]> git.proxmox.com Git - rustc.git/blob - src/librustc_codegen_ssa/base.rs
New upstream version 1.42.0+dfsg0+pve1
[rustc.git] / src / librustc_codegen_ssa / base.rs
1 //! Codegen the completed AST to the LLVM IR.
2 //!
3 //! Some functions here, such as `codegen_block` and `codegen_expr`, return a value --
4 //! the result of the codegen to LLVM -- while others, such as `codegen_fn`
5 //! and `mono_item`, are called only for the side effect of adding a
6 //! particular definition to the LLVM IR output we're producing.
7 //!
8 //! Hopefully useful general knowledge about codegen:
9 //!
10 //! * There's no way to find out the `Ty` type of a `Value`. Doing so
11 //! would be "trying to get the eggs out of an omelette" (credit:
12 //! pcwalton). You can, instead, find out its `llvm::Type` by calling `val_ty`,
13 //! but one `llvm::Type` corresponds to many `Ty`s; for instance, `tup(int, int,
14 //! int)` and `rec(x=int, y=int, z=int)` will have the same `llvm::Type`.
15
16 use crate::back::write::{
17 start_async_codegen, submit_codegened_module_to_llvm, submit_post_lto_module_to_llvm,
18 submit_pre_lto_module_to_llvm, OngoingCodegen,
19 };
20 use crate::common::{IntPredicate, RealPredicate, TypeKind};
21 use crate::meth;
22 use crate::mir;
23 use crate::mir::operand::OperandValue;
24 use crate::mir::place::PlaceRef;
25 use crate::traits::*;
26 use crate::{CachedModuleCodegen, CrateInfo, MemFlags, ModuleCodegen, ModuleKind};
27
28 use rustc::middle::codegen_fn_attrs::CodegenFnAttrs;
29 use rustc::middle::cstore::EncodedMetadata;
30 use rustc::middle::cstore::{self, LinkagePreference};
31 use rustc::middle::lang_items::StartFnLangItem;
32 use rustc::middle::weak_lang_items;
33 use rustc::mir::mono::{CodegenUnit, CodegenUnitNameBuilder, MonoItem};
34 use rustc::session::config::{self, EntryFnType, Lto};
35 use rustc::session::Session;
36 use rustc::ty::layout::{self, Align, HasTyCtxt, LayoutOf, TyLayout, VariantIdx};
37 use rustc::ty::layout::{FAT_PTR_ADDR, FAT_PTR_EXTRA};
38 use rustc::ty::query::Providers;
39 use rustc::ty::{self, Instance, Ty, TyCtxt};
40 use rustc_codegen_utils::{check_for_rustc_errors_attr, symbol_names_test};
41 use rustc_data_structures::fx::FxHashMap;
42 use rustc_data_structures::profiling::print_time_passes_entry;
43 use rustc_data_structures::sync::{par_iter, Lock, ParallelIterator};
44 use rustc_hir as hir;
45 use rustc_hir::def_id::{DefId, LOCAL_CRATE};
46 use rustc_index::vec::Idx;
47 use rustc_session::cgu_reuse_tracker::CguReuse;
48 use rustc_span::Span;
49 use syntax::attr;
50
51 use std::cmp;
52 use std::ops::{Deref, DerefMut};
53 use std::time::{Duration, Instant};
54
55 pub fn bin_op_to_icmp_predicate(op: hir::BinOpKind, signed: bool) -> IntPredicate {
56 match op {
57 hir::BinOpKind::Eq => IntPredicate::IntEQ,
58 hir::BinOpKind::Ne => IntPredicate::IntNE,
59 hir::BinOpKind::Lt => {
60 if signed {
61 IntPredicate::IntSLT
62 } else {
63 IntPredicate::IntULT
64 }
65 }
66 hir::BinOpKind::Le => {
67 if signed {
68 IntPredicate::IntSLE
69 } else {
70 IntPredicate::IntULE
71 }
72 }
73 hir::BinOpKind::Gt => {
74 if signed {
75 IntPredicate::IntSGT
76 } else {
77 IntPredicate::IntUGT
78 }
79 }
80 hir::BinOpKind::Ge => {
81 if signed {
82 IntPredicate::IntSGE
83 } else {
84 IntPredicate::IntUGE
85 }
86 }
87 op => bug!(
88 "comparison_op_to_icmp_predicate: expected comparison operator, \
89 found {:?}",
90 op
91 ),
92 }
93 }
94
95 pub fn bin_op_to_fcmp_predicate(op: hir::BinOpKind) -> RealPredicate {
96 match op {
97 hir::BinOpKind::Eq => RealPredicate::RealOEQ,
98 hir::BinOpKind::Ne => RealPredicate::RealUNE,
99 hir::BinOpKind::Lt => RealPredicate::RealOLT,
100 hir::BinOpKind::Le => RealPredicate::RealOLE,
101 hir::BinOpKind::Gt => RealPredicate::RealOGT,
102 hir::BinOpKind::Ge => RealPredicate::RealOGE,
103 op => {
104 bug!(
105 "comparison_op_to_fcmp_predicate: expected comparison operator, \
106 found {:?}",
107 op
108 );
109 }
110 }
111 }
112
113 pub fn compare_simd_types<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
114 bx: &mut Bx,
115 lhs: Bx::Value,
116 rhs: Bx::Value,
117 t: Ty<'tcx>,
118 ret_ty: Bx::Type,
119 op: hir::BinOpKind,
120 ) -> Bx::Value {
121 let signed = match t.kind {
122 ty::Float(_) => {
123 let cmp = bin_op_to_fcmp_predicate(op);
124 let cmp = bx.fcmp(cmp, lhs, rhs);
125 return bx.sext(cmp, ret_ty);
126 }
127 ty::Uint(_) => false,
128 ty::Int(_) => true,
129 _ => bug!("compare_simd_types: invalid SIMD type"),
130 };
131
132 let cmp = bin_op_to_icmp_predicate(op, signed);
133 let cmp = bx.icmp(cmp, lhs, rhs);
134 // LLVM outputs an `< size x i1 >`, so we need to perform a sign extension
135 // to get the correctly sized type. This will compile to a single instruction
136 // once the IR is converted to assembly if the SIMD instruction is supported
137 // by the target architecture.
