]> git.proxmox.com Git - rustc.git/blob - src/librustc_data_structures/graph/implementation/mod.rs
New upstream version 1.31.0~beta.4+dfsg1
[rustc.git] / src / librustc_data_structures / graph / implementation / mod.rs
1 // Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! A graph module for use in dataflow, region resolution, and elsewhere.
12 //!
13 //! # Interface details
14 //!
15 //! You customize the graph by specifying a "node data" type `N` and an
16 //! "edge data" type `E`. You can then later gain access (mutable or
17 //! immutable) to these "user-data" bits. Currently, you can only add
18 //! nodes or edges to the graph. You cannot remove or modify them once
19 //! added. This could be changed if we have a need.
20 //!
21 //! # Implementation details
22 //!
23 //! The main tricky thing about this code is the way that edges are
24 //! stored. The edges are stored in a central array, but they are also
25 //! threaded onto two linked lists for each node, one for incoming edges
26 //! and one for outgoing edges. Note that every edge is a member of some
27 //! incoming list and some outgoing list. Basically you can load the
28 //! first index of the linked list from the node data structures (the
29 //! field `first_edge`) and then, for each edge, load the next index from
30 //! the field `next_edge`). Each of those fields is an array that should
31 //! be indexed by the direction (see the type `Direction`).
32
33 use bit_set::BitSet;
34 use std::fmt::Debug;
35 use std::usize;
36 use snapshot_vec::{SnapshotVec, SnapshotVecDelegate};
37
38 #[cfg(test)]
39 mod tests;
40
41 pub struct Graph<N, E> {
42 nodes: SnapshotVec<Node<N>>,
43 edges: SnapshotVec<Edge<E>>,
44 }
45
46 pub struct Node<N> {
47 first_edge: [EdgeIndex; 2], // see module comment
48 pub data: N,
49 }
50
51 #[derive(Debug)]
52 pub struct Edge<E> {
53 next_edge: [EdgeIndex; 2], // see module comment
54 source: NodeIndex,
55 target: NodeIndex,
56 pub data: E,
57 }
58
59 impl<N> SnapshotVecDelegate for Node<N> {
60 type Value = Node<N>;
61 type Undo = ();
62
63 fn reverse(_: &mut Vec<Node<N>>, _: ()) {}
64 }
65
66 impl<N> SnapshotVecDelegate for Edge<N> {
67 type Value = Edge<N>;
68 type Undo = ();
69
70 fn reverse(_: &mut Vec<Edge<N>>, _: ()) {}
71 }
72
73 #[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
74 pub struct NodeIndex(pub usize);
75
76 #[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
77 pub struct EdgeIndex(pub usize);
78
79 pub const INVALID_EDGE_INDEX: EdgeIndex = EdgeIndex(usize::MAX);
80
81 // Use a private field here to guarantee no more instances are created:
82 #[derive(Copy, Clone, Debug, PartialEq)]
83 pub struct Direction {
84 repr: usize,
85 }
86
87 pub const OUTGOING: Direction = Direction { repr: 0 };
88
89 pub const INCOMING: Direction = Direction { repr: 1 };
90
91 impl NodeIndex {
92 /// Returns unique id (unique with respect to the graph holding associated node).
93 pub fn node_id(self) -> usize {
94 self.0
95 }
96 }
97
98 impl<N: Debug, E: Debug> Graph<N, E> {
99 pub fn new() -> Graph<N, E> {
100 Graph {
101 nodes: SnapshotVec::new(),
102 edges: SnapshotVec::new(),
103 }
104 }
105
106 pub fn with_capacity(nodes: usize, edges: usize) -> Graph<N, E> {
107 Graph {
108 nodes: SnapshotVec::with_capacity(nodes),
109 edges: SnapshotVec::with_capacity(edges),
110 }
111 }
112
113 // # Simple accessors
114
115 #[inline]
116 pub fn all_nodes(&self) -> &[Node<N>] {
117 &self.nodes
118 }
119
120 #[inline]
121 pub fn len_nodes(&self) -> usize {
122 self.nodes.len()
123 }
124
125 #[inline]
126 pub fn all_edges(&self) -> &[Edge<E>] {
127 &self.edges
128 }
129
130 #[inline]
131 pub fn len_edges(&self) -> usize {
132 self.edges.len()
133 }
134
135 // # Node construction
136
