]> git.proxmox.com Git - rustc.git/blob - src/librustc_lint/types.rs
New upstream version 1.47.0+dfsg1
[rustc.git] / src / librustc_lint / types.rs
1 #![allow(non_snake_case)]
2
3 use crate::{LateContext, LateLintPass, LintContext};
4 use rustc_ast as ast;
5 use rustc_attr as attr;
6 use rustc_data_structures::fx::FxHashSet;
7 use rustc_errors::Applicability;
8 use rustc_hir as hir;
9 use rustc_hir::{is_range_literal, ExprKind, Node};
10 use rustc_index::vec::Idx;
11 use rustc_middle::mir::interpret::{sign_extend, truncate};
12 use rustc_middle::ty::layout::{IntegerExt, SizeSkeleton};
13 use rustc_middle::ty::subst::SubstsRef;
14 use rustc_middle::ty::{self, AdtKind, Ty, TypeFoldable};
15 use rustc_span::source_map;
16 use rustc_span::symbol::sym;
17 use rustc_span::{Span, DUMMY_SP};
18 use rustc_target::abi::Abi;
19 use rustc_target::abi::{Integer, LayoutOf, TagEncoding, VariantIdx, Variants};
20 use rustc_target::spec::abi::Abi as SpecAbi;
21
22 use std::cmp;
23 use tracing::debug;
24
25 declare_lint! {
26 UNUSED_COMPARISONS,
27 Warn,
28 "comparisons made useless by limits of the types involved"
29 }
30
31 declare_lint! {
32 OVERFLOWING_LITERALS,
33 Deny,
34 "literal out of range for its type"
35 }
36
37 declare_lint! {
38 VARIANT_SIZE_DIFFERENCES,
39 Allow,
40 "detects enums with widely varying variant sizes"
41 }
42
43 #[derive(Copy, Clone)]
44 pub struct TypeLimits {
45 /// Id of the last visited negated expression
46 negated_expr_id: Option<hir::HirId>,
47 }
48
49 impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);
50
51 impl TypeLimits {
52 pub fn new() -> TypeLimits {
53 TypeLimits { negated_expr_id: None }
54 }
55 }
56
57 /// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint.
58 /// Returns `true` iff the lint was overridden.
59 fn lint_overflowing_range_endpoint<'tcx>(
60 cx: &LateContext<'tcx>,
61 lit: &hir::Lit,
62 lit_val: u128,
63 max: u128,
64 expr: &'tcx hir::Expr<'tcx>,
65 parent_expr: &'tcx hir::Expr<'tcx>,
66 ty: &str,
67 ) -> bool {
68 // We only want to handle exclusive (`..`) ranges,
69 // which are represented as `ExprKind::Struct`.
70 let mut overwritten = false;
71 if let ExprKind::Struct(_, eps, _) = &parent_expr.kind {
72 if eps.len() != 2 {
73 return false;
74 }
75 // We can suggest using an inclusive range
76 // (`..=`) instead only if it is the `end` that is
77 // overflowing and only by 1.
78 if eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max {
79 cx.struct_span_lint(OVERFLOWING_LITERALS, parent_expr.span, |lint| {
80 let mut err = lint.build(&format!("range endpoint is out of range for `{}`", ty));
81 if let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) {
82 use ast::{LitIntType, LitKind};
83 // We need to preserve the literal's suffix,
84 // as it may determine typing information.
85 let suffix = match lit.node {
86 LitKind::Int(_, LitIntType::Signed(s)) => s.name_str().to_string(),
87 LitKind::Int(_, LitIntType::Unsigned(s)) => s.name_str().to_string(),
88 LitKind::Int(_, LitIntType::Unsuffixed) => "".to_string(),
89 _ => bug!(),
90 };
91 let suggestion = format!("{}..={}{}", start, lit_val - 1, suffix);
92 err.span_suggestion(
93 parent_expr.span,
94 &"use an inclusive range instead",
95 suggestion,
96 Applicability::MachineApplicable,
97 );
98 err.emit();
99 overwritten = true;
100 }
101 });
102 }
103 }
104 overwritten
105 }
106
107 // For `isize` & `usize`, be conservative with the warnings, so that the
108 // warnings are consistent between 32- and 64-bit platforms.