138 bx.sext(cmp, ret_ty)
139 }
140
141 /// Retrieves the information we are losing (making dynamic) in an unsizing
142 /// adjustment.
143 ///
144 /// The `old_info` argument is a bit odd. It is intended for use in an upcast,
145 /// where the new vtable for an object will be derived from the old one.
146 pub fn unsized_info<'tcx, Cx: CodegenMethods<'tcx>>(
147 cx: &Cx,
148 source: Ty<'tcx>,
149 target: Ty<'tcx>,
150 old_info: Option<Cx::Value>,
151 ) -> Cx::Value {
152 let (source, target) =
153 cx.tcx().struct_lockstep_tails_erasing_lifetimes(source, target, cx.param_env());
154 match (&source.kind, &target.kind) {
155 (&ty::Array(_, len), &ty::Slice(_)) => {
156 cx.const_usize(len.eval_usize(cx.tcx(), ty::ParamEnv::reveal_all()))
157 }
158 (&ty::Dynamic(..), &ty::Dynamic(..)) => {
159 // For now, upcasts are limited to changes in marker
160 // traits, and hence never actually require an actual
161 // change to the vtable.
162 old_info.expect("unsized_info: missing old info for trait upcast")
163 }
164 (_, &ty::Dynamic(ref data, ..)) => {
165 let vtable_ptr = cx.layout_of(cx.tcx().mk_mut_ptr(target)).field(cx, FAT_PTR_EXTRA);
166 cx.const_ptrcast(
167 meth::get_vtable(cx, source, data.principal()),
168 cx.backend_type(vtable_ptr),
169 )
170 }
171 _ => bug!("unsized_info: invalid unsizing {:?} -> {:?}", source, target),
172 }
173 }
174
175 /// Coerces `src` to `dst_ty`. `src_ty` must be a thin pointer.
176 pub fn unsize_thin_ptr<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
177 bx: &mut Bx,
178 src: Bx::Value,
179 src_ty: Ty<'tcx>,
180 dst_ty: Ty<'tcx>,
181 ) -> (Bx::Value, Bx::Value) {
182 debug!("unsize_thin_ptr: {:?} => {:?}", src_ty, dst_ty);
183 match (&src_ty.kind, &dst_ty.kind) {
184 (&ty::Ref(_, a, _), &ty::Ref(_, b, _))
185 | (&ty::Ref(_, a, _), &ty::RawPtr(ty::TypeAndMut { ty: b, .. }))
186 | (&ty::RawPtr(ty::TypeAndMut { ty: a, .. }), &ty::RawPtr(ty::TypeAndMut { ty: b, .. })) => {
187 assert!(bx.cx().type_is_sized(a));
188 let ptr_ty = bx.cx().type_ptr_to(bx.cx().backend_type(bx.cx().layout_of(b)));
189 (bx.pointercast(src, ptr_ty), unsized_info(bx.cx(), a, b, None))
190 }
191 (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => {
192 assert_eq!(def_a, def_b);
193
194 let src_layout = bx.cx().layout_of(src_ty);
195 let dst_layout = bx.cx().layout_of(dst_ty);
196 let mut result = None;
197 for i in 0..src_layout.fields.count() {
198 let src_f = src_layout.field(bx.cx(), i);
199 assert_eq!(src_layout.fields.offset(i).bytes(), 0);
200 assert_eq!(dst_layout.fields.offset(i).bytes(), 0);
201 if src_f.is_zst() {
202 continue;
203 }
204 assert_eq!(src_layout.size, src_f.size);
205
206 let dst_f = dst_layout.field(bx.cx(), i);
207 assert_ne!(src_f.ty, dst_f.ty);
208 assert_eq!(result, None);
209 result = Some(unsize_thin_ptr(bx, src, src_f.ty, dst_f.ty));
210 }
211 let (lldata, llextra) = result.unwrap();
212 // HACK(eddyb) have to bitcast pointers until LLVM removes pointee types.