137 pub fn next_node_index(&self) -> NodeIndex {
138 NodeIndex(self.nodes.len())
139 }
140
141 pub fn add_node(&mut self, data: N) -> NodeIndex {
142 let idx = self.next_node_index();
143 self.nodes.push(Node {
144 first_edge: [INVALID_EDGE_INDEX, INVALID_EDGE_INDEX],
145 data,
146 });
147 idx
148 }
149
150 pub fn mut_node_data(&mut self, idx: NodeIndex) -> &mut N {
151 &mut self.nodes[idx.0].data
152 }
153
154 pub fn node_data(&self, idx: NodeIndex) -> &N {
155 &self.nodes[idx.0].data
156 }
157
158 pub fn node(&self, idx: NodeIndex) -> &Node<N> {
159 &self.nodes[idx.0]
160 }
161
162 // # Edge construction and queries
163
164 pub fn next_edge_index(&self) -> EdgeIndex {
165 EdgeIndex(self.edges.len())
166 }
167
168 pub fn add_edge(&mut self, source: NodeIndex, target: NodeIndex, data: E) -> EdgeIndex {
169 debug!("graph: add_edge({:?}, {:?}, {:?})", source, target, data);
170
171 let idx = self.next_edge_index();
172
173 // read current first of the list of edges from each node
174 let source_first = self.nodes[source.0].first_edge[OUTGOING.repr];
175 let target_first = self.nodes[target.0].first_edge[INCOMING.repr];
176
177 // create the new edge, with the previous firsts from each node
178 // as the next pointers
179 self.edges.push(Edge {
180 next_edge: [source_first, target_first],
181 source,
182 target,
183 data,
184 });
185
186 // adjust the firsts for each node target be the next object.
187 self.nodes[source.0].first_edge[OUTGOING.repr] = idx;
188 self.nodes[target.0].first_edge[INCOMING.repr] = idx;
189
190 idx
191 }
192
193 pub fn edge(&self, idx: EdgeIndex) -> &Edge<E> {
194 &self.edges[idx.0]
195 }
196
197 // # Iterating over nodes, edges
198
199 pub fn enumerated_nodes(&self) -> impl Iterator<Item = (NodeIndex, &Node<N>)> {
200 self.nodes
201 .iter()
202 .enumerate()
203 .map(|(idx, n)| (NodeIndex(idx), n))
204 }
205
206 pub fn enumerated_edges(&self) -> impl Iterator<Item = (EdgeIndex, &Edge<E>)> {
207 self.edges
208 .iter()
209 .enumerate()
210 .map(|(idx, e)| (EdgeIndex(idx), e))
211 }
212
213 pub fn each_node<'a>(&'a self, mut f: impl FnMut(NodeIndex, &'a Node<N>) -> bool) -> bool {
214 //! Iterates over all edges defined in the graph.
215 self.enumerated_nodes()
216 .all(|(node_idx, node)| f(node_idx, node))
217 }
218
219 pub fn each_edge<'a>(&'a self, mut f: impl FnMut(EdgeIndex, &'a Edge<E>) -> bool) -> bool {
220 //! Iterates over all edges defined in the graph
221 self.enumerated_edges()
222 .all(|(edge_idx, edge)| f(edge_idx, edge))
223 }
224
225 pub fn outgoing_edges(&self, source: NodeIndex) -> AdjacentEdges<N, E> {
226 self.adjacent_edges(source, OUTGOING)
227 }
228
229 pub fn incoming_edges(&self, source: NodeIndex) -> AdjacentEdges<N, E> {
230 self.adjacent_edges(source, INCOMING)
231 }
232
233 pub fn adjacent_edges(&self, source: NodeIndex, direction: Direction) -> AdjacentEdges<N, E> {
234 let first_edge = self.node(source).first_edge[direction.repr];
235 AdjacentEdges {
236 graph: self,
237 direction,
238 next: first_edge,
239 }
240 }
241
242 pub fn successor_nodes<'a>(
243 &'a self,
244 source: NodeIndex,
245 ) -> impl Iterator<Item = NodeIndex> + 'a {
246 self.outgoing_edges(source).targets()
247 }
248
249 pub fn predecessor_nodes<'a>(
250 &'a self,
251 target: NodeIndex,
252 ) -> impl Iterator<Item = NodeIndex> + 'a {
253 self.incoming_edges(target).sources()
254 }
255
256 pub fn depth_traverse<'a>(
257 &'a self,
258 start: NodeIndex,
259 direction: Direction,
260 ) -> DepthFirstTraversal<'a, N, E> {
261 DepthFirstTraversal::with_start_node(self, start, direction)
262 }
263
264 pub fn nodes_in_postorder(
265 &self,
266 direction: Direction,
267 entry_node: NodeIndex,
268 ) -> Vec<NodeIndex> {
269 let mut visited = BitSet::new_empty(self.len_nodes());
