]> git.proxmox.com Git - rustc.git/blob - src/librustc_lint/types.rs
New upstream version 1.41.1+dfsg1
[rustc.git] / src / librustc_lint / types.rs
1 #![allow(non_snake_case)]
2
3 use rustc::hir::{ExprKind, Node};
4 use crate::hir::def_id::DefId;
5 use rustc::hir::lowering::is_range_literal;
6 use rustc::ty::subst::SubstsRef;
7 use rustc::ty::{self, AdtKind, ParamEnv, Ty, TyCtxt};
8 use rustc::ty::layout::{self, IntegerExt, LayoutOf, VariantIdx, SizeSkeleton};
9 use rustc::{lint, util};
10 use rustc_index::vec::Idx;
11 use util::nodemap::FxHashSet;
12 use lint::{LateContext, LintContext, LintArray};
13 use lint::{LintPass, LateLintPass};
14
15 use std::cmp;
16 use std::{i8, i16, i32, i64, u8, u16, u32, u64, f32, f64};
17
18 use syntax::{ast, attr, source_map};
19 use syntax::errors::Applicability;
20 use syntax::symbol::sym;
21 use rustc_target::spec::abi::Abi;
22 use syntax_pos::Span;
23
24 use rustc::hir;
25
26 use rustc::mir::interpret::{sign_extend, truncate};
27
28 use log::debug;
29
30 declare_lint! {
31 UNUSED_COMPARISONS,
32 Warn,
33 "comparisons made useless by limits of the types involved"
34 }
35
36 declare_lint! {
37 OVERFLOWING_LITERALS,
38 Deny,
39 "literal out of range for its type"
40 }
41
42 declare_lint! {
43 VARIANT_SIZE_DIFFERENCES,
44 Allow,
45 "detects enums with widely varying variant sizes"
46 }
47
48 #[derive(Copy, Clone)]
49 pub struct TypeLimits {
50 /// Id of the last visited negated expression
51 negated_expr_id: hir::HirId,
52 }
53
54 impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);
55
56 impl TypeLimits {
57 pub fn new() -> TypeLimits {
58 TypeLimits { negated_expr_id: hir::DUMMY_HIR_ID }
59 }
60 }
61
62 /// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint.
63 /// Returns `true` iff the lint was overridden.
64 fn lint_overflowing_range_endpoint<'a, 'tcx>(
65 cx: &LateContext<'a, 'tcx>,
66 lit: &hir::Lit,
67 lit_val: u128,
68 max: u128,
69 expr: &'tcx hir::Expr,
70 parent_expr: &'tcx hir::Expr,
71 ty: &str,
72 ) -> bool {
73 // We only want to handle exclusive (`..`) ranges,
74 // which are represented as `ExprKind::Struct`.
75 if let ExprKind::Struct(_, eps, _) = &parent_expr.kind {
76 if eps.len() != 2 {
77 return false;
78 }
79 // We can suggest using an inclusive range
80 // (`..=`) instead only if it is the `end` that is
81 // overflowing and only by 1.
82 if eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max {
83 let mut err = cx.struct_span_lint(
84 OVERFLOWING_LITERALS,
85 parent_expr.span,
86 &format!("range endpoint is out of range for `{}`", ty),
87 );
88 if let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) {
89 use ast::{LitKind, LitIntType};
90 // We need to preserve the literal's suffix,
91 // as it may determine typing information.
92 let suffix = match lit.node {
93 LitKind::Int(_, LitIntType::Signed(s)) => format!("{}", s.name_str()),
94 LitKind::Int(_, LitIntType::Unsigned(s)) => format!("{}", s.name_str()),
95 LitKind::Int(_, LitIntType::Unsuffixed) => "".to_owned(),
96 _ => bug!(),
97 };
98 let suggestion = format!("{}..={}{}", start, lit_val - 1, suffix);
99 err.span_suggestion(
100 parent_expr.span,
101 &"use an inclusive range instead",
102 suggestion,
103 Applicability::MachineApplicable,
104 );
105 err.emit();
106 return true;
107 }
108 }
109 }
110
111 false
112 }
113
114 // For `isize` & `usize`, be conservative with the warnings, so that the
115 // warnings are consistent between 32- and 64-bit platforms.
