]> git.proxmox.com Git - rustc.git/blob - src/librustc_codegen_ssa/mir/block.rs
New upstream version 1.38.0+dfsg1
[rustc.git] / src / librustc_codegen_ssa / mir / block.rs
1 use rustc::middle::lang_items;
2 use rustc::ty::{self, Ty, TypeFoldable, Instance};
3 use rustc::ty::layout::{self, LayoutOf, HasTyCtxt, FnTypeExt};
4 use rustc::mir::{self, Place, PlaceBase, Static, StaticKind};
5 use rustc::mir::interpret::PanicInfo;
6 use rustc_target::abi::call::{ArgType, FnType, PassMode, IgnoreMode};
7 use rustc_target::spec::abi::Abi;
8 use crate::base;
9 use crate::MemFlags;
10 use crate::common::{self, IntPredicate};
11 use crate::meth;
12
13 use crate::traits::*;
14
15 use std::borrow::Cow;
16
17 use syntax::symbol::LocalInternedString;
18 use syntax_pos::Pos;
19
20 use super::{FunctionCx, LocalRef};
21 use super::place::PlaceRef;
22 use super::operand::OperandRef;
23 use super::operand::OperandValue::{Pair, Ref, Immediate};
24
25 /// Used by `FunctionCx::codegen_terminator` for emitting common patterns
26 /// e.g., creating a basic block, calling a function, etc.
27 struct TerminatorCodegenHelper<'a, 'tcx> {
28 bb: &'a mir::BasicBlock,
29 terminator: &'a mir::Terminator<'tcx>,
30 funclet_bb: Option<mir::BasicBlock>,
31 }
32
33 impl<'a, 'tcx> TerminatorCodegenHelper<'a, 'tcx> {
34 /// Returns the associated funclet from `FunctionCx::funclets` for the
35 /// `funclet_bb` member if it is not `None`.
36 fn funclet<'c, 'b, Bx: BuilderMethods<'b, 'tcx>>(
37 &self,
38 fx: &'c mut FunctionCx<'b, 'tcx, Bx>,
39 ) -> Option<&'c Bx::Funclet> {
40 match self.funclet_bb {
41 Some(funcl) => fx.funclets[funcl].as_ref(),
42 None => None,
43 }
44 }
45
46 fn lltarget<'b, 'c, Bx: BuilderMethods<'b, 'tcx>>(
47 &self,
48 fx: &'c mut FunctionCx<'b, 'tcx, Bx>,
49 target: mir::BasicBlock,
50 ) -> (Bx::BasicBlock, bool) {
51 let span = self.terminator.source_info.span;
52 let lltarget = fx.blocks[target];
53 let target_funclet = fx.cleanup_kinds[target].funclet_bb(target);
54 match (self.funclet_bb, target_funclet) {
55 (None, None) => (lltarget, false),
56 (Some(f), Some(t_f)) if f == t_f || !base::wants_msvc_seh(fx.cx.tcx().sess) =>
57 (lltarget, false),
58 // jump *into* cleanup - need a landing pad if GNU
59 (None, Some(_)) => (fx.landing_pad_to(target), false),
60 (Some(_), None) => span_bug!(span, "{:?} - jump out of cleanup?", self.terminator),
61 (Some(_), Some(_)) => (fx.landing_pad_to(target), true),
62 }
63 }
64
65 /// Create a basic block.
66 fn llblock<'c, 'b, Bx: BuilderMethods<'b, 'tcx>>(
67 &self,
68 fx: &'c mut FunctionCx<'b, 'tcx, Bx>,
69 target: mir::BasicBlock,
70 ) -> Bx::BasicBlock {
71 let (lltarget, is_cleanupret) = self.lltarget(fx, target);
72 if is_cleanupret {
73 // MSVC cross-funclet jump - need a trampoline
74
75 debug!("llblock: creating cleanup trampoline for {:?}", target);
76 let name = &format!("{:?}_cleanup_trampoline_{:?}", self.bb, target);
77 let mut trampoline = fx.new_block(name);
78 trampoline.cleanup_ret(self.funclet(fx).unwrap(),
79 Some(lltarget));
80 trampoline.llbb()
81 } else {
82 lltarget
83 }
84 }
85
86 fn funclet_br<'c, 'b, Bx: BuilderMethods<'b, 'tcx>>(
87 &self,
88 fx: &'c mut FunctionCx<'b, 'tcx, Bx>,
89 bx: &mut Bx,
90 target: mir::BasicBlock,
91 ) {
92 let (lltarget, is_cleanupret) = self.lltarget(fx, target);
93 if is_cleanupret {
94 // micro-optimization: generate a `ret` rather than a jump
95 // to a trampoline.
96 bx.cleanup_ret(self.funclet(fx).unwrap(), Some(lltarget));
97 } else {
98 bx.br(lltarget);
99 }
100 }
101
102 /// Call `fn_ptr` of `fn_ty` with the arguments `llargs`, the optional
103 /// return destination `destination` and the cleanup function `cleanup`.
104 fn do_call<'c, 'b, Bx: BuilderMethods<'b, 'tcx>>(
105 &self,
106 fx: &'c mut FunctionCx<'b, 'tcx, Bx>,
107 bx: &mut Bx,
108 fn_ty: FnType<'tcx, Ty<'tcx>>,
109 fn_ptr: Bx::Value,
110 llargs: &[Bx::Value],
111 destination: Option<(ReturnDest<'tcx, Bx::Value>, mir::BasicBlock)>,
112 cleanup: Option<mir::BasicBlock>,
113 ) {
114 if let Some(cleanup) = cleanup {
115 let ret_bx = if let Some((_, target)) = destination {
116 fx.blocks[target]
117 } else {
118 fx.unreachable_block()
119 };
120 let invokeret = bx.invoke(fn_ptr,
121 &llargs,
122 ret_bx,
123 self.llblock(fx, cleanup),
124 self.funclet(fx));
125 bx.apply_attrs_callsite(&fn_ty, invokeret);
126
127 if let Some((ret_dest, target)) = destination {
128 let mut ret_bx = fx.build_block(target);
129 fx.set_debug_loc(&mut ret_bx, self.terminator.source_info);
130 fx.store_return(&mut ret_bx, ret_dest, &fn_ty.ret, invokeret);
131 }
132 } else {
133 let llret = bx.call(fn_ptr, &llargs, self.funclet(fx));
134 bx.apply_attrs_callsite(&fn_ty, llret);
135 if fx.mir[*self.bb].is_cleanup {
136 // Cleanup is always the cold path. Don't inline
137 // drop glue. Also, when there is a deeply-nested
138 // struct, there are "symmetry" issues that cause
139 // exponential inlining - see issue #41696.