213 // FIXME(eddyb) move these out of this `match` arm, so they're always
214 // applied, uniformly, no matter the source/destination types.
215 (
216 bx.bitcast(lldata, bx.cx().scalar_pair_element_backend_type(dst_layout, 0, true)),
217 bx.bitcast(llextra, bx.cx().scalar_pair_element_backend_type(dst_layout, 1, true)),
218 )
219 }
220 _ => bug!("unsize_thin_ptr: called on bad types"),
221 }
222 }
223
224 /// Coerces `src`, which is a reference to a value of type `src_ty`,
225 /// to a value of type `dst_ty`, and stores the result in `dst`.
226 pub fn coerce_unsized_into<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
227 bx: &mut Bx,
228 src: PlaceRef<'tcx, Bx::Value>,
229 dst: PlaceRef<'tcx, Bx::Value>,
230 ) {
231 let src_ty = src.layout.ty;
232 let dst_ty = dst.layout.ty;
233 match (&src_ty.kind, &dst_ty.kind) {
234 (&ty::Ref(..), &ty::Ref(..))
235 | (&ty::Ref(..), &ty::RawPtr(..))
236 | (&ty::RawPtr(..), &ty::RawPtr(..)) => {
237 let (base, info) = match bx.load_operand(src).val {
238 OperandValue::Pair(base, info) => {
239 // fat-ptr to fat-ptr unsize preserves the vtable
240 // i.e., &'a fmt::Debug+Send => &'a fmt::Debug
241 // So we need to pointercast the base to ensure
242 // the types match up.
243 // FIXME(eddyb) use `scalar_pair_element_backend_type` here,
244 // like `unsize_thin_ptr` does.
245 let thin_ptr = dst.layout.field(bx.cx(), FAT_PTR_ADDR);
246 (bx.pointercast(base, bx.cx().backend_type(thin_ptr)), info)
247 }
248 OperandValue::Immediate(base) => unsize_thin_ptr(bx, base, src_ty, dst_ty),
249 OperandValue::Ref(..) => bug!(),
250 };
251 OperandValue::Pair(base, info).store(bx, dst);
252 }
253
254 (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => {
255 assert_eq!(def_a, def_b);
256
257 for i in 0..def_a.variants[VariantIdx::new(0)].fields.len() {
258 let src_f = src.project_field(bx, i);
259 let dst_f = dst.project_field(bx, i);
260
261 if dst_f.layout.is_zst() {
262 continue;
263 }
264
265 if src_f.layout.ty == dst_f.layout.ty {
266 memcpy_ty(
267 bx,
268 dst_f.llval,
269 dst_f.align,
270 src_f.llval,
271 src_f.align,
272 src_f.layout,
273 MemFlags::empty(),
274 );
275 } else {
276 coerce_unsized_into(bx, src_f, dst_f);
277 }
278 }
279 }
280 _ => bug!("coerce_unsized_into: invalid coercion {:?} -> {:?}", src_ty, dst_ty,),
281 }
282 }
283
284 pub fn cast_shift_expr_rhs<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
285 bx: &mut Bx,
286 op: hir::BinOpKind,
287 lhs: Bx::Value,
288 rhs: Bx::Value,
289 ) -> Bx::Value {
290 cast_shift_rhs(bx, op, lhs, rhs)
291 }
292
293 fn cast_shift_rhs<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
294 bx: &mut Bx,
295 op: hir::BinOpKind,
296 lhs: Bx::Value,
297 rhs: Bx::Value,
298 ) -> Bx::Value {
299 // Shifts may have any size int on the rhs
300 if op.is_shift() {
301 let mut rhs_llty = bx.cx().val_ty(rhs);
302 let mut lhs_llty = bx.cx().val_ty(lhs);
303 if bx.cx().type_kind(rhs_llty) == TypeKind::Vector {
304 rhs_llty = bx.cx().element_type(rhs_llty)
305 }
306 if bx.cx().type_kind(lhs_llty) == TypeKind::Vector {
307 lhs_llty = bx.cx().element_type(lhs_llty)
308 }
309 let rhs_sz = bx.cx().int_width(rhs_llty);
310 let lhs_sz = bx.cx().int_width(lhs_llty);
311 if lhs_sz < rhs_sz {
312 bx.trunc(rhs, lhs_llty)
313 } else if lhs_sz > rhs_sz {
314 // FIXME (#1877: If in the future shifting by negative
315 // values is no longer undefined then this is wrong.
316 bx.zext(rhs, lhs_llty)
317 } else {
318 rhs
319 }
320 } else {
321 rhs
322 }
323 }
324
325 /// Returns `true` if this session's target will use SEH-based unwinding.
326 ///
327 /// This is only true for MSVC targets, and even then the 64-bit MSVC target
328 /// currently uses SEH-ish unwinding with DWARF info tables to the side (same as
329 /// 64-bit MinGW) instead of "full SEH".