116 fn int_ty_range(int_ty: ast::IntTy) -> (i128, i128) {
117 match int_ty {
118 ast::IntTy::Isize => (i64::min_value() as i128, i64::max_value() as i128),
119 ast::IntTy::I8 => (i8::min_value() as i64 as i128, i8::max_value() as i128),
120 ast::IntTy::I16 => (i16::min_value() as i64 as i128, i16::max_value() as i128),
121 ast::IntTy::I32 => (i32::min_value() as i64 as i128, i32::max_value() as i128),
122 ast::IntTy::I64 => (i64::min_value() as i128, i64::max_value() as i128),
123 ast::IntTy::I128 =>(i128::min_value() as i128, i128::max_value()),
124 }
125 }
126
127 fn uint_ty_range(uint_ty: ast::UintTy) -> (u128, u128) {
128 match uint_ty {
129 ast::UintTy::Usize => (u64::min_value() as u128, u64::max_value() as u128),
130 ast::UintTy::U8 => (u8::min_value() as u128, u8::max_value() as u128),
131 ast::UintTy::U16 => (u16::min_value() as u128, u16::max_value() as u128),
132 ast::UintTy::U32 => (u32::min_value() as u128, u32::max_value() as u128),
133 ast::UintTy::U64 => (u64::min_value() as u128, u64::max_value() as u128),
134 ast::UintTy::U128 => (u128::min_value(), u128::max_value()),
135 }
136 }
137
138 fn get_bin_hex_repr(cx: &LateContext<'_, '_>, lit: &hir::Lit) -> Option<String> {
139 let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
140 let firstch = src.chars().next()?;
141
142 if firstch == '0' {
143 match src.chars().nth(1) {
144 Some('x') | Some('b') => return Some(src),
145 _ => return None,
146 }
147 }
148
149 None
150 }
151
152 fn report_bin_hex_error(
153 cx: &LateContext<'_, '_>,
154 expr: &hir::Expr,
155 ty: attr::IntType,
156 repr_str: String,
157 val: u128,
158 negative: bool,
159 ) {
160 let size = layout::Integer::from_attr(&cx.tcx, ty).size();
161 let (t, actually) = match ty {
162 attr::IntType::SignedInt(t) => {
163 let actually = sign_extend(val, size) as i128;
164 (t.name_str(), actually.to_string())
165 }
166 attr::IntType::UnsignedInt(t) => {
167 let actually = truncate(val, size);
168 (t.name_str(), actually.to_string())
169 }
170 };
171 let mut err = cx.struct_span_lint(
172 OVERFLOWING_LITERALS,
173 expr.span,
174 &format!("literal out of range for {}", t),
175 );
176 err.note(&format!(
177 "the literal `{}` (decimal `{}`) does not fit into \
178 an `{}` and will become `{}{}`",
179 repr_str, val, t, actually, t
180 ));
181 if let Some(sugg_ty) =
182 get_type_suggestion(&cx.tables.node_type(expr.hir_id), val, negative)
183 {
184 if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
185 let (sans_suffix, _) = repr_str.split_at(pos);
186 err.span_suggestion(
187 expr.span,
188 &format!("consider using `{}` instead", sugg_ty),
189 format!("{}{}", sans_suffix, sugg_ty),
190 Applicability::MachineApplicable
191 );
192 } else {
193 err.help(&format!("consider using `{}` instead", sugg_ty));
194 }
195 }
196
197 err.emit();
198 }
199
200 // This function finds the next fitting type and generates a suggestion string.
201 // It searches for fitting types in the following way (`X < Y`):
202 // - `iX`: if literal fits in `uX` => `uX`, else => `iY`
203 // - `-iX` => `iY`
204 // - `uX` => `uY`
205 //
206 // No suggestion for: `isize`, `usize`.
207 fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str> {
208 use syntax::ast::IntTy::*;
209 use syntax::ast::UintTy::*;
210 macro_rules! find_fit {
211 ($ty:expr, $val:expr, $negative:expr,
212 $($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
213 {
214 let _neg = if negative { 1 } else { 0 };
215 match $ty {
216 $($type => {
217 $(if !negative && val <= uint_ty_range($utypes).1 {
218 return Some($utypes.name_str())
219 })*
220 $(if val <= int_ty_range($itypes).1 as u128 + _neg {
221 return Some($itypes.name_str())
222 })*
223 None
224 },)+
225 _ => None
226 }
227 }
228 }
229 }
230 match t.kind {
231 ty::Int(i) => find_fit!(i, val, negative,
232 I8 => [U8] => [I16, I32, I64, I128],
233 I16 => [U16] => [I32, I64, I128],
234 I32 => [U32] => [I64, I128],
235 I64 => [U64] => [I128],
236 I128 => [U128] => []),
237 ty::Uint(u) => find_fit!(u, val, negative,
238 U8 => [U8, U16, U32, U64, U128] => [],
239 U16 => [U16, U32, U64, U128] => [],
240 U32 => [U32, U64, U128] => [],
241 U64 => [U64, U128] => [],
242 U128 => [U128] => []),
243 _ => None,
244 }
245 }
246
247 fn lint_int_literal<'a, 'tcx>(
248 cx: &LateContext<'a, 'tcx>,
249 type_limits: &TypeLimits,
250 e: &'tcx hir::Expr,
251 lit: &hir::Lit,
252 t: ast::IntTy,
253 v: u128,
254 ) {
255 let int_type = t.normalize(cx.sess().target.ptr_width);
256 let (_, max) = int_ty_range(int_type);
257 let max = max as u128;
258 let negative = type_limits.negated_expr_id == e.hir_id;
259
260 // Detect literal value out of range [min, max] inclusive
261 // avoiding use of -min to prevent overflow/panic
262 if (negative && v > max + 1) || (!negative && v > max) {
263 if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
264 report_bin_hex_error(
265 cx,
266 e,
267 attr::IntType::SignedInt(t),
268 repr_str,
269 v,
270 negative,
271 );
272 return;
273 }
274
275 let par_id = cx.tcx.hir().get_parent_node(e.hir_id);
276 if let Node::Expr(par_e) = cx.tcx.hir().get(par_id) {
277 if let hir::ExprKind::Struct(..) = par_e.kind {
278 if is_range_literal(cx.sess(), par_e)
279 && lint_overflowing_range_endpoint(cx, lit, v, max, e, par_e, t.name_str())
280 {
281 // The overflowing literal lint was overridden.