109 fn int_ty_range(int_ty: ast::IntTy) -> (i128, i128) {
110 match int_ty {
111 ast::IntTy::Isize => (i64::MIN as i128, i64::MAX as i128),
112 ast::IntTy::I8 => (i8::MIN as i64 as i128, i8::MAX as i128),
113 ast::IntTy::I16 => (i16::MIN as i64 as i128, i16::MAX as i128),
114 ast::IntTy::I32 => (i32::MIN as i64 as i128, i32::MAX as i128),
115 ast::IntTy::I64 => (i64::MIN as i128, i64::MAX as i128),
116 ast::IntTy::I128 => (i128::MIN as i128, i128::MAX),
117 }
118 }
119
120 fn uint_ty_range(uint_ty: ast::UintTy) -> (u128, u128) {
121 match uint_ty {
122 ast::UintTy::Usize => (u64::MIN as u128, u64::MAX as u128),
123 ast::UintTy::U8 => (u8::MIN as u128, u8::MAX as u128),
124 ast::UintTy::U16 => (u16::MIN as u128, u16::MAX as u128),
125 ast::UintTy::U32 => (u32::MIN as u128, u32::MAX as u128),
126 ast::UintTy::U64 => (u64::MIN as u128, u64::MAX as u128),
127 ast::UintTy::U128 => (u128::MIN, u128::MAX),
128 }
129 }
130
131 fn get_bin_hex_repr(cx: &LateContext<'_>, lit: &hir::Lit) -> Option<String> {
132 let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
133 let firstch = src.chars().next()?;
134
135 if firstch == '0' {
136 match src.chars().nth(1) {
137 Some('x' | 'b') => return Some(src),
138 _ => return None,
139 }
140 }
141
142 None
143 }
144
145 fn report_bin_hex_error(
146 cx: &LateContext<'_>,
147 expr: &hir::Expr<'_>,
148 ty: attr::IntType,
149 repr_str: String,
150 val: u128,
151 negative: bool,
152 ) {
153 let size = Integer::from_attr(&cx.tcx, ty).size();
154 cx.struct_span_lint(OVERFLOWING_LITERALS, expr.span, |lint| {
155 let (t, actually) = match ty {
156 attr::IntType::SignedInt(t) => {
157 let actually = sign_extend(val, size) as i128;
158 (t.name_str(), actually.to_string())
159 }
160 attr::IntType::UnsignedInt(t) => {
161 let actually = truncate(val, size);
162 (t.name_str(), actually.to_string())
163 }
164 };
165 let mut err = lint.build(&format!("literal out of range for {}", t));
166 err.note(&format!(
167 "the literal `{}` (decimal `{}`) does not fit into \
168 the type `{}` and will become `{}{}`",
169 repr_str, val, t, actually, t
170 ));
171 if let Some(sugg_ty) =
172 get_type_suggestion(&cx.typeck_results().node_type(expr.hir_id), val, negative)
173 {
174 if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
175 let (sans_suffix, _) = repr_str.split_at(pos);
176 err.span_suggestion(
177 expr.span,
178 &format!("consider using `{}` instead", sugg_ty),
179 format!("{}{}", sans_suffix, sugg_ty),
180 Applicability::MachineApplicable,
181 );
182 } else {
183 err.help(&format!("consider using `{}` instead", sugg_ty));
184 }
185 }
186 err.emit();
187 });
188 }
189
190 // This function finds the next fitting type and generates a suggestion string.
191 // It searches for fitting types in the following way (`X < Y`):
192 // - `iX`: if literal fits in `uX` => `uX`, else => `iY`
193 // - `-iX` => `iY`
194 // - `uX` => `uY`
195 //
196 // No suggestion for: `isize`, `usize`.
