]> git.proxmox.com Git - rustc.git/blob - src/librustc_data_structures/unify/mod.rs
Imported Upstream version 1.9.0+dfsg1
[rustc.git] / src / librustc_data_structures / unify / mod.rs
1 // Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 use std::marker;
12 use std::fmt::Debug;
13 use std::marker::PhantomData;
14 use snapshot_vec as sv;
15
16 #[cfg(test)]
17 mod tests;
18
19 /// This trait is implemented by any type that can serve as a type
20 /// variable. We call such variables *unification keys*. For example,
21 /// this trait is implemented by `IntVid`, which represents integral
22 /// variables.
23 ///
24 /// Each key type has an associated value type `V`. For example, for
25 /// `IntVid`, this is `Option<IntVarValue>`, representing some
26 /// (possibly not yet known) sort of integer.
27 ///
28 /// Clients are expected to provide implementations of this trait; you
29 /// can see some examples in the `test` module.
30 pub trait UnifyKey : Copy + Clone + Debug + PartialEq {
31 type Value: Clone + PartialEq + Debug;
32
33 fn index(&self) -> u32;
34
35 fn from_index(u: u32) -> Self;
36
37 fn tag(k: Option<Self>) -> &'static str;
38 }
39
40 /// This trait is implemented for unify values that can be
41 /// combined. This relation should be a monoid.
42 pub trait Combine {
43 fn combine(&self, other: &Self) -> Self;
44 }
45
46 impl Combine for () {
47 fn combine(&self, _other: &()) {}
48 }
49
50 /// Value of a unification key. We implement Tarjan's union-find
51 /// algorithm: when two keys are unified, one of them is converted
52 /// into a "redirect" pointing at the other. These redirects form a
53 /// DAG: the roots of the DAG (nodes that are not redirected) are each
54 /// associated with a value of type `V` and a rank. The rank is used
55 /// to keep the DAG relatively balanced, which helps keep the running
56 /// time of the algorithm under control. For more information, see
57 /// <http://en.wikipedia.org/wiki/Disjoint-set_data_structure>.
58 #[derive(PartialEq,Clone,Debug)]
59 pub struct VarValue<K: UnifyKey> {
60 parent: K, // if equal to self, this is a root
61 value: K::Value, // value assigned (only relevant to root)
62 rank: u32, // max depth (only relevant to root)
63 }
64
65 /// Table of unification keys and their values.
66 pub struct UnificationTable<K: UnifyKey> {
67 /// Indicates the current value of each key.
68 values: sv::SnapshotVec<Delegate<K>>,
69 }
70
71 /// At any time, users may snapshot a unification table. The changes
72 /// made during the snapshot may either be *committed* or *rolled back*.
73 pub struct Snapshot<K: UnifyKey> {
74 // Link snapshot to the key type `K` of the table.
75 marker: marker::PhantomData<K>,
76 snapshot: sv::Snapshot,
77 }
78
79 #[derive(Copy, Clone)]
80 struct Delegate<K>(PhantomData<K>);
81
82 impl<K: UnifyKey> VarValue<K> {
83 fn new_var(key: K, value: K::Value) -> VarValue<K> {
84 VarValue::new(key, value, 0)
85 }
86
87 fn new(parent: K, value: K::Value, rank: u32) -> VarValue<K> {
88 VarValue {
89 parent: parent, // this is a root
90 value: value,
91 rank: rank,
92 }
93 }
94
95 fn redirect(self, to: K) -> VarValue<K> {
96 VarValue { parent: to, ..self }
97 }
98
99 fn root(self, rank: u32, value: K::Value) -> VarValue<K> {
100 VarValue {
101 rank: rank,
102 value: value,
103 ..self
104 }
105 }
106
107 /// Returns the key of this node. Only valid if this is a root
108 /// node, which you yourself must ensure.
109 fn key(&self) -> K {
110 self.parent
111 }
112
113 fn parent(&self, self_key: K) -> Option<K> {
114 self.if_not_self(self.parent, self_key)
115 }
116
117 fn if_not_self(&self, key: K, self_key: K) -> Option<K> {
118 if key == self_key {
119 None
120 } else {
121 Some(key)
122 }
123 }
124 }
125
126 // We can't use V:LatticeValue, much as I would like to,
127 // because frequently the pattern is that V=Option<U> for some
128 // other type parameter U, and we have no way to say
129 // Option<U>:LatticeValue.