282 return;
283 }
284 }
285 }
286
287 cx.span_lint(
288 OVERFLOWING_LITERALS,
289 e.span,
290 &format!("literal out of range for `{}`", t.name_str()),
291 );
292 }
293 }
294
295 fn lint_uint_literal<'a, 'tcx>(
296 cx: &LateContext<'a, 'tcx>,
297 e: &'tcx hir::Expr,
298 lit: &hir::Lit,
299 t: ast::UintTy,
300 ) {
301 let uint_type = t.normalize(cx.sess().target.ptr_width);
302 let (min, max) = uint_ty_range(uint_type);
303 let lit_val: u128 = match lit.node {
304 // _v is u8, within range by definition
305 ast::LitKind::Byte(_v) => return,
306 ast::LitKind::Int(v, _) => v,
307 _ => bug!(),
308 };
309 if lit_val < min || lit_val > max {
310 let parent_id = cx.tcx.hir().get_parent_node(e.hir_id);
311 if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
312 match par_e.kind {
313 hir::ExprKind::Cast(..) => {
314 if let ty::Char = cx.tables.expr_ty(par_e).kind {
315 let mut err = cx.struct_span_lint(
316 OVERFLOWING_LITERALS,
317 par_e.span,
318 "only `u8` can be cast into `char`",
319 );
320 err.span_suggestion(
321 par_e.span,
322 &"use a `char` literal instead",
323 format!("'\\u{{{:X}}}'", lit_val),
324 Applicability::MachineApplicable,
325 );
326 err.emit();
327 return;
328 }
329 }
330 hir::ExprKind::Struct(..)
331 if is_range_literal(cx.sess(), par_e) => {
332 let t = t.name_str();
333 if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, par_e, t) {
334 // The overflowing literal lint was overridden.
335 return;
336 }
337 }
338 _ => {}
339 }
340 }
341 if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
342 report_bin_hex_error(cx, e, attr::IntType::UnsignedInt(t), repr_str, lit_val, false);
343 return;
344 }
345 cx.span_lint(
346 OVERFLOWING_LITERALS,
347 e.span,
348 &format!("literal out of range for `{}`", t.name_str()),
349 );
350 }
351 }
352
353 fn lint_literal<'a, 'tcx>(
354 cx: &LateContext<'a, 'tcx>,
355 type_limits: &TypeLimits,
356 e: &'tcx hir::Expr,
357 lit: &hir::Lit,
358 ) {
359 match cx.tables.node_type(e.hir_id).kind {
360 ty::Int(t) => {
361 match lit.node {
362 ast::LitKind::Int(v, ast::LitIntType::Signed(_)) |
363 ast::LitKind::Int(v, ast::LitIntType::Unsuffixed) => {
364 lint_int_literal(cx, type_limits, e, lit, t, v)
365 }
366 _ => bug!(),
367 };
368 }
369 ty::Uint(t) => {
370 lint_uint_literal(cx, e, lit, t)
371 }
372 ty::Float(t) => {
373 let is_infinite = match lit.node {
374 ast::LitKind::Float(v, _) => {
375 match t {
376 ast::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
377 ast::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
378 }
379 }
380 _ => bug!(),
381 };
382 if is_infinite == Ok(true) {
383 cx.span_lint(
384 OVERFLOWING_LITERALS,
385 e.span,
386 &format!("literal out of range for `{}`", t.name_str()),
387 );
388 }
389 }
390 _ => {}
391 }
392 }
393
394 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for TypeLimits {
395 fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, e: &'tcx hir::Expr) {
396 match e.kind {
397 hir::ExprKind::Unary(hir::UnNeg, ref expr) => {
398 // propagate negation, if the negation itself isn't negated
399 if self.negated_expr_id != e.hir_id {
400 self.negated_expr_id = expr.hir_id;
401 }
402 }
403 hir::ExprKind::Binary(binop, ref l, ref r) => {
404 if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
405 cx.span_lint(UNUSED_COMPARISONS,
406 e.span,
407 "comparison is useless due to type limits");
408 }
409 }
410 hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
411 _ => {}
412 };
413
414 fn is_valid<T: cmp::PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
415 match binop.node {
416 hir::BinOpKind::Lt => v > min && v <= max,
417 hir::BinOpKind::Le => v >= min && v < max,