140 bx.do_not_inline(llret);
141 }
142
143 if let Some((ret_dest, target)) = destination {
144 fx.store_return(bx, ret_dest, &fn_ty.ret, llret);
145 self.funclet_br(fx, bx, target);
146 } else {
147 bx.unreachable();
148 }
149 }
150 }
151 }
152
153 /// Codegen implementations for some terminator variants.
154 impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
155 /// Generates code for a `Resume` terminator.
156 fn codegen_resume_terminator<'b>(
157 &mut self,
158 helper: TerminatorCodegenHelper<'b, 'tcx>,
159 mut bx: Bx,
160 ) {
161 if let Some(funclet) = helper.funclet(self) {
162 bx.cleanup_ret(funclet, None);
163 } else {
164 let slot = self.get_personality_slot(&mut bx);
165 let lp0 = slot.project_field(&mut bx, 0);
166 let lp0 = bx.load_operand(lp0).immediate();
167 let lp1 = slot.project_field(&mut bx, 1);
168 let lp1 = bx.load_operand(lp1).immediate();
169 slot.storage_dead(&mut bx);
170
171 if !bx.sess().target.target.options.custom_unwind_resume {
172 let mut lp = bx.const_undef(self.landing_pad_type());
173 lp = bx.insert_value(lp, lp0, 0);
174 lp = bx.insert_value(lp, lp1, 1);
175 bx.resume(lp);
176 } else {
177 bx.call(bx.eh_unwind_resume(), &[lp0],
178 helper.funclet(self));
179 bx.unreachable();
180 }
181 }
182 }
183
184 fn codegen_switchint_terminator<'b>(
185 &mut self,
186 helper: TerminatorCodegenHelper<'b, 'tcx>,
187 mut bx: Bx,
188 discr: &mir::Operand<'tcx>,
189 switch_ty: Ty<'tcx>,
190 values: &Cow<'tcx, [u128]>,
191 targets: &Vec<mir::BasicBlock>,
192 ) {
193 let discr = self.codegen_operand(&mut bx, &discr);
194 if targets.len() == 2 {
195 // If there are two targets, emit br instead of switch
196 let lltrue = helper.llblock(self, targets[0]);
197 let llfalse = helper.llblock(self, targets[1]);
198 if switch_ty == bx.tcx().types.bool {
199 // Don't generate trivial icmps when switching on bool
200 if let [0] = values[..] {
201 bx.cond_br(discr.immediate(), llfalse, lltrue);
202 } else {
203 assert_eq!(&values[..], &[1]);
204 bx.cond_br(discr.immediate(), lltrue, llfalse);
205 }
206 } else {
207 let switch_llty = bx.immediate_backend_type(
208 bx.layout_of(switch_ty)
209 );
210 let llval = bx.const_uint_big(switch_llty, values[0]);
211 let cmp = bx.icmp(IntPredicate::IntEQ, discr.immediate(), llval);
212 bx.cond_br(cmp, lltrue, llfalse);
213 }
214 } else {
215 let (otherwise, targets) = targets.split_last().unwrap();
216 bx.switch(
217 discr.immediate(),
218 helper.llblock(self, *otherwise),
219 values.iter().zip(targets).map(|(&value, target)| {
220 (value, helper.llblock(self, *target))
221 })
222 );
223 }
224 }
225
226 fn codegen_return_terminator(&mut self, mut bx: Bx) {
227 if self.fn_ty.c_variadic {
228 match self.va_list_ref {
229 Some(va_list) => {
230 bx.va_end(va_list.llval);
231 }
232 None => {
233 bug!("C-variadic function must have a `va_list_ref`");
234 }
235 }
236 }
237 if self.fn_ty.ret.layout.abi.is_uninhabited() {
238 // Functions with uninhabited return values are marked `noreturn`,
239 // so we should make sure that we never actually do.
240 bx.abort();
241 bx.unreachable();
242 return;
243 }
244 let llval = match self.fn_ty.ret.mode {
245 PassMode::Ignore(IgnoreMode::Zst) | PassMode::Indirect(..) => {
246 bx.ret_void();
247 return;
248 }
249
250 PassMode::Ignore(IgnoreMode::CVarArgs) => {
251 bug!("C-variadic arguments should never be the return type");
252 }
253
254 PassMode::Direct(_) | PassMode::Pair(..) => {
255 let op =
256 self.codegen_consume(&mut bx, &mir::Place::RETURN_PLACE.as_ref());
257 if let Ref(llval, _, align) = op.val {
258 bx.load(llval, align)
259 } else {
260 op.immediate_or_packed_pair(&mut bx)
261 }
262 }
263
264 PassMode::Cast(cast_ty) => {
265 let op = match self.locals[mir::RETURN_PLACE] {
266 LocalRef::Operand(Some(op)) => op,
267 LocalRef::Operand(None) => bug!("use of return before def"),
268 LocalRef::Place(cg_place) => {
269 OperandRef {
270 val: Ref(cg_place.llval, None, cg_place.align),
271 layout: cg_place.layout
272 }
273 }
274 LocalRef::UnsizedPlace(_) => bug!("return type must be sized"),
275 };
276 let llslot = match op.val {
277 Immediate(_) | Pair(..) => {
278 let scratch =
279 PlaceRef::alloca(&mut bx, self.fn_ty.ret.layout, "ret");
280 op.val.store(&mut bx, scratch);
281 scratch.llval
282 }
283 Ref(llval, _, align) => {
284 assert_eq!(align, op.layout.align.abi,
285 "return place is unaligned!");
286 llval
287 }
288 };
289 let addr = bx.pointercast(llslot, bx.type_ptr_to(
290 bx.cast_backend_type(&cast_ty)
291 ));
292 bx.load(addr, self.fn_ty.ret.layout.align.abi)
293 }
294 };
295 bx.ret(llval);
296 }
297
298
299 fn codegen_drop_terminator<'b>(
300 &mut self,
301 helper: TerminatorCodegenHelper<'b, 'tcx>,
302 mut bx: Bx,
303 location: &mir::Place<'tcx>,
304 target: mir::BasicBlock,
305 unwind: Option<mir::BasicBlock>,
306 ) {
307 let ty = location.ty(self.mir, bx.tcx()).ty;
308 let ty = self.monomorphize(&ty);
309 let drop_fn = Instance::resolve_drop_in_place(bx.tcx(), ty);
310
311 if let ty::InstanceDef::DropGlue(_, None) = drop_fn.def {
312 // we don't actually need to drop anything.