197 fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str> {
198 use rustc_ast::IntTy::*;
199 use rustc_ast::UintTy::*;
200 macro_rules! find_fit {
201 ($ty:expr, $val:expr, $negative:expr,
202 $($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
203 {
204 let _neg = if negative { 1 } else { 0 };
205 match $ty {
206 $($type => {
207 $(if !negative && val <= uint_ty_range($utypes).1 {
208 return Some($utypes.name_str())
209 })*
210 $(if val <= int_ty_range($itypes).1 as u128 + _neg {
211 return Some($itypes.name_str())
212 })*
213 None
214 },)+
215 _ => None
216 }
217 }
218 }
219 }
220 match t.kind {
221 ty::Int(i) => find_fit!(i, val, negative,
222 I8 => [U8] => [I16, I32, I64, I128],
223 I16 => [U16] => [I32, I64, I128],
224 I32 => [U32] => [I64, I128],
225 I64 => [U64] => [I128],
226 I128 => [U128] => []),
227 ty::Uint(u) => find_fit!(u, val, negative,
228 U8 => [U8, U16, U32, U64, U128] => [],
229 U16 => [U16, U32, U64, U128] => [],
230 U32 => [U32, U64, U128] => [],
231 U64 => [U64, U128] => [],
232 U128 => [U128] => []),
233 _ => None,
234 }
235 }
236
237 fn lint_int_literal<'tcx>(
238 cx: &LateContext<'tcx>,
239 type_limits: &TypeLimits,
240 e: &'tcx hir::Expr<'tcx>,
241 lit: &hir::Lit,
242 t: ast::IntTy,
243 v: u128,
244 ) {
245 let int_type = t.normalize(cx.sess().target.ptr_width);
246 let (min, max) = int_ty_range(int_type);
247 let max = max as u128;
248 let negative = type_limits.negated_expr_id == Some(e.hir_id);
249
250 // Detect literal value out of range [min, max] inclusive
251 // avoiding use of -min to prevent overflow/panic
252 if (negative && v > max + 1) || (!negative && v > max) {
253 if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
254 report_bin_hex_error(cx, e, attr::IntType::SignedInt(t), repr_str, v, negative);
255 return;
256 }
257
258 let par_id = cx.tcx.hir().get_parent_node(e.hir_id);
259 if let Node::Expr(par_e) = cx.tcx.hir().get(par_id) {
260 if let hir::ExprKind::Struct(..) = par_e.kind {
261 if is_range_literal(par_e)
262 && lint_overflowing_range_endpoint(cx, lit, v, max, e, par_e, t.name_str())
263 {
264 // The overflowing literal lint was overridden.
265 return;
266 }
267 }
268 }
269
270 cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
271 lint.build(&format!("literal out of range for `{}`", t.name_str()))
272 .note(&format!(
273 "the literal `{}` does not fit into the type `{}` whose range is `{}..={}`",
274 cx.sess()
275 .source_map()
276 .span_to_snippet(lit.span)
277 .expect("must get snippet from literal"),
278 t.name_str(),
279 min,
280 max,
281 ))
282 .emit();
283 });
284 }
285 }
286
287 fn lint_uint_literal<'tcx>(
288 cx: &LateContext<'tcx>,
289 e: &'tcx hir::Expr<'tcx>,
290 lit: &hir::Lit,
291 t: ast::UintTy,
292 ) {
293 let uint_type = t.normalize(cx.sess().target.ptr_width);
294 let (min, max) = uint_ty_range(uint_type);
295 let lit_val: u128 = match lit.node {
296 // _v is u8, within range by definition
297 ast::LitKind::Byte(_v) => return,
298 ast::LitKind::Int(v, _) => v,
299 _ => bug!(),
300 };
301 if lit_val < min || lit_val > max {
302 let parent_id = cx.tcx.hir().get_parent_node(e.hir_id);
303 if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
304 match par_e.kind {
305 hir::ExprKind::Cast(..) => {
306 if let ty::Char = cx.typeck_results().expr_ty(par_e).kind {
307 cx.struct_span_lint(OVERFLOWING_LITERALS, par_e.span, |lint| {
308 lint.build("only `u8` can be cast into `char`")
309 .span_suggestion(
310 par_e.span,
311 &"use a `char` literal instead",
312 format!("'\\u{{{:X}}}'", lit_val),
313 Applicability::MachineApplicable,
314 )
315 .emit();
316 });
317 return;
318 }
319 }
320 hir::ExprKind::Struct(..) if is_range_literal(par_e) => {
321 let t = t.name_str();
322 if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, par_e, t) {
323 // The overflowing literal lint was overridden.