418 hir::BinOpKind::Gt => v >= min && v < max,
419 hir::BinOpKind::Ge => v > min && v <= max,
420 hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
421 _ => bug!(),
422 }
423 }
424
425 fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
426 source_map::respan(binop.span,
427 match binop.node {
428 hir::BinOpKind::Lt => hir::BinOpKind::Gt,
429 hir::BinOpKind::Le => hir::BinOpKind::Ge,
430 hir::BinOpKind::Gt => hir::BinOpKind::Lt,
431 hir::BinOpKind::Ge => hir::BinOpKind::Le,
432 _ => return binop,
433 })
434 }
435
436 fn check_limits(cx: &LateContext<'_, '_>,
437 binop: hir::BinOp,
438 l: &hir::Expr,
439 r: &hir::Expr)
440 -> bool {
441 let (lit, expr, swap) = match (&l.kind, &r.kind) {
442 (&hir::ExprKind::Lit(_), _) => (l, r, true),
443 (_, &hir::ExprKind::Lit(_)) => (r, l, false),
444 _ => return true,
445 };
446 // Normalize the binop so that the literal is always on the RHS in
447 // the comparison
448 let norm_binop = if swap { rev_binop(binop) } else { binop };
449 match cx.tables.node_type(expr.hir_id).kind {
450 ty::Int(int_ty) => {
451 let (min, max) = int_ty_range(int_ty);
452 let lit_val: i128 = match lit.kind {
453 hir::ExprKind::Lit(ref li) => {
454 match li.node {
455 ast::LitKind::Int(v, ast::LitIntType::Signed(_)) |
456 ast::LitKind::Int(v, ast::LitIntType::Unsuffixed) => v as i128,
457 _ => return true
458 }
459 },
460 _ => bug!()
461 };
462 is_valid(norm_binop, lit_val, min, max)
463 }
464 ty::Uint(uint_ty) => {
465 let (min, max) :(u128, u128) = uint_ty_range(uint_ty);
466 let lit_val: u128 = match lit.kind {
467 hir::ExprKind::Lit(ref li) => {
468 match li.node {
469 ast::LitKind::Int(v, _) => v,
470 _ => return true
471 }
472 },
473 _ => bug!()
474 };
475 is_valid(norm_binop, lit_val, min, max)
476 }
477 _ => true,
478 }
479 }
480
481 fn is_comparison(binop: hir::BinOp) -> bool {
482 match binop.node {
483 hir::BinOpKind::Eq |
484 hir::BinOpKind::Lt |
485 hir::BinOpKind::Le |
486 hir::BinOpKind::Ne |
487 hir::BinOpKind::Ge |
488 hir::BinOpKind::Gt => true,
489 _ => false,
490 }
491 }
492 }
493 }
494
495 declare_lint! {
496 IMPROPER_CTYPES,
497 Warn,
498 "proper use of libc types in foreign modules"
499 }
500
501 declare_lint_pass!(ImproperCTypes => [IMPROPER_CTYPES]);
502
503 struct ImproperCTypesVisitor<'a, 'tcx> {
504 cx: &'a LateContext<'a, 'tcx>,
505 }
506
507 enum FfiResult<'tcx> {
508 FfiSafe,
509 FfiPhantom(Ty<'tcx>),
510 FfiUnsafe {
511 ty: Ty<'tcx>,
512 reason: &'static str,
513 help: Option<&'static str>,
514 },
515 }
516
517 fn is_zst<'tcx>(tcx: TyCtxt<'tcx>, did: DefId, ty: Ty<'tcx>) -> bool {
518 tcx.layout_of(tcx.param_env(did).and(ty)).map(|layout| layout.is_zst()).unwrap_or(false)
519 }
520
521 fn ty_is_known_nonnull<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> bool {
522 match ty.kind {
523 ty::FnPtr(_) => true,
524 ty::Ref(..) => true,
525 ty::Adt(field_def, substs) if field_def.repr.transparent() && !field_def.is_union() => {
526 for field in field_def.all_fields() {
527 let field_ty = tcx.normalize_erasing_regions(
528 ParamEnv::reveal_all(),
529 field.ty(tcx, substs),
530 );
531 if is_zst(tcx, field.did, field_ty) {
532 continue;
533 }
534
535 let attrs = tcx.get_attrs(field_def.did);
536 if attrs.iter().any(|a| a.check_name(sym::rustc_nonnull_optimization_guaranteed)) ||
537 ty_is_known_nonnull(tcx, field_ty) {
538 return true;
539 }
540 }
541
542 false
543 }
544 _ => false,
545 }
546 }
547
548 /// Check if this enum can be safely exported based on the
549 /// "nullable pointer optimization". Currently restricted
550 /// to function pointers, references, core::num::NonZero*,
551 /// core::ptr::NonNull, and #[repr(transparent)] newtypes.