313 helper.funclet_br(self, &mut bx, target);
314 return
315 }
316
317 let place = self.codegen_place(&mut bx, &location.as_ref());
318 let (args1, args2);
319 let mut args = if let Some(llextra) = place.llextra {
320 args2 = [place.llval, llextra];
321 &args2[..]
322 } else {
323 args1 = [place.llval];
324 &args1[..]
325 };
326 let (drop_fn, fn_ty) = match ty.sty {
327 ty::Dynamic(..) => {
328 let sig = drop_fn.fn_sig(self.cx.tcx());
329 let sig = self.cx.tcx().normalize_erasing_late_bound_regions(
330 ty::ParamEnv::reveal_all(),
331 &sig,
332 );
333 let fn_ty = FnType::new_vtable(&bx, sig, &[]);
334 let vtable = args[1];
335 args = &args[..1];
336 (meth::DESTRUCTOR.get_fn(&mut bx, vtable, &fn_ty), fn_ty)
337 }
338 _ => {
339 (bx.get_fn(drop_fn),
340 FnType::of_instance(&bx, drop_fn))
341 }
342 };
343 helper.do_call(self, &mut bx, fn_ty, drop_fn, args,
344 Some((ReturnDest::Nothing, target)),
345 unwind);
346 }
347
348 fn codegen_assert_terminator<'b>(
349 &mut self,
350 helper: TerminatorCodegenHelper<'b, 'tcx>,
351 mut bx: Bx,
352 terminator: &mir::Terminator<'tcx>,
353 cond: &mir::Operand<'tcx>,
354 expected: bool,
355 msg: &mir::AssertMessage<'tcx>,
356 target: mir::BasicBlock,
357 cleanup: Option<mir::BasicBlock>,
358 ) {
359 let span = terminator.source_info.span;
360 let cond = self.codegen_operand(&mut bx, cond).immediate();
361 let mut const_cond = bx.const_to_opt_u128(cond, false).map(|c| c == 1);
362
363 // This case can currently arise only from functions marked
364 // with #[rustc_inherit_overflow_checks] and inlined from
365 // another crate (mostly core::num generic/#[inline] fns),
366 // while the current crate doesn't use overflow checks.
367 // NOTE: Unlike binops, negation doesn't have its own
368 // checked operation, just a comparison with the minimum
369 // value, so we have to check for the assert message.
370 if !bx.check_overflow() {
371 if let PanicInfo::OverflowNeg = *msg {
372 const_cond = Some(expected);
373 }
374 }
375
376 // Don't codegen the panic block if success if known.
377 if const_cond == Some(expected) {
378 helper.funclet_br(self, &mut bx, target);
379 return;
380 }
381
382 // Pass the condition through llvm.expect for branch hinting.
383 let cond = bx.expect(cond, expected);
384
385 // Create the failure block and the conditional branch to it.
386 let lltarget = helper.llblock(self, target);
387 let panic_block = self.new_block("panic");
388 if expected {
389 bx.cond_br(cond, lltarget, panic_block.llbb());
390 } else {
391 bx.cond_br(cond, panic_block.llbb(), lltarget);
392 }
393
394 // After this point, bx is the block for the call to panic.
395 bx = panic_block;
396 self.set_debug_loc(&mut bx, terminator.source_info);
397
398 // Get the location information.
399 let loc = bx.sess().source_map().lookup_char_pos(span.lo());
400 let filename = LocalInternedString::intern(&loc.file.name.to_string());
401 let line = bx.const_u32(loc.line as u32);
402 let col = bx.const_u32(loc.col.to_usize() as u32 + 1);
403
404 // Put together the arguments to the panic entry point.
405 let (lang_item, args) = match msg {
406 PanicInfo::BoundsCheck { ref len, ref index } => {
407 let len = self.codegen_operand(&mut bx, len).immediate();
408 let index = self.codegen_operand(&mut bx, index).immediate();
409
410 let file_line_col = bx.static_panic_msg(
411 None,
412 filename,
413 line,
414 col,
415 "panic_bounds_check_loc",
416 );
417 (lang_items::PanicBoundsCheckFnLangItem,
418 vec![file_line_col, index, len])
419 }
420 _ => {
421 let str = msg.description();
422 let msg_str = LocalInternedString::intern(str);
423 let msg_file_line_col = bx.static_panic_msg(
424 Some(msg_str),
425 filename,
426 line,
427 col,
428 "panic_loc",
429 );
430 (lang_items::PanicFnLangItem,
431 vec![msg_file_line_col])
432 }
433 };
434
435 // Obtain the panic entry point.
436 let def_id = common::langcall(bx.tcx(), Some(span), "", lang_item);
437 let instance = ty::Instance::mono(bx.tcx(), def_id);
438 let fn_ty = FnType::of_instance(&bx, instance);
439 let llfn = bx.get_fn(instance);
440
441 // Codegen the actual panic invoke/call.
442 helper.do_call(self, &mut bx, fn_ty, llfn, &args, None, cleanup);
443 }
444
445 fn codegen_call_terminator<'b>(
446 &mut self,
447 helper: TerminatorCodegenHelper<'b, 'tcx>,
448 mut bx: Bx,
449 terminator: &mir::Terminator<'tcx>,
450 func: &mir::Operand<'tcx>,
451 args: &Vec<mir::Operand<'tcx>>,
452 destination: &Option<(mir::Place<'tcx>, mir::BasicBlock)>,
453 cleanup: Option<mir::BasicBlock>,
454 ) {
455 let span = terminator.source_info.span;
456 // Create the callee. This is a fn ptr or zero-sized and hence a kind of scalar.