324 return;
325 }
326 }
327 _ => {}
328 }
329 }
330 if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
331 report_bin_hex_error(cx, e, attr::IntType::UnsignedInt(t), repr_str, lit_val, false);
332 return;
333 }
334 cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
335 lint.build(&format!("literal out of range for `{}`", t.name_str()))
336 .note(&format!(
337 "the literal `{}` does not fit into the type `{}` whose range is `{}..={}`",
338 cx.sess()
339 .source_map()
340 .span_to_snippet(lit.span)
341 .expect("must get snippet from literal"),
342 t.name_str(),
343 min,
344 max,
345 ))
346 .emit()
347 });
348 }
349 }
350
351 fn lint_literal<'tcx>(
352 cx: &LateContext<'tcx>,
353 type_limits: &TypeLimits,
354 e: &'tcx hir::Expr<'tcx>,
355 lit: &hir::Lit,
356 ) {
357 match cx.typeck_results().node_type(e.hir_id).kind {
358 ty::Int(t) => {
359 match lit.node {
360 ast::LitKind::Int(v, ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed) => {
361 lint_int_literal(cx, type_limits, e, lit, t, v)
362 }
363 _ => bug!(),
364 };
365 }
366 ty::Uint(t) => lint_uint_literal(cx, e, lit, t),
367 ty::Float(t) => {
368 let is_infinite = match lit.node {
369 ast::LitKind::Float(v, _) => match t {
370 ast::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
371 ast::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
372 },
373 _ => bug!(),
374 };
375 if is_infinite == Ok(true) {
376 cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
377 lint.build(&format!("literal out of range for `{}`", t.name_str()))
378 .note(&format!(
379 "the literal `{}` does not fit into the type `{}` and will be converted to `std::{}::INFINITY`",
380 cx.sess()
381 .source_map()
382 .span_to_snippet(lit.span)
383 .expect("must get snippet from literal"),
384 t.name_str(),
385 t.name_str(),
386 ))
387 .emit();
388 });
389 }
390 }
391 _ => {}
392 }
393 }
394
395 impl<'tcx> LateLintPass<'tcx> for TypeLimits {
396 fn check_expr(&mut self, cx: &LateContext<'tcx>, e: &'tcx hir::Expr<'tcx>) {
397 match e.kind {
398 hir::ExprKind::Unary(hir::UnOp::UnNeg, ref expr) => {
399 // propagate negation, if the negation itself isn't negated
400 if self.negated_expr_id != Some(e.hir_id) {
401 self.negated_expr_id = Some(expr.hir_id);
402 }
403 }
404 hir::ExprKind::Binary(binop, ref l, ref r) => {
405 if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
406 cx.struct_span_lint(UNUSED_COMPARISONS, e.span, |lint| {
407 lint.build("comparison is useless due to type limits").emit()
408 });
409 }
410 }
411 hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
412 _ => {}
413 };
414
415 fn is_valid<T: cmp::PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
416 match binop.node {
417 hir::BinOpKind::Lt => v > min && v <= max,
418 hir::BinOpKind::Le => v >= min && v < max,
419 hir::BinOpKind::Gt => v >= min && v < max,