552 /// FIXME: This duplicates code in codegen.
553 fn is_repr_nullable_ptr<'tcx>(
554 tcx: TyCtxt<'tcx>,
555 ty: Ty<'tcx>,
556 ty_def: &'tcx ty::AdtDef,
557 substs: SubstsRef<'tcx>,
558 ) -> bool {
559 if ty_def.variants.len() != 2 {
560 return false;
561 }
562
563 let get_variant_fields = |index| &ty_def.variants[VariantIdx::new(index)].fields;
564 let variant_fields = [get_variant_fields(0), get_variant_fields(1)];
565 let fields = if variant_fields[0].is_empty() {
566 &variant_fields[1]
567 } else if variant_fields[1].is_empty() {
568 &variant_fields[0]
569 } else {
570 return false;
571 };
572
573 if fields.len() != 1 {
574 return false;
575 }
576
577 let field_ty = fields[0].ty(tcx, substs);
578 if !ty_is_known_nonnull(tcx, field_ty) {
579 return false;
580 }
581
582 // At this point, the field's type is known to be nonnull and the parent enum is Option-like.
583 // If the computed size for the field and the enum are different, the nonnull optimization isn't
584 // being applied (and we've got a problem somewhere).
585 let compute_size_skeleton = |t| SizeSkeleton::compute(t, tcx, ParamEnv::reveal_all()).unwrap();
586 if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
587 bug!("improper_ctypes: Option nonnull optimization not applied?");
588 }
589
590 true
591 }
592
593 impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
594
595 /// Check if the type is array and emit an unsafe type lint.
596 fn check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
597 if let ty::Array(..) = ty.kind {
598 self.emit_ffi_unsafe_type_lint(
599 ty,
600 sp,
601 "passing raw arrays by value is not FFI-safe",
602 Some("consider passing a pointer to the array"),
603 );
604 true
605 } else {
606 false
607 }
608 }
609
610
611 /// Checks if the given type is "ffi-safe" (has a stable, well-defined
612 /// representation which can be exported to C code).
613 fn check_type_for_ffi(&self,
614 cache: &mut FxHashSet<Ty<'tcx>>,
615 ty: Ty<'tcx>) -> FfiResult<'tcx> {
616 use FfiResult::*;
617
618 let cx = self.cx.tcx;
619
620 // Protect against infinite recursion, for example
621 // `struct S(*mut S);`.
622 // FIXME: A recursion limit is necessary as well, for irregular
623 // recursive types.
624 if !cache.insert(ty) {
625 return FfiSafe;
626 }
627
628 match ty.kind {
629 ty::Adt(def, substs) => {
630 if def.is_phantom_data() {
631 return FfiPhantom(ty);
632 }
633 match def.adt_kind() {
634 AdtKind::Struct => {
635 if !def.repr.c() && !def.repr.transparent() {
636 return FfiUnsafe {
637 ty,
638 reason: "this struct has unspecified layout",
639 help: Some("consider adding a `#[repr(C)]` or \
640 `#[repr(transparent)]` attribute to this struct"),
641 };
642 }
643
644 let is_non_exhaustive =
645 def.non_enum_variant().is_field_list_non_exhaustive();
646 if is_non_exhaustive && !def.did.is_local() {
647 return FfiUnsafe {
648 ty,
649 reason: "this struct is non-exhaustive",
650 help: None,
651 };
652 }
653
654 if def.non_enum_variant().fields.is_empty() {
655 return FfiUnsafe {
656 ty,
657 reason: "this struct has no fields",
658 help: Some("consider adding a member to this struct"),
659 };
660 }
661
662 // We can't completely trust repr(C) and repr(transparent) markings;
663 // make sure the fields are actually safe.