330 pub fn wants_msvc_seh(sess: &Session) -> bool {
331 sess.target.target.options.is_like_msvc
332 }
333
334 pub fn from_immediate<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
335 bx: &mut Bx,
336 val: Bx::Value,
337 ) -> Bx::Value {
338 if bx.cx().val_ty(val) == bx.cx().type_i1() { bx.zext(val, bx.cx().type_i8()) } else { val }
339 }
340
341 pub fn to_immediate<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
342 bx: &mut Bx,
343 val: Bx::Value,
344 layout: layout::TyLayout<'_>,
345 ) -> Bx::Value {
346 if let layout::Abi::Scalar(ref scalar) = layout.abi {
347 return to_immediate_scalar(bx, val, scalar);
348 }
349 val
350 }
351
352 pub fn to_immediate_scalar<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
353 bx: &mut Bx,
354 val: Bx::Value,
355 scalar: &layout::Scalar,
356 ) -> Bx::Value {
357 if scalar.is_bool() {
358 return bx.trunc(val, bx.cx().type_i1());
359 }
360 val
361 }
362
363 pub fn memcpy_ty<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
364 bx: &mut Bx,
365 dst: Bx::Value,
366 dst_align: Align,
367 src: Bx::Value,
368 src_align: Align,
369 layout: TyLayout<'tcx>,
370 flags: MemFlags,
371 ) {
372 let size = layout.size.bytes();
373 if size == 0 {
374 return;
375 }
376
377 bx.memcpy(dst, dst_align, src, src_align, bx.cx().const_usize(size), flags);
378 }
379
380 pub fn codegen_instance<'a, 'tcx: 'a, Bx: BuilderMethods<'a, 'tcx>>(
381 cx: &'a Bx::CodegenCx,
382 instance: Instance<'tcx>,
383 ) {
384 // this is an info! to allow collecting monomorphization statistics
385 // and to allow finding the last function before LLVM aborts from
386 // release builds.
387 info!("codegen_instance({})", instance);
388
389 mir::codegen_mir::<Bx>(cx, instance);
390 }
391
392 /// Creates the `main` function which will initialize the rust runtime and call
393 /// users main function.
394 pub fn maybe_create_entry_wrapper<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(cx: &'a Bx::CodegenCx) {
395 let (main_def_id, span) = match cx.tcx().entry_fn(LOCAL_CRATE) {
396 Some((def_id, _)) => (def_id, cx.tcx().def_span(def_id)),
397 None => return,
398 };
399
400 let instance = Instance::mono(cx.tcx(), main_def_id);
401
402 if !cx.codegen_unit().contains_item(&MonoItem::Fn(instance)) {
403 // We want to create the wrapper in the same codegen unit as Rust's main
404 // function.
405 return;
406 }
407
408 let main_llfn = cx.get_fn_addr(instance);
409
410 let et = cx.tcx().entry_fn(LOCAL_CRATE).map(|e| e.1);
411 match et {
412 Some(EntryFnType::Main) => create_entry_fn::<Bx>(cx, span, main_llfn, main_def_id, true),
413 Some(EntryFnType::Start) => create_entry_fn::<Bx>(cx, span, main_llfn, main_def_id, false),
414 None => {} // Do nothing.
415 }
416
417 fn create_entry_fn<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
418 cx: &'a Bx::CodegenCx,
419 sp: Span,
420 rust_main: Bx::Value,
421 rust_main_def_id: DefId,
422 use_start_lang_item: bool,
423 ) {
424 // The entry function is either `int main(void)` or `int main(int argc, char **argv)`,
425 // depending on whether the target needs `argc` and `argv` to be passed in.
426 let llfty = if cx.sess().target.target.options.main_needs_argc_argv {
427 cx.type_func(&[cx.type_int(), cx.type_ptr_to(cx.type_i8p())], cx.type_int())
428 } else {
429 cx.type_func(&[], cx.type_int())
430 };
431
432 let main_ret_ty = cx.tcx().fn_sig(rust_main_def_id).output();
433 // Given that `main()` has no arguments,
434 // then its return type cannot have
435 // late-bound regions, since late-bound
436 // regions must appear in the argument
437 // listing.
438 let main_ret_ty = cx.tcx().erase_regions(&main_ret_ty.no_bound_vars().unwrap());
439
440 if cx.get_defined_value("main").is_some() {
441 // FIXME: We should be smart and show a better diagnostic here.