420 hir::BinOpKind::Ge => v > min && v <= max,
421 hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
422 _ => bug!(),
423 }
424 }
425
426 fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
427 source_map::respan(
428 binop.span,
429 match binop.node {
430 hir::BinOpKind::Lt => hir::BinOpKind::Gt,
431 hir::BinOpKind::Le => hir::BinOpKind::Ge,
432 hir::BinOpKind::Gt => hir::BinOpKind::Lt,
433 hir::BinOpKind::Ge => hir::BinOpKind::Le,
434 _ => return binop,
435 },
436 )
437 }
438
439 fn check_limits(
440 cx: &LateContext<'_>,
441 binop: hir::BinOp,
442 l: &hir::Expr<'_>,
443 r: &hir::Expr<'_>,
444 ) -> bool {
445 let (lit, expr, swap) = match (&l.kind, &r.kind) {
446 (&hir::ExprKind::Lit(_), _) => (l, r, true),
447 (_, &hir::ExprKind::Lit(_)) => (r, l, false),
448 _ => return true,
449 };
450 // Normalize the binop so that the literal is always on the RHS in
451 // the comparison
452 let norm_binop = if swap { rev_binop(binop) } else { binop };
453 match cx.typeck_results().node_type(expr.hir_id).kind {
454 ty::Int(int_ty) => {
455 let (min, max) = int_ty_range(int_ty);
456 let lit_val: i128 = match lit.kind {
457 hir::ExprKind::Lit(ref li) => match li.node {
458 ast::LitKind::Int(
459 v,
460 ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed,
461 ) => v as i128,
462 _ => return true,
463 },
464 _ => bug!(),
465 };
466 is_valid(norm_binop, lit_val, min, max)
467 }
468 ty::Uint(uint_ty) => {
469 let (min, max): (u128, u128) = uint_ty_range(uint_ty);
470 let lit_val: u128 = match lit.kind {
471 hir::ExprKind::Lit(ref li) => match li.node {
472 ast::LitKind::Int(v, _) => v,
473 _ => return true,
474 },
475 _ => bug!(),
476 };
477 is_valid(norm_binop, lit_val, min, max)
478 }
479 _ => true,
480 }
481 }
482
483 fn is_comparison(binop: hir::BinOp) -> bool {
484 match binop.node {
485 hir::BinOpKind::Eq
486 | hir::BinOpKind::Lt
487 | hir::BinOpKind::Le
488 | hir::BinOpKind::Ne
489 | hir::BinOpKind::Ge
490 | hir::BinOpKind::Gt => true,
491 _ => false,
492 }
493 }
494 }
495 }
496
497 declare_lint! {
498 IMPROPER_CTYPES,
499 Warn,
500 "proper use of libc types in foreign modules"
501 }
502
503 declare_lint_pass!(ImproperCTypesDeclarations => [IMPROPER_CTYPES]);
504
505 declare_lint! {
506 IMPROPER_CTYPES_DEFINITIONS,
507 Warn,
508 "proper use of libc types in foreign item definitions"
509 }
510
511 declare_lint_pass!(ImproperCTypesDefinitions => [IMPROPER_CTYPES_DEFINITIONS]);
512
513 #[derive(Clone, Copy)]
514 crate enum CItemKind {
515 Declaration,
516 Definition,
517 }
518
519 struct ImproperCTypesVisitor<'a, 'tcx> {
520 cx: &'a LateContext<'tcx>,
521 mode: CItemKind,
522 }
523
524 enum FfiResult<'tcx> {
525 FfiSafe,
526 FfiPhantom(Ty<'tcx>),
527 FfiUnsafe { ty: Ty<'tcx>, reason: String, help: Option<String> },
528 }
529
530 /// Is type known to be non-null?