270 let mut stack = vec![];
271 let mut result = Vec::with_capacity(self.len_nodes());
272 let mut push_node = |stack: &mut Vec<_>, node: NodeIndex| {
273 if visited.insert(node.0) {
274 stack.push((node, self.adjacent_edges(node, direction)));
275 }
276 };
277
278 for node in Some(entry_node)
279 .into_iter()
280 .chain(self.enumerated_nodes().map(|(node, _)| node))
281 {
282 push_node(&mut stack, node);
283 while let Some((node, mut iter)) = stack.pop() {
284 if let Some((_, child)) = iter.next() {
285 let target = child.source_or_target(direction);
286 // the current node needs more processing, so
287 // add it back to the stack
288 stack.push((node, iter));
289 // and then push the new node
290 push_node(&mut stack, target);
291 } else {
292 result.push(node);
293 }
294 }
295 }
296
297 assert_eq!(result.len(), self.len_nodes());
298 result
299 }
300 }
301
302 // # Iterators
303
304 pub struct AdjacentEdges<'g, N, E>
305 where
306 N: 'g,
307 E: 'g,
308 {
309 graph: &'g Graph<N, E>,
310 direction: Direction,
311 next: EdgeIndex,
312 }
313
314 impl<'g, N: Debug, E: Debug> AdjacentEdges<'g, N, E> {
315 fn targets(self) -> impl Iterator<Item = NodeIndex> + 'g {
316 self.into_iter().map(|(_, edge)| edge.target)
317 }
318
319 fn sources(self) -> impl Iterator<Item = NodeIndex> + 'g {
320 self.into_iter().map(|(_, edge)| edge.source)
321 }
322 }
323
324 impl<'g, N: Debug, E: Debug> Iterator for AdjacentEdges<'g, N, E> {
325 type Item = (EdgeIndex, &'g Edge<E>);
326
327 fn next(&mut self) -> Option<(EdgeIndex, &'g Edge<E>)> {
328 let edge_index = self.next;
329 if edge_index == INVALID_EDGE_INDEX {
330 return None;
331 }
332
333 let edge = self.graph.edge(edge_index);
334 self.next = edge.next_edge[self.direction.repr];
335 Some((edge_index, edge))
336 }
337
338 fn size_hint(&self) -> (usize, Option<usize>) {
339 // At most, all the edges in the graph.
340 (0, Some(self.graph.len_edges()))
341 }
342 }
343
344 pub struct DepthFirstTraversal<'g, N, E>
345 where
346 N: 'g,
347 E: 'g,
348 {
349 graph: &'g Graph<N, E>,
350 stack: Vec<NodeIndex>,
351 visited: BitSet<usize>,
352 direction: Direction,
353 }
354
355 impl<'g, N: Debug, E: Debug> DepthFirstTraversal<'g, N, E> {
356 pub fn with_start_node(
357 graph: &'g Graph<N, E>,
358 start_node: NodeIndex,
359 direction: Direction,
360 ) -> Self {
361 let mut visited = BitSet::new_empty(graph.len_nodes());
362 visited.insert(start_node.node_id());
363 DepthFirstTraversal {
364 graph,
365 stack: vec![start_node],
366 visited,
367 direction,
368 }
369 }
370
371 fn visit(&mut self, node: NodeIndex) {
372 if self.visited.insert(node.node_id()) {
373 self.stack.push(node);
374 }
375 }
376 }
377
378 impl<'g, N: Debug, E: Debug> Iterator for DepthFirstTraversal<'g, N, E> {
379 type Item = NodeIndex;
380
381 fn next(&mut self) -> Option<NodeIndex> {
382 let next = self.stack.pop();
383 if let Some(idx) = next {
384 for (_, edge) in self.graph.adjacent_edges(idx, self.direction) {
385 let target = edge.source_or_target(self.direction);
386 self.visit(target);
387 }
388 }
389 next
390 }
391
392 fn size_hint(&self) -> (usize, Option<usize>) {
393 // We will visit every node in the graph exactly once.
394 let remaining = self.graph.len_nodes() - self.visited.count();
395 (remaining, Some(remaining))
396 }
397 }
398
399 impl<'g, N: Debug, E: Debug> ExactSizeIterator for DepthFirstTraversal<'g, N, E> {}
400
401 impl<E> Edge<E> {
402 pub fn source(&self) -> NodeIndex {
403 self.source
404 }
405
406 pub fn target(&self) -> NodeIndex {
407 self.target
408 }
409
410 pub fn source_or_target(&self, direction: Direction) -> NodeIndex {
411 if direction == OUTGOING {
412 self.target
413 } else {
414 self.source
415 }
416 }
417 }