130
131 impl<K: UnifyKey> UnificationTable<K> {
132 pub fn new() -> UnificationTable<K> {
133 UnificationTable { values: sv::SnapshotVec::new() }
134 }
135
136 /// Starts a new snapshot. Each snapshot must be either
137 /// rolled back or committed in a "LIFO" (stack) order.
138 pub fn snapshot(&mut self) -> Snapshot<K> {
139 Snapshot {
140 marker: marker::PhantomData::<K>,
141 snapshot: self.values.start_snapshot(),
142 }
143 }
144
145 /// Reverses all changes since the last snapshot. Also
146 /// removes any keys that have been created since then.
147 pub fn rollback_to(&mut self, snapshot: Snapshot<K>) {
148 debug!("{}: rollback_to()", UnifyKey::tag(None::<K>));
149 self.values.rollback_to(snapshot.snapshot);
150 }
151
152 /// Commits all changes since the last snapshot. Of course, they
153 /// can still be undone if there is a snapshot further out.
154 pub fn commit(&mut self, snapshot: Snapshot<K>) {
155 debug!("{}: commit()", UnifyKey::tag(None::<K>));
156 self.values.commit(snapshot.snapshot);
157 }
158
159 pub fn new_key(&mut self, value: K::Value) -> K {
160 let len = self.values.len();
161 let key: K = UnifyKey::from_index(len as u32);
162 self.values.push(VarValue::new_var(key, value));
163 debug!("{}: created new key: {:?}", UnifyKey::tag(None::<K>), key);
164 key
165 }
166
167 /// Find the root node for `vid`. This uses the standard
168 /// union-find algorithm with path compression:
169 /// <http://en.wikipedia.org/wiki/Disjoint-set_data_structure>.
170 ///
171 /// NB. This is a building-block operation and you would probably
172 /// prefer to call `probe` below.
173 fn get(&mut self, vid: K) -> VarValue<K> {
174 let index = vid.index() as usize;
175 let mut value: VarValue<K> = self.values.get(index).clone();
176 match value.parent(vid) {
177 Some(redirect) => {
178 let root: VarValue<K> = self.get(redirect);
179 if root.key() != redirect {
180 // Path compression
181 value.parent = root.key();
182 self.values.set(index, value);
183 }
184 root
185 }
186 None => value,
187 }
188 }
189
190 fn is_root(&self, key: K) -> bool {
191 let index = key.index() as usize;
192 self.values.get(index).parent(key).is_none()
193 }
194
195 /// Sets the value for `vid` to `new_value`. `vid` MUST be a root
196 /// node! This is an internal operation used to impl other things.
197 fn set(&mut self, key: K, new_value: VarValue<K>) {
198 assert!(self.is_root(key));
199
200 debug!("Updating variable {:?} to {:?}", key, new_value);
201
202 let index = key.index() as usize;
203 self.values.set(index, new_value);
204 }
205
206 /// Either redirects `node_a` to `node_b` or vice versa, depending
207 /// on the relative rank. The value associated with the new root
208 /// will be `new_value`.
209 ///
210 /// NB: This is the "union" operation of "union-find". It is
211 /// really more of a building block. If the values associated with
212 /// your key are non-trivial, you would probably prefer to call
213 /// `unify_var_var` below.
214 fn unify(&mut self, root_a: VarValue<K>, root_b: VarValue<K>, new_value: K::Value) -> K {
215 debug!("unify(root_a(id={:?}, rank={:?}), root_b(id={:?}, rank={:?}))",
216 root_a.key(),
217 root_a.rank,
218 root_b.key(),
219 root_b.rank);
220
221 if root_a.rank > root_b.rank {
222 // a has greater rank, so a should become b's parent,
223 // i.e., b should redirect to a.
224 self.redirect_root(root_a.rank, root_b, root_a, new_value)
225 } else if root_a.rank < root_b.rank {
226 // b has greater rank, so a should redirect to b.
227 self.redirect_root(root_b.rank, root_a, root_b, new_value)
228 } else {
229 // If equal, redirect one to the other and increment the
230 // other's rank.