531 fn ty_is_known_nonnull<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, mode: CItemKind) -> bool {
532 let tcx = cx.tcx;
533 match ty.kind {
534 ty::FnPtr(_) => true,
535 ty::Ref(..) => true,
536 ty::Adt(def, _) if def.is_box() && matches!(mode, CItemKind::Definition) => true,
537 ty::Adt(def, substs) if def.repr.transparent() && !def.is_union() => {
538 let guaranteed_nonnull_optimization = tcx
539 .get_attrs(def.did)
540 .iter()
541 .any(|a| tcx.sess.check_name(a, sym::rustc_nonnull_optimization_guaranteed));
542
543 if guaranteed_nonnull_optimization {
544 return true;
545 }
546 for variant in &def.variants {
547 if let Some(field) = variant.transparent_newtype_field(tcx) {
548 if ty_is_known_nonnull(cx, field.ty(tcx, substs), mode) {
549 return true;
550 }
551 }
552 }
553
554 false
555 }
556 _ => false,
557 }
558 }
559
560 /// Given a non-null scalar (or transparent) type `ty`, return the nullable version of that type.
561 /// If the type passed in was not scalar, returns None.
562 fn get_nullable_type<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
563 let tcx = cx.tcx;
564 Some(match ty.kind {
565 ty::Adt(field_def, field_substs) => {
566 let inner_field_ty = {
567 let first_non_zst_ty =
568 field_def.variants.iter().filter_map(|v| v.transparent_newtype_field(tcx));
569 debug_assert_eq!(
570 first_non_zst_ty.clone().count(),
571 1,
572 "Wrong number of fields for transparent type"
573 );
574 first_non_zst_ty
575 .last()
576 .expect("No non-zst fields in transparent type.")
577 .ty(tcx, field_substs)
578 };
579 return get_nullable_type(cx, inner_field_ty);
580 }
581 ty::Int(ty) => tcx.mk_mach_int(ty),
582 ty::Uint(ty) => tcx.mk_mach_uint(ty),
583 ty::RawPtr(ty_mut) => tcx.mk_ptr(ty_mut),
584 // As these types are always non-null, the nullable equivalent of
585 // Option<T> of these types are their raw pointer counterparts.
586 ty::Ref(_region, ty, mutbl) => tcx.mk_ptr(ty::TypeAndMut { ty, mutbl }),
587 ty::FnPtr(..) => {
588 // There is no nullable equivalent for Rust's function pointers -- you
589 // must use an Option<fn(..) -> _> to represent it.
590 ty
591 }
592
593 // We should only ever reach this case if ty_is_known_nonnull is extended
594 // to other types.
595 ref unhandled => {
596 debug!(
597 "get_nullable_type: Unhandled scalar kind: {:?} while checking {:?}",
598 unhandled, ty
599 );
600 return None;
601 }
602 })
603 }
604
605 /// Check if this enum can be safely exported based on the "nullable pointer optimization". If it
606 /// can, return the the type that `ty` can be safely converted to, otherwise return `None`.
607 /// Currently restricted to function pointers, boxes, references, `core::num::NonZero*`,
608 /// `core::ptr::NonNull`, and `#[repr(transparent)]` newtypes.
609 /// FIXME: This duplicates code in codegen.
610 crate fn repr_nullable_ptr<'tcx>(
611 cx: &LateContext<'tcx>,
612 ty: Ty<'tcx>,
613 ckind: CItemKind,
614 ) -> Option<Ty<'tcx>> {
615 debug!("is_repr_nullable_ptr(cx, ty = {:?})", ty);
616 if let ty::Adt(ty_def, substs) = ty.kind {
617 if ty_def.variants.len() != 2 {
618 return None;
619 }
620
621 let get_variant_fields = |index| &ty_def.variants[VariantIdx::new(index)].fields;
622 let variant_fields = [get_variant_fields(0), get_variant_fields(1)];
623 let fields = if variant_fields[0].is_empty() {
624 &variant_fields[1]
625 } else if variant_fields[1].is_empty() {
626 &variant_fields[0]
627 } else {
628 return None;
629 };
630
631 if fields.len() != 1 {
632 return None;
633 }
634
635 let field_ty = fields[0].ty(cx.tcx, substs);
636 if !ty_is_known_nonnull(cx, field_ty, ckind) {
637 return None;
638 }
639
640 // At this point, the field's type is known to be nonnull and the parent enum is Option-like.