664 let mut all_phantom = true;
665 for field in &def.non_enum_variant().fields {
666 let field_ty = cx.normalize_erasing_regions(
667 ParamEnv::reveal_all(),
668 field.ty(cx, substs),
669 );
670 // repr(transparent) types are allowed to have arbitrary ZSTs, not just
671 // PhantomData -- skip checking all ZST fields
672 if def.repr.transparent() && is_zst(cx, field.did, field_ty) {
673 continue;
674 }
675 let r = self.check_type_for_ffi(cache, field_ty);
676 match r {
677 FfiSafe => {
678 all_phantom = false;
679 }
680 FfiPhantom(..) => {}
681 FfiUnsafe { .. } => {
682 return r;
683 }
684 }
685 }
686
687 if all_phantom { FfiPhantom(ty) } else { FfiSafe }
688 }
689 AdtKind::Union => {
690 if !def.repr.c() && !def.repr.transparent() {
691 return FfiUnsafe {
692 ty,
693 reason: "this union has unspecified layout",
694 help: Some("consider adding a `#[repr(C)]` or \
695 `#[repr(transparent)]` attribute to this union"),
696 };
697 }
698
699 if def.non_enum_variant().fields.is_empty() {
700 return FfiUnsafe {
701 ty,
702 reason: "this union has no fields",
703 help: Some("consider adding a field to this union"),
704 };
705 }
706
707 let mut all_phantom = true;
708 for field in &def.non_enum_variant().fields {
709 let field_ty = cx.normalize_erasing_regions(
710 ParamEnv::reveal_all(),
711 field.ty(cx, substs),
712 );
713 // repr(transparent) types are allowed to have arbitrary ZSTs, not just
714 // PhantomData -- skip checking all ZST fields.
715 if def.repr.transparent() && is_zst(cx, field.did, field_ty) {
716 continue;
717 }
718 let r = self.check_type_for_ffi(cache, field_ty);
719 match r {
720 FfiSafe => {
721 all_phantom = false;
722 }
723 FfiPhantom(..) => {}
724 FfiUnsafe { .. } => {
725 return r;
726 }
727 }
728 }
729
730 if all_phantom { FfiPhantom(ty) } else { FfiSafe }
731 }
732 AdtKind::Enum => {
733 if def.variants.is_empty() {
734 // Empty enums are okay... although sort of useless.
735 return FfiSafe;
736 }
737
738 // Check for a repr() attribute to specify the size of the
739 // discriminant.
740 if !def.repr.c() && !def.repr.transparent() && def.repr.int.is_none() {
741 // Special-case types like `Option<extern fn()>`.
742 if !is_repr_nullable_ptr(cx, ty, def, substs) {
743 return FfiUnsafe {
744 ty,
745 reason: "enum has no representation hint",
746 help: Some("consider adding a `#[repr(C)]`, \
747 `#[repr(transparent)]`, or integer `#[repr(...)]` \
748 attribute to this enum"),
749 };
750 }
751 }
752
753 if def.is_variant_list_non_exhaustive() && !def.did.is_local() {
754 return FfiUnsafe {
755 ty,
756 reason: "this enum is non-exhaustive",
757 help: None,
758 };
759 }
760
761 // Check the contained variants.
762 for variant in &def.variants {
763 let is_non_exhaustive = variant.is_field_list_non_exhaustive();
764 if is_non_exhaustive && !variant.def_id.is_local() {
765 return FfiUnsafe {
766 ty,
767 reason: "this enum has non-exhaustive variants",
768 help: None,
769 };
770 }
771
772 for field in &variant.fields {
773 let field_ty = cx.normalize_erasing_regions(
774 ParamEnv::reveal_all(),
775 field.ty(cx, substs),
776 );
777 // repr(transparent) types are allowed to have arbitrary ZSTs, not
778 // just PhantomData -- skip checking all ZST fields.
779 if def.repr.transparent() && is_zst(cx, field.did, field_ty) {
780 continue;
781 }
782 let r = self.check_type_for_ffi(cache, field_ty);
783 match r {
784 FfiSafe => {}
785 FfiUnsafe { .. } => {
786 return r;
787 }
788 FfiPhantom(..) => {
789 return FfiUnsafe {
790 ty,
791 reason: "this enum contains a PhantomData field",
792 help: None,
793 };
794 }
795 }
796 }
797 }
798 FfiSafe
799 }
800 }
801 }
802
803 ty::Char => FfiUnsafe {
804 ty,
805 reason: "the `char` type has no C equivalent",
806 help: Some("consider using `u32` or `libc::wchar_t` instead"),
807 },
808
809 ty::Int(ast::IntTy::I128) | ty::Uint(ast::UintTy::U128) => FfiUnsafe {
810 ty,
811 reason: "128-bit integers don't currently have a known stable ABI",
812 help: None,
813 },
814
815 // Primitive types with a stable representation.