457 let callee = self.codegen_operand(&mut bx, func);
458
459 let (instance, mut llfn) = match callee.layout.ty.sty {
460 ty::FnDef(def_id, substs) => {
461 (Some(ty::Instance::resolve(bx.tcx(),
462 ty::ParamEnv::reveal_all(),
463 def_id,
464 substs).unwrap()),
465 None)
466 }
467 ty::FnPtr(_) => {
468 (None, Some(callee.immediate()))
469 }
470 _ => bug!("{} is not callable", callee.layout.ty),
471 };
472 let def = instance.map(|i| i.def);
473 let sig = callee.layout.ty.fn_sig(bx.tcx());
474 let sig = bx.tcx().normalize_erasing_late_bound_regions(
475 ty::ParamEnv::reveal_all(),
476 &sig,
477 );
478 let abi = sig.abi;
479
480 // Handle intrinsics old codegen wants Expr's for, ourselves.
481 let intrinsic = match def {
482 Some(ty::InstanceDef::Intrinsic(def_id)) =>
483 Some(bx.tcx().item_name(def_id).as_str()),
484 _ => None
485 };
486 let intrinsic = intrinsic.as_ref().map(|s| &s[..]);
487
488 if intrinsic == Some("transmute") {
489 if let Some(destination_ref) = destination.as_ref() {
490 let &(ref dest, target) = destination_ref;
491 self.codegen_transmute(&mut bx, &args[0], dest);
492 helper.funclet_br(self, &mut bx, target);
493 } else {
494 // If we are trying to transmute to an uninhabited type,
495 // it is likely there is no allotted destination. In fact,
496 // transmuting to an uninhabited type is UB, which means
497 // we can do what we like. Here, we declare that transmuting
498 // into an uninhabited type is impossible, so anything following
499 // it must be unreachable.
500 assert_eq!(bx.layout_of(sig.output()).abi, layout::Abi::Uninhabited);
501 bx.unreachable();
502 }
503 return;
504 }
505
506 // The "spoofed" `VaListImpl` added to a C-variadic functions signature
507 // should not be included in the `extra_args` calculation.
508 let extra_args_start_idx = sig.inputs().len() - if sig.c_variadic { 1 } else { 0 };
509 let extra_args = &args[extra_args_start_idx..];
510 let extra_args = extra_args.iter().map(|op_arg| {
511 let op_ty = op_arg.ty(self.mir, bx.tcx());
512 self.monomorphize(&op_ty)
513 }).collect::<Vec<_>>();
514
515 let fn_ty = match def {
516 Some(ty::InstanceDef::Virtual(..)) => {
517 FnType::new_vtable(&bx, sig, &extra_args)
518 }
519 Some(ty::InstanceDef::DropGlue(_, None)) => {
520 // Empty drop glue; a no-op.
521 let &(_, target) = destination.as_ref().unwrap();
522 helper.funclet_br(self, &mut bx, target);
523 return;
524 }
525 _ => FnType::new(&bx, sig, &extra_args)
526 };
527
528 // Emit a panic or a no-op for `panic_if_uninhabited`.
529 if intrinsic == Some("panic_if_uninhabited") {
530 let ty = instance.unwrap().substs.type_at(0);
531 let layout = bx.layout_of(ty);
532 if layout.abi.is_uninhabited() {
533 let loc = bx.sess().source_map().lookup_char_pos(span.lo());
534 let filename = LocalInternedString::intern(&loc.file.name.to_string());
535 let line = bx.const_u32(loc.line as u32);
536 let col = bx.const_u32(loc.col.to_usize() as u32 + 1);
537
538 let str = format!(
539 "Attempted to instantiate uninhabited type {}",
540 ty
541 );
542 let msg_str = LocalInternedString::intern(&str);
543 let msg_file_line_col = bx.static_panic_msg(
544 Some(msg_str),
545 filename,
546 line,
547 col,
548 "panic_loc",
549 );
550
551 // Obtain the panic entry point.
552 let def_id =
553 common::langcall(bx.tcx(), Some(span), "", lang_items::PanicFnLangItem);
554 let instance = ty::Instance::mono(bx.tcx(), def_id);
555 let fn_ty = FnType::of_instance(&bx, instance);
556 let llfn = bx.get_fn(instance);
557
558 // Codegen the actual panic invoke/call.
559 helper.do_call(
560 self,
561 &mut bx,
562 fn_ty,
563 llfn,
564 &[msg_file_line_col],
565 destination.as_ref().map(|(_, bb)| (ReturnDest::Nothing, *bb)),
566 cleanup,
567 );
568 } else {
569 // a NOP
570 helper.funclet_br(self, &mut bx, destination.as_ref().unwrap().1)
571 }
572 return;
573 }
574
575 // The arguments we'll be passing. Plus one to account for outptr, if used.
576 let arg_count = fn_ty.args.len() + fn_ty.ret.is_indirect() as usize;
577 let mut llargs = Vec::with_capacity(arg_count);
578
579 // Prepare the return value destination
580 let ret_dest = if let Some((ref dest, _)) = *destination {
581 let is_intrinsic = intrinsic.is_some();
582 self.make_return_dest(&mut bx, dest, &fn_ty.ret, &mut llargs,
583 is_intrinsic)
584 } else {
585 ReturnDest::Nothing
586 };
587
588 if intrinsic.is_some() && intrinsic != Some("drop_in_place") {
589 let dest = match ret_dest {
590 _ if fn_ty.ret.is_indirect() => llargs[0],
591 ReturnDest::Nothing =>
592 bx.const_undef(bx.type_ptr_to(bx.memory_ty(&fn_ty.ret))),
593 ReturnDest::IndirectOperand(dst, _) | ReturnDest::Store(dst) =>
594 dst.llval,
595 ReturnDest::DirectOperand(_) =>
596 bug!("Cannot use direct operand with an intrinsic call"),
597 };
598
599 let args: Vec<_> = args.iter().enumerate().map(|(i, arg)| {
600 // The indices passed to simd_shuffle* in the
601 // third argument must be constant. This is
602 // checked by const-qualification, which also
603 // promotes any complex rvalues to constants.