442 cx.sess()
443 .struct_span_err(sp, "entry symbol `main` defined multiple times")
444 .help("did you use `#[no_mangle]` on `fn main`? Use `#[start]` instead")
445 .emit();
446 cx.sess().abort_if_errors();
447 bug!();
448 }
449 let llfn = cx.declare_cfn("main", llfty);
450
451 // `main` should respect same config for frame pointer elimination as rest of code
452 cx.set_frame_pointer_elimination(llfn);
453 cx.apply_target_cpu_attr(llfn);
454
455 let mut bx = Bx::new_block(&cx, llfn, "top");
456
457 bx.insert_reference_to_gdb_debug_scripts_section_global();
458
459 let (arg_argc, arg_argv) = get_argc_argv(cx, &mut bx);
460
461 let (start_fn, args) = if use_start_lang_item {
462 let start_def_id = cx.tcx().require_lang_item(StartFnLangItem, None);
463 let start_fn = cx.get_fn_addr(
464 ty::Instance::resolve(
465 cx.tcx(),
466 ty::ParamEnv::reveal_all(),
467 start_def_id,
468 cx.tcx().intern_substs(&[main_ret_ty.into()]),
469 )
470 .unwrap(),
471 );
472 (
473 start_fn,
474 vec![bx.pointercast(rust_main, cx.type_ptr_to(cx.type_i8p())), arg_argc, arg_argv],
475 )
476 } else {
477 debug!("using user-defined start fn");
478 (rust_main, vec![arg_argc, arg_argv])
479 };
480
481 let result = bx.call(start_fn, &args, None);
482 let cast = bx.intcast(result, cx.type_int(), true);
483 bx.ret(cast);
484 }
485 }
486
487 /// Obtain the `argc` and `argv` values to pass to the rust start function.
488 fn get_argc_argv<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
489 cx: &'a Bx::CodegenCx,
490 bx: &mut Bx,
491 ) -> (Bx::Value, Bx::Value) {
492 if cx.sess().target.target.options.main_needs_argc_argv {
493 // Params from native `main()` used as args for rust start function
494 let param_argc = bx.get_param(0);
495 let param_argv = bx.get_param(1);
496 let arg_argc = bx.intcast(param_argc, cx.type_isize(), true);
497 let arg_argv = param_argv;
498 (arg_argc, arg_argv)
499 } else {
500 // The Rust start function doesn't need `argc` and `argv`, so just pass zeros.
501 let arg_argc = bx.const_int(cx.type_int(), 0);
502 let arg_argv = bx.const_null(cx.type_ptr_to(cx.type_i8p()));
503 (arg_argc, arg_argv)
504 }
505 }
506
507 pub const CODEGEN_WORKER_ID: usize = ::std::usize::MAX;
508
509 pub fn codegen_crate<B: ExtraBackendMethods>(
510 backend: B,
511 tcx: TyCtxt<'tcx>,
512 metadata: EncodedMetadata,
513 need_metadata_module: bool,
514 ) -> OngoingCodegen<B> {
515 check_for_rustc_errors_attr(tcx);
516
517 // Skip crate items and just output metadata in -Z no-codegen mode.
518 if tcx.sess.opts.debugging_opts.no_codegen || !tcx.sess.opts.output_types.should_codegen() {
519 let ongoing_codegen = start_async_codegen(backend, tcx, metadata, 1);
520
521 ongoing_codegen.codegen_finished(tcx);
522
523 finalize_tcx(tcx);
524
525 ongoing_codegen.check_for_errors(tcx.sess);
526
527 return ongoing_codegen;
528 }
529
530 let cgu_name_builder = &mut CodegenUnitNameBuilder::new(tcx);
531
532 // Run the monomorphization collector and partition the collected items into
533 // codegen units.
534 let codegen_units = tcx.collect_and_partition_mono_items(LOCAL_CRATE).1;
535 let codegen_units = (*codegen_units).clone();
536
537 // Force all codegen_unit queries so they are already either red or green
538 // when compile_codegen_unit accesses them. We are not able to re-execute
539 // the codegen_unit query from just the DepNode, so an unknown color would
540 // lead to having to re-execute compile_codegen_unit, possibly
541 // unnecessarily.
542 if tcx.dep_graph.is_fully_enabled() {
543 for cgu in &codegen_units {
544 tcx.codegen_unit(cgu.name());
545 }
546 }
547
548 let ongoing_codegen = start_async_codegen(backend.clone(), tcx, metadata, codegen_units.len());
549 let ongoing_codegen = AbortCodegenOnDrop::<B>(Some(ongoing_codegen));
550
551 // Codegen an allocator shim, if necessary.
552 //
553 // If the crate doesn't have an `allocator_kind` set then there's definitely
554 // no shim to generate. Otherwise we also check our dependency graph for all
555 // our output crate types. If anything there looks like its a `Dynamic`
556 // linkage, then it's already got an allocator shim and we'll be using that
557 // one instead. If nothing exists then it's our job to generate the
558 // allocator!
559 let any_dynamic_crate = tcx.dependency_formats(LOCAL_CRATE).iter().any(|(_, list)| {
560 use rustc::middle::dependency_format::Linkage;
561 list.iter().any(|&linkage| linkage == Linkage::Dynamic)
562 });
563 let allocator_module = if any_dynamic_crate {
564 None
565 } else if let Some(kind) = tcx.allocator_kind() {
566 let llmod_id =
567 cgu_name_builder.build_cgu_name(LOCAL_CRATE, &["crate"], Some("allocator")).to_string();
568 let mut modules = backend.new_metadata(tcx, &llmod_id);
569 tcx.sess
570 .time("write_allocator_module", || backend.codegen_allocator(tcx, &mut modules, kind));
571
572 Some(ModuleCodegen { name: llmod_id, module_llvm: modules, kind: ModuleKind::Allocator })
573 } else {
574 None
575 };
576
577 if let Some(allocator_module) = allocator_module {
578 ongoing_codegen.submit_pre_codegened_module_to_llvm(tcx, allocator_module);
579 }
580
581 if need_metadata_module {
582 // Codegen the encoded metadata.