816 ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,
817
818 ty::Slice(_) => FfiUnsafe {
819 ty,
820 reason: "slices have no C equivalent",
821 help: Some("consider using a raw pointer instead"),
822 },
823
824 ty::Dynamic(..) => FfiUnsafe {
825 ty,
826 reason: "trait objects have no C equivalent",
827 help: None,
828 },
829
830 ty::Str => FfiUnsafe {
831 ty,
832 reason: "string slices have no C equivalent",
833 help: Some("consider using `*const u8` and a length instead"),
834 },
835
836 ty::Tuple(..) => FfiUnsafe {
837 ty,
838 reason: "tuples have unspecified layout",
839 help: Some("consider using a struct instead"),
840 },
841
842 ty::RawPtr(ty::TypeAndMut { ty, .. }) |
843 ty::Ref(_, ty, _) => self.check_type_for_ffi(cache, ty),
844
845 ty::Array(inner_ty, _) => self.check_type_for_ffi(cache, inner_ty),
846
847 ty::FnPtr(sig) => {
848 match sig.abi() {
849 Abi::Rust | Abi::RustIntrinsic | Abi::PlatformIntrinsic | Abi::RustCall => {
850 return FfiUnsafe {
851 ty,
852 reason: "this function pointer has Rust-specific calling convention",
853 help: Some("consider using an `extern fn(...) -> ...` \
854 function pointer instead"),
855 }
856 }
857 _ => {}
858 }
859
860 let sig = cx.erase_late_bound_regions(&sig);
861 if !sig.output().is_unit() {
862 let r = self.check_type_for_ffi(cache, sig.output());
863 match r {
864 FfiSafe => {}
865 _ => {
866 return r;
867 }
868 }
869 }
870 for arg in sig.inputs() {
871 let r = self.check_type_for_ffi(cache, arg);
872 match r {
873 FfiSafe => {}
874 _ => {
875 return r;
876 }
877 }
878 }
879 FfiSafe
880 }
881
882 ty::Foreign(..) => FfiSafe,
883
884 ty::Param(..) |
885 ty::Infer(..) |
886 ty::Bound(..) |
887 ty::Error |
888 ty::Closure(..) |
889 ty::Generator(..) |
890 ty::GeneratorWitness(..) |
891 ty::Placeholder(..) |
892 ty::UnnormalizedProjection(..) |
893 ty::Projection(..) |
894 ty::Opaque(..) |
895 ty::FnDef(..) => bug!("unexpected type in foreign function: {:?}", ty),
896 }
897 }
898
899 fn emit_ffi_unsafe_type_lint(
900 &mut self,
901 ty: Ty<'tcx>,
902 sp: Span,
903 note: &str,
904 help: Option<&str>,
905 ) {
906 let mut diag = self.cx.struct_span_lint(
907 IMPROPER_CTYPES,
908 sp,
909 &format!("`extern` block uses type `{}`, which is not FFI-safe", ty),
910 );
911 diag.span_label(sp, "not FFI-safe");
912 if let Some(help) = help {
913 diag.help(help);
914 }
915 diag.note(note);
916 if let ty::Adt(def, _) = ty.kind {
917 if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did) {
918 diag.span_note(sp, "type defined here");
919 }
920 }
921 diag.emit();
922 }
923
924 fn check_for_opaque_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
925 use crate::rustc::ty::TypeFoldable;
926
927 struct ProhibitOpaqueTypes<'tcx> {
928 ty: Option<Ty<'tcx>>,
929 };
930
931 impl<'tcx> ty::fold::TypeVisitor<'tcx> for ProhibitOpaqueTypes<'tcx> {
932 fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
933 if let ty::Opaque(..) = ty.kind {
934 self.ty = Some(ty);
935 true
936 } else {
937 ty.super_visit_with(self)
938 }
939 }
940 }
941
942 let mut visitor = ProhibitOpaqueTypes { ty: None };
943 ty.visit_with(&mut visitor);
944 if let Some(ty) = visitor.ty {
945 self.emit_ffi_unsafe_type_lint(
946 ty,
947 sp,
948 "opaque types have no C equivalent",
949 None,
950 );
951 true
952 } else {
953 false
954 }
955 }
956
957 fn check_type_for_ffi_and_report_errors(&mut self, sp: Span, ty: Ty<'tcx>, is_static: bool) {
958 // We have to check for opaque types before `normalize_erasing_regions`,
959 // which will replace opaque types with their underlying concrete type.
960 if self.check_for_opaque_ty(sp, ty) {
961 // We've already emitted an error due to an opaque type.
962 return;
963 }
964
965 // it is only OK to use this function because extern fns cannot have
966 // any generic types right now:
967 let ty = self.cx.tcx.normalize_erasing_regions(ParamEnv::reveal_all(), ty);
968 // C doesn't really support passing arrays by value.
969 // The only way to pass an array by value is through a struct.
970 // So we first test that the top level isn't an array,
971 // and then recursively check the types inside.
