm(
1787 &self,
1788 tcx: TyCtxt<'_>,
1789 module: ModuleCodegen<B::Module>,
1790 ) {
1791 self.wait_for_signal_to_codegen_item();
1792 self.check_for_errors(tcx.sess);
1793
1794 // These are generally cheap and won't throw off scheduling.
1795 let cost = 0;
1796 submit_codegened_module_to_llvm(&self.backend, &self.coordinator_send, module, cost);
1797 }
1798
1799 pub fn codegen_finished(&self, tcx: TyCtxt<'_>) {
1800 self.wait_for_signal_to_codegen_item();
1801 self.check_for_errors(tcx.sess);
1802 drop(self.coordinator_send.send(Box::new(Message::CodegenComplete::<B>)));
1803 }
1804
1805 /// Consumes this context indicating that codegen was entirely aborted, and
1806 /// we need to exit as quickly as possible.
1807 ///
1808 /// This method blocks the current thread until all worker threads have
1809 /// finished, and all worker threads should have exited or be real close to
1810 /// exiting at this point.
1811 pub fn codegen_aborted(self) {
1812 // Signal to the coordinator it should spawn no more work and start
1813 // shutdown.
1814 drop(self.coordinator_send.send(Box::new(Message::CodegenAborted::<B>)));
1815 drop(self.future.join());
1816 }
1817
1818 pub fn check_for_errors(&self, sess: &Session) {
1819 self.shared_emitter_main.check(sess, false);
1820 }
1821
1822 pub fn wait_for_signal_to_codegen_item(&self) {
1823 match self.codegen_worker_receive.recv() {
1824 Ok(Message::CodegenItem) => {
1825 // Nothing to do
1826 }
1827 Ok(_) => panic!("unexpected message"),
1828 Err(_) => {
1829 // One of the LLVM threads must have panicked, fall through so
1830 // error handling can be reached.
1831 }
1832 }
1833 }
1834 }
1835
1836 pub fn submit_codegened_module_to_llvm<B: ExtraBackendMethods>(
1837 _backend: &B,
1838 tx_to_llvm_workers: &Sender<Box<dyn Any + Send>>,
1839 module: ModuleCodegen<B::Module>,
1840 cost: u64,
1841 ) {
1842 let llvm_work_item = WorkItem::Optimize(module);
1843 drop(tx_to_llvm_workers.send(Box::new(Message::CodegenDone::<B> {
1844 llvm_work_item,
1845 cost,
1846 })));
1847 }
1848
1849 pub fn submit_post_lto_module_to_llvm<B: ExtraBackendMethods>(
1850 _backend: &B,
1851 tx_to_llvm_workers: &Sender<Box<dyn Any + Send>>,
1852 module: CachedModuleCodegen,
1853 ) {
1854 let llvm_work_item = WorkItem::CopyPostLtoArtifacts(module);
1855 drop(tx_to_llvm_workers.send(Box::new(Message::CodegenDone::<B> {
1856 llvm_work_item,
1857 cost: 0,
1858 })));
1859 }
1860
1861 pub fn submit_pre_lto_module_to_llvm<B: ExtraBackendMethods>(
1862 _backend: &B,
1863 tcx: TyCtxt<'_>,
1864 tx_to_llvm_workers: &Sender<Box<dyn Any + Send>>,
1865 module: CachedModuleCodegen,
1866 ) {
1867 let filename = pre_lto_bitcode_filename(&module.name);
1868 let bc_path = in_incr_comp_dir_sess(tcx.sess, &filename);
1869 let file = fs::File::open(&bc_path).unwrap_or_else(|e| {
1870 panic!("failed to open bitcode file `{}`: {}", bc_path.display(), e)
1871 });
1872
1873 let mmap = unsafe {
1874 memmap::Mmap::map(&file).unwrap_or_else(|e| {
1875 panic!("failed to mmap bitcode file `{}`: {}", bc_path.display(), e)
1876 })
1877 };
1878 // Schedule the module to be loaded
1879 drop(tx_to_llvm_workers.send(Box::new(Message::AddImportOnlyModule::<B> {
1880 module_data: SerializedModule::FromUncompressedFile(mmap),
1881 work_product: module.source,
1882 })));
1883 }
1884
1885 pub fn pre_lto_bitcode_filename(module_name: &str) -> String {
1886 format!("{}.{}", module_name, PRE_LTO_BC_EXT)
1887 }
1888
1889 fn msvc_imps_needed(tcx: TyCtxt<'_>) -> bool {
1890 // This should never be true (because it's not supported). If it is true,
1891 // something is wrong with commandline arg validation.
1892 assert!(!(tcx.sess.opts.cg.linker_plugin_lto.enabled() &&
1893 tcx.sess.target.target.options.is_like_msvc &&
1894 tcx.sess.opts.cg.prefer_dynamic));
1895
1896 tcx.sess.target.target.options.is_like_msvc &&
1897 tcx.sess.crate_types.borrow().iter().any(|ct| *ct == config::CrateType::Rlib) &&
1898 // ThinLTO can't handle this workaround in all cases, so we don't
1899 // emit the `__imp_` symbols. Instead we make them unnecessary by disallowing
1900 // dynamic linking when linker plugin LTO is enabled.
1901 !tcx.sess.opts.cg.linker_plugin_lto.enabled()
1902 }