604 if i == 2 && intrinsic.unwrap().starts_with("simd_shuffle") {
605 match *arg {
606 // The shuffle array argument is usually not an explicit constant,
607 // but specified directly in the code. This means it gets promoted
608 // and we can then extract the value by evaluating the promoted.
609 mir::Operand::Copy(
610 Place {
611 base: PlaceBase::Static(box Static {
612 kind: StaticKind::Promoted(promoted),
613 ty,
614 }),
615 projection: None,
616 }
617 ) |
618 mir::Operand::Move(
619 Place {
620 base: PlaceBase::Static(box Static {
621 kind: StaticKind::Promoted(promoted),
622 ty,
623 }),
624 projection: None,
625 }
626 ) => {
627 let param_env = ty::ParamEnv::reveal_all();
628 let cid = mir::interpret::GlobalId {
629 instance: self.instance,
630 promoted: Some(promoted),
631 };
632 let c = bx.tcx().const_eval(param_env.and(cid));
633 let (llval, ty) = self.simd_shuffle_indices(
634 &bx,
635 terminator.source_info.span,
636 ty,
637 c,
638 );
639 return OperandRef {
640 val: Immediate(llval),
641 layout: bx.layout_of(ty),
642 };
643
644 }
645 mir::Operand::Copy(_) |
646 mir::Operand::Move(_) => {
647 span_bug!(span, "shuffle indices must be constant");
648 }
649 mir::Operand::Constant(ref constant) => {
650 let c = self.eval_mir_constant(constant);
651 let (llval, ty) = self.simd_shuffle_indices(
652 &bx,
653 constant.span,
654 constant.ty,
655 c,
656 );
657 return OperandRef {
658 val: Immediate(llval),
659 layout: bx.layout_of(ty)
660 };
661 }
662 }
663 }
664
665 self.codegen_operand(&mut bx, arg)
666 }).collect();
667
668
669 let callee_ty = instance.as_ref().unwrap().ty(bx.tcx());
670 bx.codegen_intrinsic_call(callee_ty, &fn_ty, &args, dest,
671 terminator.source_info.span);
672
673 if let ReturnDest::IndirectOperand(dst, _) = ret_dest {
674 self.store_return(&mut bx, ret_dest, &fn_ty.ret, dst.llval);
675 }
676
677 if let Some((_, target)) = *destination {
678 helper.funclet_br(self, &mut bx, target);
679 } else {
680 bx.unreachable();
681 }
682
683 return;
684 }
685
686 // Split the rust-call tupled arguments off.
687 let (first_args, untuple) = if abi == Abi::RustCall && !args.is_empty() {
688 let (tup, args) = args.split_last().unwrap();
689 (args, Some(tup))
690 } else {
691 (&args[..], None)
692 };
693
694 // Useful determining if the current argument is the "spoofed" `VaListImpl`
695 let last_arg_idx = if sig.inputs().is_empty() {
696 None
697 } else {
698 Some(sig.inputs().len() - 1)
699 };
700 'make_args: for (i, arg) in first_args.iter().enumerate() {
701 // If this is a C-variadic function the function signature contains
702 // an "spoofed" `VaListImpl`. This argument is ignored, but we need to
703 // populate it with a dummy operand so that the users real arguments
704 // are not overwritten.
705 let i = if sig.c_variadic && last_arg_idx.map(|x| i >= x).unwrap_or(false) {
706 if i + 1 < fn_ty.args.len() {
707 i + 1
708 } else {
709 break 'make_args
710 }
711 } else {
712 i
713 };
714 let mut op = self.codegen_operand(&mut bx, arg);
715
716 if let (0, Some(ty::InstanceDef::Virtual(_, idx))) = (i, def) {
717 if let Pair(..) = op.val {
718 // In the case of Rc<Self>, we need to explicitly pass a
719 // *mut RcBox<Self> with a Scalar (not ScalarPair) ABI. This is a hack
720 // that is understood elsewhere in the compiler as a method on
721 // `dyn Trait`.
722 // To get a `*mut RcBox<Self>`, we just keep unwrapping newtypes until
723 // we get a value of a built-in pointer type
724 'descend_newtypes: while !op.layout.ty.is_unsafe_ptr()
725 && !op.layout.ty.is_region_ptr()
726 {
727 'iter_fields: for i in 0..op.layout.fields.count() {
728 let field = op.extract_field(&mut bx, i);
729 if !field.layout.is_zst() {
730 // we found the one non-zero-sized field that is allowed
731 // now find *its* non-zero-sized field, or stop if it's a
732 // pointer
733 op = field;
734 continue 'descend_newtypes
735 }
736 }
737
738 span_bug!(span, "receiver has no non-zero-sized fields {:?}", op);
739 }
740
741 // now that we have `*dyn Trait` or `&dyn Trait`, split it up into its
742 // data pointer and vtable. Look up the method in the vtable, and pass
743 // the data pointer as the first argument
744 match op.val {
745 Pair(data_ptr, meta) => {
746 llfn = Some(meth::VirtualIndex::from_index(idx)
747 .get_fn(&mut bx, meta, &fn_ty));
748 llargs.push(data_ptr);
749 continue 'make_args
750 }
751 other => bug!("expected a Pair, got {:?}", other),
752 }
753 } else if let Ref(data_ptr, Some(meta), _) = op.val {
754 // by-value dynamic dispatch
755 llfn = Some(meth::VirtualIndex::from_index(idx)
756 .get_fn(&mut bx, meta, &fn_ty));
757 llargs.push(data_ptr);
758 continue;
759 } else {
760 span_bug!(span, "can't codegen a virtual call on {:?}", op);
761 }
762 }
763
764 // The callee needs to own the argument memory if we pass it
765 // by-ref, so make a local copy of non-immediate constants.