972 if !is_static && self.check_for_array_ty(sp, ty) {
973 return;
974 }
975
976 match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
977 FfiResult::FfiSafe => {}
978 FfiResult::FfiPhantom(ty) => {
979 self.emit_ffi_unsafe_type_lint(ty, sp, "composed only of `PhantomData`", None);
980 }
981 FfiResult::FfiUnsafe { ty, reason, help } => {
982 self.emit_ffi_unsafe_type_lint(ty, sp, reason, help);
983 }
984 }
985 }
986
987 fn check_foreign_fn(&mut self, id: hir::HirId, decl: &hir::FnDecl) {
988 let def_id = self.cx.tcx.hir().local_def_id(id);
989 let sig = self.cx.tcx.fn_sig(def_id);
990 let sig = self.cx.tcx.erase_late_bound_regions(&sig);
991
992 for (input_ty, input_hir) in sig.inputs().iter().zip(&decl.inputs) {
993 self.check_type_for_ffi_and_report_errors(input_hir.span, input_ty, false);
994 }
995
996 if let hir::Return(ref ret_hir) = decl.output {
997 let ret_ty = sig.output();
998 if !ret_ty.is_unit() {
999 self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty, false);
1000 }
1001 }
1002 }
1003
1004 fn check_foreign_static(&mut self, id: hir::HirId, span: Span) {
1005 let def_id = self.cx.tcx.hir().local_def_id(id);
1006 let ty = self.cx.tcx.type_of(def_id);
1007 self.check_type_for_ffi_and_report_errors(span, ty, true);
1008 }
1009 }
1010
1011 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for ImproperCTypes {
1012 fn check_foreign_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::ForeignItem) {
1013 let mut vis = ImproperCTypesVisitor { cx };
1014 let abi = cx.tcx.hir().get_foreign_abi(it.hir_id);
1015 if let Abi::Rust | Abi::RustCall | Abi::RustIntrinsic | Abi::PlatformIntrinsic = abi {
1016 // Don't worry about types in internal ABIs.
1017 } else {
1018 match it.kind {
1019 hir::ForeignItemKind::Fn(ref decl, _, _) => {
1020 vis.check_foreign_fn(it.hir_id, decl);
1021 }
1022 hir::ForeignItemKind::Static(ref ty, _) => {
1023 vis.check_foreign_static(it.hir_id, ty.span);
1024 }
1025 hir::ForeignItemKind::Type => ()
1026 }
1027 }
1028 }
1029 }
1030
1031 declare_lint_pass!(VariantSizeDifferences => [VARIANT_SIZE_DIFFERENCES]);
1032
1033 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for VariantSizeDifferences {
1034 fn check_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::Item) {
1035 if let hir::ItemKind::Enum(ref enum_definition, _) = it.kind {
1036 let item_def_id = cx.tcx.hir().local_def_id(it.hir_id);
1037 let t = cx.tcx.type_of(item_def_id);
1038 let ty = cx.tcx.erase_regions(&t);
1039 let layout = match cx.layout_of(ty) {
1040 Ok(layout) => layout,
1041 Err(ty::layout::LayoutError::Unknown(_)) => return,
1042 Err(err @ ty::layout::LayoutError::SizeOverflow(_)) => {
1043 bug!("failed to get layout for `{}`: {}", t, err);
1044 }
1045 };
1046 let (variants, tag) = match layout.variants {
1047 layout::Variants::Multiple {
1048 discr_kind: layout::DiscriminantKind::Tag,
1049 ref discr,
1050 ref variants,
1051 ..
1052 } => (variants, discr),
1053 _ => return,
1054 };
1055
1056 let discr_size = tag.value.size(&cx.tcx).bytes();
1057
1058 debug!("enum `{}` is {} bytes large with layout:\n{:#?}",
1059 t, layout.size.bytes(), layout);
1060
1061 let (largest, slargest, largest_index) = enum_definition.variants
1062 .iter()
1063 .zip(variants)
1064 .map(|(variant, variant_layout)| {
1065 // Subtract the size of the enum discriminant.
1066 let bytes = variant_layout.size.bytes().saturating_sub(discr_size);
1067
1068 debug!("- variant `{}` is {} bytes large",
1069 variant.ident,
1070 bytes);
1071 bytes
1072 })
1073 .enumerate()
1074 .fold((0, 0, 0), |(l, s, li), (idx, size)| if size > l {
1075 (size, l, idx)
1076 } else if size > s {
1077 (l, size, li)
1078 } else {
1079 (l, s, li)
1080 });
1081
1082 // We only warn if the largest variant is at least thrice as large as
1083 // the second-largest.
1084 if largest > slargest * 3 && slargest > 0 {
1085 cx.span_lint(VARIANT_SIZE_DIFFERENCES,
1086 enum_definition.variants[largest_index].span,
1087 &format!("enum variant is more than three times \
1088 larger ({} bytes) than the next largest",
1089 largest));
1090 }
1091 }
1092 }
1093 }