583 let metadata_cgu_name =
584 cgu_name_builder.build_cgu_name(LOCAL_CRATE, &["crate"], Some("metadata")).to_string();
585 let mut metadata_llvm_module = backend.new_metadata(tcx, &metadata_cgu_name);
586 tcx.sess.time("write_compressed_metadata", || {
587 backend.write_compressed_metadata(
588 tcx,
589 &ongoing_codegen.metadata,
590 &mut metadata_llvm_module,
591 );
592 });
593
594 let metadata_module = ModuleCodegen {
595 name: metadata_cgu_name,
596 module_llvm: metadata_llvm_module,
597 kind: ModuleKind::Metadata,
598 };
599 ongoing_codegen.submit_pre_codegened_module_to_llvm(tcx, metadata_module);
600 }
601
602 // We sort the codegen units by size. This way we can schedule work for LLVM
603 // a bit more efficiently.
604 let codegen_units = {
605 let mut codegen_units = codegen_units;
606 codegen_units.sort_by_cached_key(|cgu| cmp::Reverse(cgu.size_estimate()));
607 codegen_units
608 };
609
610 let total_codegen_time = Lock::new(Duration::new(0, 0));
611
612 // The non-parallel compiler can only translate codegen units to LLVM IR
613 // on a single thread, leading to a staircase effect where the N LLVM
614 // threads have to wait on the single codegen threads to generate work
615 // for them. The parallel compiler does not have this restriction, so
616 // we can pre-load the LLVM queue in parallel before handing off
617 // coordination to the OnGoingCodegen scheduler.
618 //
619 // This likely is a temporary measure. Once we don't have to support the
620 // non-parallel compiler anymore, we can compile CGUs end-to-end in
621 // parallel and get rid of the complicated scheduling logic.
622 let pre_compile_cgus = |cgu_reuse: &[CguReuse]| {
623 if cfg!(parallel_compiler) {
624 tcx.sess.time("compile_first_CGU_batch", || {
625 // Try to find one CGU to compile per thread.
626 let cgus: Vec<_> = cgu_reuse
627 .iter()
628 .enumerate()
629 .filter(|&(_, reuse)| reuse == &CguReuse::No)
630 .take(tcx.sess.threads())
631 .collect();
632
633 // Compile the found CGUs in parallel.
634 par_iter(cgus)
635 .map(|(i, _)| {
636 let start_time = Instant::now();
637 let module = backend.compile_codegen_unit(tcx, codegen_units[i].name());
638 let mut time = total_codegen_time.lock();
639 *time += start_time.elapsed();
640 (i, module)
641 })
642 .collect()
643 })
644 } else {
645 FxHashMap::default()
646 }
647 };
648
649 let mut cgu_reuse = Vec::new();
650 let mut pre_compiled_cgus: Option<FxHashMap<usize, _>> = None;
651
652 for (i, cgu) in codegen_units.iter().enumerate() {
653 ongoing_codegen.wait_for_signal_to_codegen_item();
654 ongoing_codegen.check_for_errors(tcx.sess);
655
656 // Do some setup work in the first iteration
657 if pre_compiled_cgus.is_none() {
658 // Calculate the CGU reuse
659 cgu_reuse = tcx.sess.time("find_cgu_reuse", || {
660 codegen_units.iter().map(|cgu| determine_cgu_reuse(tcx, &cgu)).collect()
661 });
662 // Pre compile some CGUs
663 pre_compiled_cgus = Some(pre_compile_cgus(&cgu_reuse));
664 }
665
666 let cgu_reuse = cgu_reuse[i];
667 tcx.sess.cgu_reuse_tracker.set_actual_reuse(&cgu.name().as_str(), cgu_reuse);
668
669 match cgu_reuse {
670 CguReuse::No => {
671 let (module, cost) =
672 if let Some(cgu) = pre_compiled_cgus.as_mut().unwrap().remove(&i) {
673 cgu
674 } else {
675 let start_time = Instant::now();
676 let module = backend.compile_codegen_unit(tcx, cgu.name());
677 let mut time = total_codegen_time.lock();
678 *time += start_time.elapsed();
679 module
680 };
681 submit_codegened_module_to_llvm(
682 &backend,
683 &ongoing_codegen.coordinator_send,
684 module,
685 cost,
686 );
687 false
688 }
689 CguReuse::PreLto => {
690 submit_pre_lto_module_to_llvm(
691 &backend,
692 tcx,
693 &ongoing_codegen.coordinator_send,
694 CachedModuleCodegen {
695 name: cgu.name().to_string(),
696 source: cgu.work_product(tcx),
697 },
698 );
699 true
700 }
701 CguReuse::PostLto => {
702 submit_post_lto_module_to_llvm(
703 &backend,
704 &ongoing_codegen.coordinator_send,
705 CachedModuleCodegen {
706 name: cgu.name().to_string(),
707 source: cgu.work_product(tcx),
708 },
709 );
710 true
711 }
712 };
713 }
714
715 ongoing_codegen.codegen_finished(tcx);
716
717 // Since the main thread is sometimes blocked during codegen, we keep track
718 // -Ztime-passes output manually.