766 match (arg, op.val) {
767 (&mir::Operand::Copy(_), Ref(_, None, _)) |
768 (&mir::Operand::Constant(_), Ref(_, None, _)) => {
769 let tmp = PlaceRef::alloca(&mut bx, op.layout, "const");
770 op.val.store(&mut bx, tmp);
771 op.val = Ref(tmp.llval, None, tmp.align);
772 }
773 _ => {}
774 }
775
776 self.codegen_argument(&mut bx, op, &mut llargs, &fn_ty.args[i]);
777 }
778 if let Some(tup) = untuple {
779 self.codegen_arguments_untupled(&mut bx, tup, &mut llargs,
780 &fn_ty.args[first_args.len()..])
781 }
782
783 let fn_ptr = match (llfn, instance) {
784 (Some(llfn), _) => llfn,
785 (None, Some(instance)) => bx.get_fn(instance),
786 _ => span_bug!(span, "no llfn for call"),
787 };
788
789 helper.do_call(self, &mut bx, fn_ty, fn_ptr, &llargs,
790 destination.as_ref().map(|&(_, target)| (ret_dest, target)),
791 cleanup);
792 }
793 }
794
795 impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
796 pub fn codegen_block(
797 &mut self,
798 bb: mir::BasicBlock,
799 ) {
800 let mut bx = self.build_block(bb);
801 let data = &self.mir[bb];
802
803 debug!("codegen_block({:?}={:?})", bb, data);
804
805 for statement in &data.statements {
806 bx = self.codegen_statement(bx, statement);
807 }
808
809 self.codegen_terminator(bx, bb, data.terminator());
810 }
811
812 fn codegen_terminator(
813 &mut self,
814 mut bx: Bx,
815 bb: mir::BasicBlock,
816 terminator: &mir::Terminator<'tcx>
817 ) {
818 debug!("codegen_terminator: {:?}", terminator);
819
820 // Create the cleanup bundle, if needed.
821 let funclet_bb = self.cleanup_kinds[bb].funclet_bb(bb);
822 let helper = TerminatorCodegenHelper {
823 bb: &bb, terminator, funclet_bb
824 };
825
826 self.set_debug_loc(&mut bx, terminator.source_info);
827 match terminator.kind {
828 mir::TerminatorKind::Resume => {
829 self.codegen_resume_terminator(helper, bx)
830 }
831
832 mir::TerminatorKind::Abort => {
833 bx.abort();
834 bx.unreachable();
835 }
836
837 mir::TerminatorKind::Goto { target } => {
838 helper.funclet_br(self, &mut bx, target);
839 }
840
841 mir::TerminatorKind::SwitchInt {
842 ref discr, switch_ty, ref values, ref targets
843 } => {
844 self.codegen_switchint_terminator(helper, bx, discr, switch_ty,
845 values, targets);
846 }
847
848 mir::TerminatorKind::Return => {
849 self.codegen_return_terminator(bx);
850 }
851
852 mir::TerminatorKind::Unreachable => {
853 bx.unreachable();
854 }
855
856 mir::TerminatorKind::Drop { ref location, target, unwind } => {
857 self.codegen_drop_terminator(helper, bx, location, target, unwind);
858 }
859
860 mir::TerminatorKind::Assert { ref cond, expected, ref msg, target, cleanup } => {
861 self.codegen_assert_terminator(helper, bx, terminator, cond,
862 expected, msg, target, cleanup);
863 }
864
865 mir::TerminatorKind::DropAndReplace { .. } => {
866 bug!("undesugared DropAndReplace in codegen: {:?}", terminator);
867 }
868
869 mir::TerminatorKind::Call {
870 ref func,
871 ref args,
872 ref destination,
873 cleanup,
874 from_hir_call: _
875 } => {
876 self.codegen_call_terminator(helper, bx, terminator, func,
877 args, destination, cleanup);
878 }
879 mir::TerminatorKind::GeneratorDrop |
880 mir::TerminatorKind::Yield { .. } => bug!("generator ops in codegen"),
881 mir::TerminatorKind::FalseEdges { .. } |
882 mir::TerminatorKind::FalseUnwind { .. } => bug!("borrowck false edges in codegen"),
883 }
884 }
885
886 fn codegen_argument(
887 &mut self,
888 bx: &mut Bx,
889 op: OperandRef<'tcx, Bx::Value>,
890 llargs: &mut Vec<Bx::Value>,
891 arg: &ArgType<'tcx, Ty<'tcx>>
892 ) {
893 // Fill padding with undef value, where applicable.
894 if let Some(ty) = arg.pad {
895 llargs.push(bx.const_undef(bx.reg_backend_type(&ty)))
896 }
897
898 if arg.is_ignore() {
899 return;
900 }
901
902 if let PassMode::Pair(..) = arg.mode {
903 match op.val {
904 Pair(a, b) => {
905 llargs.push(a);
906 llargs.push(b);
907 return;
908 }
909 _ => bug!("codegen_argument: {:?} invalid for pair argument", op)
910 }
911 } else if arg.is_unsized_indirect() {
912 match op.val {
913 Ref(a, Some(b), _) => {
914 llargs.push(a);
915 llargs.push(b);
916 return;
917 }
918 _ => bug!("codegen_argument: {:?} invalid for unsized indirect argument", op)
919 }
920 }
921
922 // Force by-ref if we have to load through a cast pointer.
923 let (mut llval, align, by_ref) = match op.val {
924 Immediate(_) | Pair(..) => {
925 match arg.mode {
926 PassMode::Indirect(..) | PassMode::Cast(_) => {
927 let scratch = PlaceRef::alloca(bx, arg.layout, "arg");
928 op.val.store(bx, scratch);
929 (scratch.llval, scratch.align, true)
930 }
931 _ => {
932 (op.immediate_or_packed_pair(bx), arg.layout.align.abi, false)
933 }
934 }
935 }
936 Ref(llval, _, align) => {
937 if arg.is_indirect() && align < arg.layout.align.abi {
938 // `foo(packed.large_field)`. We can't pass the (unaligned) field directly. I
939 // think that ATM (Rust 1.16) we only pass temporaries, but we shouldn't
940 // have scary latent bugs around.