231 self.redirect_root(root_a.rank + 1, root_a, root_b, new_value)
232 }
233 }
234
235 fn redirect_root(&mut self,
236 new_rank: u32,
237 old_root: VarValue<K>,
238 new_root: VarValue<K>,
239 new_value: K::Value) -> K {
240 let old_root_key = old_root.key();
241 let new_root_key = new_root.key();
242 self.set(old_root_key, old_root.redirect(new_root_key));
243 self.set(new_root_key, new_root.root(new_rank, new_value));
244 new_root_key
245 }
246 }
247
248 impl<K: UnifyKey> sv::SnapshotVecDelegate for Delegate<K> {
249 type Value = VarValue<K>;
250 type Undo = ();
251
252 fn reverse(_: &mut Vec<VarValue<K>>, _: ()) {}
253 }
254
255 // # Base union-find algorithm, where we are just making sets
256
257 impl<'tcx, K: UnifyKey> UnificationTable<K>
258 where K::Value: Combine
259 {
260 pub fn union(&mut self, a_id: K, b_id: K) -> K {
261 let node_a = self.get(a_id);
262 let node_b = self.get(b_id);
263 let a_id = node_a.key();
264 let b_id = node_b.key();
265 if a_id != b_id {
266 let new_value = node_a.value.combine(&node_b.value);
267 self.unify(node_a, node_b, new_value)
268 } else {
269 a_id
270 }
271 }
272
273 pub fn find(&mut self, id: K) -> K {
274 self.get(id).key()
275 }
276
277 pub fn find_value(&mut self, id: K) -> K::Value {
278 self.get(id).value
279 }
280
281 pub fn unioned(&mut self, a_id: K, b_id: K) -> bool {
282 self.find(a_id) == self.find(b_id)
283 }
284 }
285
286 // # Non-subtyping unification
287 //
288 // Code to handle keys which carry a value, like ints,
289 // floats---anything that doesn't have a subtyping relationship we
290 // need to worry about.
291
292 impl<'tcx, K, V> UnificationTable<K>
293 where K: UnifyKey<Value = Option<V>>,
294 V: Clone + PartialEq + Debug
295 {
296 pub fn unify_var_var(&mut self, a_id: K, b_id: K) -> Result<K, (V, V)> {
297 let node_a = self.get(a_id);
298 let node_b = self.get(b_id);
299 let a_id = node_a.key();
300 let b_id = node_b.key();
301
302 if a_id == b_id {
303 return Ok(a_id);
304 }
305
306 let combined = {
307 match (&node_a.value, &node_b.value) {
308 (&None, &None) => None,
309 (&Some(ref v), &None) | (&None, &Some(ref v)) => Some(v.clone()),
310 (&Some(ref v1), &Some(ref v2)) => {
311 if *v1 != *v2 {
312 return Err((v1.clone(), v2.clone()));
313 }
314 Some(v1.clone())
315 }
316 }
317 };
318
319 Ok(self.unify(node_a, node_b, combined))
320 }
321
322 /// Sets the value of the key `a_id` to `b`. Because simple keys do not have any subtyping
323 /// relationships, if `a_id` already has a value, it must be the same as `b`.
324 pub fn unify_var_value(&mut self, a_id: K, b: V) -> Result<(), (V, V)> {
325 let mut node_a = self.get(a_id);
326
327 match node_a.value {
328 None => {
329 node_a.value = Some(b);
330 self.set(node_a.key(), node_a);
331 Ok(())
332 }
333
334 Some(ref a_t) => {
335 if *a_t == b {
336 Ok(())
337 } else {
338 Err((a_t.clone(), b))
339 }
340 }
341 }
342 }
343
344 pub fn has_value(&mut self, id: K) -> bool {
345 self.get(id).value.is_some()
346 }
347
348 pub fn probe(&mut self, a_id: K) -> Option<V> {
349 self.get(a_id).value.clone()
350 }
351
352 pub fn unsolved_variables(&mut self) -> Vec<K> {
353 self.values
354 .iter()
355 .filter_map(|vv| {
356 if vv.value.is_some() {
357 None
358 } else {
359 Some(vv.key())
360 }
361 })
362 .collect()
363 }
364 }