719 print_time_passes_entry(
720 tcx.sess.time_passes(),
721 "codegen_to_LLVM_IR",
722 total_codegen_time.into_inner(),
723 );
724
725 ::rustc_incremental::assert_module_sources::assert_module_sources(tcx);
726
727 symbol_names_test::report_symbol_names(tcx);
728
729 ongoing_codegen.check_for_errors(tcx.sess);
730
731 finalize_tcx(tcx);
732
733 ongoing_codegen.into_inner()
734 }
735
736 /// A curious wrapper structure whose only purpose is to call `codegen_aborted`
737 /// when it's dropped abnormally.
738 ///
739 /// In the process of working on rust-lang/rust#55238 a mysterious segfault was
740 /// stumbled upon. The segfault was never reproduced locally, but it was
741 /// suspected to be related to the fact that codegen worker threads were
742 /// sticking around by the time the main thread was exiting, causing issues.
743 ///
744 /// This structure is an attempt to fix that issue where the `codegen_aborted`
745 /// message will block until all workers have finished. This should ensure that
746 /// even if the main codegen thread panics we'll wait for pending work to
747 /// complete before returning from the main thread, hopefully avoiding
748 /// segfaults.
749 ///
750 /// If you see this comment in the code, then it means that this workaround
751 /// worked! We may yet one day track down the mysterious cause of that
752 /// segfault...
753 struct AbortCodegenOnDrop<B: ExtraBackendMethods>(Option<OngoingCodegen<B>>);
754
755 impl<B: ExtraBackendMethods> AbortCodegenOnDrop<B> {
756 fn into_inner(mut self) -> OngoingCodegen<B> {
757 self.0.take().unwrap()
758 }
759 }
760
761 impl<B: ExtraBackendMethods> Deref for AbortCodegenOnDrop<B> {
762 type Target = OngoingCodegen<B>;
763
764 fn deref(&self) -> &OngoingCodegen<B> {
765 self.0.as_ref().unwrap()
766 }
767 }
768
769 impl<B: ExtraBackendMethods> DerefMut for AbortCodegenOnDrop<B> {
770 fn deref_mut(&mut self) -> &mut OngoingCodegen<B> {
771 self.0.as_mut().unwrap()
772 }
773 }
774
775 impl<B: ExtraBackendMethods> Drop for AbortCodegenOnDrop<B> {
776 fn drop(&mut self) {
777 if let Some(codegen) = self.0.take() {
778 codegen.codegen_aborted();
779 }
780 }
781 }
782
783 fn finalize_tcx(tcx: TyCtxt<'_>) {
784 tcx.sess.time("assert_dep_graph", || ::rustc_incremental::assert_dep_graph(tcx));
785 tcx.sess.time("serialize_dep_graph", || ::rustc_incremental::save_dep_graph(tcx));
786
787 // We assume that no queries are run past here. If there are new queries
788 // after this point, they'll show up as "<unknown>" in self-profiling data.
789 {
790 let _prof_timer = tcx.prof.generic_activity("self_profile_alloc_query_strings");
791 tcx.alloc_self_profile_query_strings();
792 }
793 }
794
795 impl CrateInfo {
796 pub fn new(tcx: TyCtxt<'_>) -> CrateInfo {
797 let mut info = CrateInfo {
798 panic_runtime: None,
799 compiler_builtins: None,
800 profiler_runtime: None,
801 is_no_builtins: Default::default(),
802 native_libraries: Default::default(),
803 used_libraries: tcx.native_libraries(LOCAL_CRATE),
804 link_args: tcx.link_args(LOCAL_CRATE),
805 crate_name: Default::default(),
806 used_crates_dynamic: cstore::used_crates(tcx, LinkagePreference::RequireDynamic),
807 used_crates_static: cstore::used_crates(tcx, LinkagePreference::RequireStatic),
808 used_crate_source: Default::default(),
809 lang_item_to_crate: Default::default(),
810 missing_lang_items: Default::default(),
811 dependency_formats: tcx.dependency_formats(LOCAL_CRATE),
812 };
813 let lang_items = tcx.lang_items();
814
815 let crates = tcx.crates();
816
817 let n_crates = crates.len();
818 info.native_libraries.reserve(n_crates);
819 info.crate_name.reserve(n_crates);
820 info.used_crate_source.reserve(n_crates);
821 info.missing_lang_items.reserve(n_crates);
822
823 for &cnum in crates.iter() {
824 info.native_libraries.insert(cnum, tcx.native_libraries(cnum));
825 info.crate_name.insert(cnum, tcx.crate_name(cnum).to_string());
826 info.used_crate_source.insert(cnum, tcx.used_crate_source(cnum));
827 if tcx.is_panic_runtime(cnum) {
828 info.panic_runtime = Some(cnum);
829 }
830 if tcx.is_compiler_builtins(cnum) {
831 info.compiler_builtins = Some(cnum);
832 }
833 if tcx.is_profiler_runtime(cnum) {
834 info.profiler_runtime = Some(cnum);
835 }
836 if tcx.is_no_builtins(cnum) {
837 info.is_no_builtins.insert(cnum);
838 }
839 let missing = tcx.missing_lang_items(cnum);
840 for &item in missing.iter() {
841 if let Ok(id) = lang_items.require(item) {
842 info.lang_item_to_crate.insert(item, id.krate);
843 }
844 }
845
846 // No need to look for lang items that are whitelisted and don't
847 // actually need to exist.