941
942 let scratch = PlaceRef::alloca(bx, arg.layout, "arg");
943 base::memcpy_ty(bx, scratch.llval, scratch.align, llval, align,
944 op.layout, MemFlags::empty());
945 (scratch.llval, scratch.align, true)
946 } else {
947 (llval, align, true)
948 }
949 }
950 };
951
952 if by_ref && !arg.is_indirect() {
953 // Have to load the argument, maybe while casting it.
954 if let PassMode::Cast(ty) = arg.mode {
955 let addr = bx.pointercast(llval, bx.type_ptr_to(
956 bx.cast_backend_type(&ty))
957 );
958 llval = bx.load(addr, align.min(arg.layout.align.abi));
959 } else {
960 // We can't use `PlaceRef::load` here because the argument
961 // may have a type we don't treat as immediate, but the ABI
962 // used for this call is passing it by-value. In that case,
963 // the load would just produce `OperandValue::Ref` instead
964 // of the `OperandValue::Immediate` we need for the call.
965 llval = bx.load(llval, align);
966 if let layout::Abi::Scalar(ref scalar) = arg.layout.abi {
967 if scalar.is_bool() {
968 bx.range_metadata(llval, 0..2);
969 }
970 }
971 // We store bools as `i8` so we need to truncate to `i1`.
972 llval = base::to_immediate(bx, llval, arg.layout);
973 }
974 }
975
976 llargs.push(llval);
977 }
978
979 fn codegen_arguments_untupled(
980 &mut self,
981 bx: &mut Bx,
982 operand: &mir::Operand<'tcx>,
983 llargs: &mut Vec<Bx::Value>,
984 args: &[ArgType<'tcx, Ty<'tcx>>]
985 ) {
986 let tuple = self.codegen_operand(bx, operand);
987
988 // Handle both by-ref and immediate tuples.
989 if let Ref(llval, None, align) = tuple.val {
990 let tuple_ptr = PlaceRef::new_sized(llval, tuple.layout, align);
991 for i in 0..tuple.layout.fields.count() {
992 let field_ptr = tuple_ptr.project_field(bx, i);
993 let field = bx.load_operand(field_ptr);
994 self.codegen_argument(bx, field, llargs, &args[i]);
995 }
996 } else if let Ref(_, Some(_), _) = tuple.val {
997 bug!("closure arguments must be sized")
998 } else {
999 // If the tuple is immediate, the elements are as well.
1000 for i in 0..tuple.layout.fields.count() {
1001 let op = tuple.extract_field(bx, i);
1002 self.codegen_argument(bx, op, llargs, &args[i]);
1003 }
1004 }
1005 }
1006
1007 fn get_personality_slot(
1008 &mut self,
1009 bx: &mut Bx
1010 ) -> PlaceRef<'tcx, Bx::Value> {
1011 let cx = bx.cx();
1012 if let Some(slot) = self.personality_slot {
1013 slot
1014 } else {
1015 let layout = cx.layout_of(cx.tcx().intern_tup(&[
1016 cx.tcx().mk_mut_ptr(cx.tcx().types.u8),
1017 cx.tcx().types.i32
1018 ]));
1019 let slot = PlaceRef::alloca(bx, layout, "personalityslot");
1020 self.personality_slot = Some(slot);
1021 slot
1022 }
1023 }
1024
1025 /// Returns the landing-pad wrapper around the given basic block.
1026 ///
1027 /// No-op in MSVC SEH scheme.
1028 fn landing_pad_to(
1029 &mut self,
1030 target_bb: mir::BasicBlock
1031 ) -> Bx::BasicBlock {
1032 if let Some(block) = self.landing_pads[target_bb] {
1033 return block;
1034 }
1035
1036 let block = self.blocks[target_bb];
1037 let landing_pad = self.landing_pad_uncached(block);
1038 self.landing_pads[target_bb] = Some(landing_pad);
1039 landing_pad
1040 }
1041
1042 fn landing_pad_uncached(
1043 &mut self,
1044 target_bb: Bx::BasicBlock
1045 ) -> Bx::BasicBlock {
1046 if base::wants_msvc_seh(self.cx.sess()) {
1047 span_bug!(self.mir.span, "landing pad was not inserted?")
1048 }
1049
1050 let mut bx = self.new_block("cleanup");
1051
1052 let llpersonality = self.cx.eh_personality();
1053 let llretty = self.landing_pad_type();
1054 let lp = bx.landing_pad(llretty, llpersonality, 1);
1055 bx.set_cleanup(lp);
1056
1057 let slot = self.get_personality_slot(&mut bx);
1058 slot.storage_live(&mut bx);
1059 Pair(bx.extract_value(lp, 0), bx.extract_value(lp, 1)).store(&mut bx, slot);
1060
1061 bx.br(target_bb);
1062 bx.llbb()
1063 }
1064
1065 fn landing_pad_type(&self) -> Bx::Type {
1066 let cx = self.cx;
1067 cx.type_struct(&[cx.type_i8p(), cx.type_i32()], false)
1068 }
1069
1070 fn unreachable_block(
1071 &mut self
1072 ) -> Bx::BasicBlock {
1073 self.unreachable_block.unwrap_or_else(|| {
1074 let mut bx = self.new_block("unreachable");
1075 bx.unreachable();
1076 self.unreachable_block = Some(bx.llbb());
1077 bx.llbb()
1078 })
1079 }
1080
1081 pub fn new_block(&self, name: &str) -> Bx {
1082 Bx::new_block(self.cx, self.llfn, name)
1083 }
1084
1085 pub fn build_block(
1086 &self,
1087 bb: mir::BasicBlock
1088 ) -> Bx {
1089 let mut bx = Bx::with_cx(self.cx);
1090 bx.position_at_end(self.blocks[bb]);
1091 bx
1092 }
1093
1094 fn make_return_dest(
1095 &mut self,
1096 bx: &mut Bx,
1097 dest: &mir::Place<'tcx>,
1098 fn_ret: &ArgType<'tcx, Ty<'tcx>>,
1099 llargs: &mut Vec<Bx::Value>, is_intrinsic: bool
1100 ) -> ReturnDest<'tcx, Bx::Value> {
1101 // If the return is ignored, we can just return a do-nothing `ReturnDest`.
1102 if fn_ret.is_ignore() {
1103 return ReturnDest::Nothing;
1104 }
1105 let dest = if let mir::Place {
1106 base: mir::PlaceBase::Local(index),
1107 projection: None,
1108 } = *dest {
1109 match self.locals[index] {
1110 LocalRef::Place(dest) => dest,
1111 LocalRef::UnsizedPlace(_) => bug!("return type must be sized"),
1112 LocalRef::Operand(None) => {
1113 // Handle temporary places, specifically `Operand` ones, as
1114 // they don't have `alloca`s.
1115 return if fn_ret.is_indirect() {
1116 // Odd, but possible, case, we have an operand temporary,
1117 // but the calling convention has an indirect return.
1118 let tmp = PlaceRef::alloca(bx, fn_ret.layout, "tmp_ret");
1119 tmp.storage_live(bx);
1120 llargs.push(tmp.llval);
1121 ReturnDest::IndirectOperand(tmp, index)
1122 } else if is_intrinsic {
1123 // Currently, intrinsics always need a location to store
1124 // the result, so we create a temporary `alloca` for the
1125 // result.
1126 let tmp = PlaceRef::alloca(bx, fn_ret.layout, "tmp_ret");
1127 tmp.storage_live(bx);
1128 ReturnDest::IndirectOperand(tmp, index)
1129 } else {
1130 ReturnDest::DirectOperand(index)
1131 };
1132 }
1133 LocalRef::Operand(Some(_)) => {
1134 bug!("place local already assigned to");
1135 }
1136 }
1137 } else {
1138 self.codegen_place(bx, &mir::PlaceRef {
1139 base: &dest.base,
1140 projection: &dest.projection,
1141 })
1142 };
1143 if fn_ret.is_indirect() {
1144 if dest.align < dest.layout.align.abi {
1145 // Currently, MIR code generation does not create calls
1146 // that store directly to fields of packed structs (in
1147 // fact, the calls it creates write only to temps).
1148 //
1149 // If someone changes that, please update this code path
1150 // to create a temporary.
1151 span_bug!(self.mir.span, "can't directly store to unaligned value");
1152 }
1153 llargs.push(dest.llval);
1154 ReturnDest::Nothing
1155 } else {
1156 ReturnDest::Store(dest)
1157 }
1158 }
1159
1160 fn codegen_transmute(
1161 &mut self,
1162 bx: &mut Bx,
1163 src: &mir::Operand<'tcx>,
1164 dst: &mir::Place<'tcx>
1165 ) {
1166 if let mir::Place {
1167 base: mir::PlaceBase::Local(index),
1168 projection: None,
1169 } = *dst {
1170 match self.locals[index] {
1171 LocalRef::Place(place) => self.codegen_transmute_into(bx, src, place),
1172 LocalRef::UnsizedPlace(_) => bug!("transmute must not involve unsized locals"),
1173 LocalRef::Operand(None) => {
1174 let dst_layout = bx.layout_of(self.monomorphized_place_ty(&dst.as_ref()));
1175 assert!(!dst_layout.ty.has_erasable_regions());
1176 let place = PlaceRef::alloca(bx, dst_layout, "transmute_temp");
1177 place.storage_live(bx);
1178 self.codegen_transmute_into(bx, src, place);
1179 let op = bx.load_operand(place);
1180 place.storage_dead(bx);
1181 self.locals[index] = LocalRef::Operand(Some(op));
1182 }
1183 LocalRef::Operand(Some(op)) => {
1184 assert!(op.layout.is_zst(),
1185 "assigning to initialized SSAtemp");
1186 }
1187 }
1188 } else {
1189 let dst = self.codegen_place(bx, &dst.as_ref());
1190 self.codegen_transmute_into(bx, src, dst);
1191 }
1192 }
1193
1194 fn codegen_transmute_into(
1195 &mut self,
1196 bx: &mut Bx,
1197 src: &mir::Operand<'tcx>,
1198 dst: PlaceRef<'tcx, Bx::Value>
1199 ) {
1200 let src = self.codegen_operand(bx, src);
1201 let llty = bx.backend_type(src.layout);
1202 let cast_ptr = bx.pointercast(dst.llval, bx.type_ptr_to(llty));
1203 let align = src.layout.align.abi.min(dst.align);
1204 src.val.store(bx, PlaceRef::new_sized(cast_ptr, src.layout, align));
1205 }
1206
1207
1208 // Stores the return value of a function call into it's final location.
1209 fn store_return(
1210 &mut self,
1211 bx: &mut Bx,
1212 dest: ReturnDest<'tcx, Bx::Value>,
1213 ret_ty: &ArgType<'tcx, Ty<'tcx>>,
1214 llval: Bx::Value
1215 ) {
1216 use self::ReturnDest::*;
1217
1218 match dest {
1219 Nothing => (),
1220 Store(dst) => bx.store_arg_ty(&ret_ty, llval, dst),
1221 IndirectOperand(tmp, index) => {
1222 let op = bx.load_operand(tmp);
1223 tmp.storage_dead(bx);
1224 self.locals[index] = LocalRef::Operand(Some(op));
1225 }
1226 DirectOperand(index) => {
1227 // If there is a cast, we have to store and reload.
1228 let op = if let PassMode::Cast(_) = ret_ty.mode {
1229 let tmp = PlaceRef::alloca(bx, ret_ty.layout, "tmp_ret");
1230 tmp.storage_live(bx);
1231 bx.store_arg_ty(&ret_ty, llval, tmp);
1232 let op = bx.load_operand(tmp);
1233 tmp.storage_dead(bx);
1234 op
1235 } else {
1236 OperandRef::from_immediate_or_packed_pair(bx, llval, ret_ty.layout)
1237 };
1238 self.locals[index] = LocalRef::Operand(Some(op));
1239 }
1240 }
1241 }
1242 }
1243
1244 enum ReturnDest<'tcx, V> {
1245 // Do nothing; the return value is indirect or ignored.
1246 Nothing,
1247 // Store the return value to the pointer.
1248 Store(PlaceRef<'tcx, V>),
1249 // Store an indirect return value to an operand local place.
1250 IndirectOperand(PlaceRef<'tcx, V>, mir::Local),
1251 // Store a direct return value to an operand local place.
1252 DirectOperand(mir::Local)
1253 }