848 let missing = missing
849 .iter()
850 .cloned()
851 .filter(|&l| !weak_lang_items::whitelisted(tcx, l))
852 .collect();
853 info.missing_lang_items.insert(cnum, missing);
854 }
855
856 return info;
857 }
858 }
859
860 pub fn provide_both(providers: &mut Providers<'_>) {
861 providers.backend_optimization_level = |tcx, cratenum| {
862 let for_speed = match tcx.sess.opts.optimize {
863 // If globally no optimisation is done, #[optimize] has no effect.
864 //
865 // This is done because if we ended up "upgrading" to `-O2` here, we’d populate the
866 // pass manager and it is likely that some module-wide passes (such as inliner or
867 // cross-function constant propagation) would ignore the `optnone` annotation we put
868 // on the functions, thus necessarily involving these functions into optimisations.
869 config::OptLevel::No => return config::OptLevel::No,
870 // If globally optimise-speed is already specified, just use that level.
871 config::OptLevel::Less => return config::OptLevel::Less,
872 config::OptLevel::Default => return config::OptLevel::Default,
873 config::OptLevel::Aggressive => return config::OptLevel::Aggressive,
874 // If globally optimize-for-size has been requested, use -O2 instead (if optimize(size)
875 // are present).
876 config::OptLevel::Size => config::OptLevel::Default,
877 config::OptLevel::SizeMin => config::OptLevel::Default,
878 };
879
880 let (defids, _) = tcx.collect_and_partition_mono_items(cratenum);
881 for id in &*defids {
882 let CodegenFnAttrs { optimize, .. } = tcx.codegen_fn_attrs(*id);
883 match optimize {
884 attr::OptimizeAttr::None => continue,
885 attr::OptimizeAttr::Size => continue,
886 attr::OptimizeAttr::Speed => {
887 return for_speed;
888 }
889 }
890 }
891 return tcx.sess.opts.optimize;
892 };
893
894 providers.dllimport_foreign_items = |tcx, krate| {
895 let module_map = tcx.foreign_modules(krate);
896 let module_map =
897 module_map.iter().map(|lib| (lib.def_id, lib)).collect::<FxHashMap<_, _>>();
898
899 let dllimports = tcx
900 .native_libraries(krate)
901 .iter()
902 .filter(|lib| {
903 if lib.kind != cstore::NativeLibraryKind::NativeUnknown {
904 return false;
905 }
906 let cfg = match lib.cfg {
907 Some(ref cfg) => cfg,
908 None => return true,
909 };
910 attr::cfg_matches(cfg, &tcx.sess.parse_sess, None)
911 })
912 .filter_map(|lib| lib.foreign_module)
913 .map(|id| &module_map[&id])
914 .flat_map(|module| module.foreign_items.iter().cloned())
915 .collect();
916 tcx.arena.alloc(dllimports)
917 };
918
919 providers.is_dllimport_foreign_item =
920 |tcx, def_id| tcx.dllimport_foreign_items(def_id.krate).contains(&def_id);
921 }
922
923 fn determine_cgu_reuse<'tcx>(tcx: TyCtxt<'tcx>, cgu: &CodegenUnit<'tcx>) -> CguReuse {
924 if !tcx.dep_graph.is_fully_enabled() {
925 return CguReuse::No;
926 }
927
928 let work_product_id = &cgu.work_product_id();
929 if tcx.dep_graph.previous_work_product(work_product_id).is_none() {
930 // We don't have anything cached for this CGU. This can happen
931 // if the CGU did not exist in the previous session.
932 return CguReuse::No;
933 }
934
935 // Try to mark the CGU as green. If it we can do so, it means that nothing
936 // affecting the LLVM module has changed and we can re-use a cached version.
937 // If we compile with any kind of LTO, this means we can re-use the bitcode
938 // of the Pre-LTO stage (possibly also the Post-LTO version but we'll only
939 // know that later). If we are not doing LTO, there is only one optimized
940 // version of each module, so we re-use that.
941 let dep_node = cgu.codegen_dep_node(tcx);
942 assert!(
943 !tcx.dep_graph.dep_node_exists(&dep_node),
944 "CompileCodegenUnit dep-node for CGU `{}` already exists before marking.",
945 cgu.name()
946 );
947
948 if tcx.dep_graph.try_mark_green(tcx, &dep_node).is_some() {
949 // We can re-use either the pre- or the post-thinlto state
950 if tcx.sess.lto() != Lto::No { CguReuse::PreLto } else { CguReuse::PostLto }
951 } else {
952 CguReuse::No
953 }
954 }