641 // If the computed size for the field and the enum are different, the nonnull optimization isn't
642 // being applied (and we've got a problem somewhere).
643 let compute_size_skeleton = |t| SizeSkeleton::compute(t, cx.tcx, cx.param_env).unwrap();
644 if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
645 bug!("improper_ctypes: Option nonnull optimization not applied?");
646 }
647
648 // Return the nullable type this Option-like enum can be safely represented with.
649 let field_ty_abi = &cx.layout_of(field_ty).unwrap().abi;
650 if let Abi::Scalar(field_ty_scalar) = field_ty_abi {
651 match (field_ty_scalar.valid_range.start(), field_ty_scalar.valid_range.end()) {
652 (0, _) => unreachable!("Non-null optimisation extended to a non-zero value."),
653 (1, _) => {
654 return Some(get_nullable_type(cx, field_ty).unwrap());
655 }
656 (start, end) => unreachable!("Unhandled start and end range: ({}, {})", start, end),
657 };
658 }
659 }
660 None
661 }
662
663 impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
664 /// Check if the type is array and emit an unsafe type lint.
665 fn check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
666 if let ty::Array(..) = ty.kind {
667 self.emit_ffi_unsafe_type_lint(
668 ty,
669 sp,
670 "passing raw arrays by value is not FFI-safe",
671 Some("consider passing a pointer to the array"),
672 );
673 true
674 } else {
675 false
676 }
677 }
678
679 /// Checks if the given field's type is "ffi-safe".
680 fn check_field_type_for_ffi(
681 &self,
682 cache: &mut FxHashSet<Ty<'tcx>>,
683 field: &ty::FieldDef,
684 substs: SubstsRef<'tcx>,
685 ) -> FfiResult<'tcx> {
686 let field_ty = field.ty(self.cx.tcx, substs);
687 if field_ty.has_opaque_types() {
688 self.check_type_for_ffi(cache, field_ty)
689 } else {
690 let field_ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, field_ty);
691 self.check_type_for_ffi(cache, field_ty)
692 }
693 }
694
695 /// Checks if the given `VariantDef`'s field types are "ffi-safe".
696 fn check_variant_for_ffi(
697 &self,
698 cache: &mut FxHashSet<Ty<'tcx>>,
699 ty: Ty<'tcx>,
700 def: &ty::AdtDef,
701 variant: &ty::VariantDef,
702 substs: SubstsRef<'tcx>,
703 ) -> FfiResult<'tcx> {
704 use FfiResult::*;
705
706 if def.repr.transparent() {
707 // Can assume that only one field is not a ZST, so only check
708 // that field's type for FFI-safety.
709 if let Some(field) = variant.transparent_newtype_field(self.cx.tcx) {
710 self.check_field_type_for_ffi(cache, field, substs)
711 } else {
712 bug!("malformed transparent type");
713 }
714 } else {
715 // We can't completely trust repr(C) markings; make sure the fields are
716 // actually safe.
717 let mut all_phantom = !variant.fields.is_empty();
718 for field in &variant.fields {
719 match self.check_field_type_for_ffi(cache, &field, substs) {
720 FfiSafe => {
721 all_phantom = false;
722 }
723 FfiPhantom(..) if def.is_enum() => {
724 return FfiUnsafe {
725 ty,
726 reason: "this enum contains a PhantomData field".into(),
727 help: None,
728 };
729 }
730 FfiPhantom(..) => {}
731 r => return r,
732 }
733 }
734
735 if all_phantom { FfiPhantom(ty) } else { FfiSafe }
736 }
737 }
738
739 /// Checks if the given type is "ffi-safe" (has a stable, well-defined
740 /// representation which can be exported to C code).
741 fn check_type_for_ffi(&self, cache: &mut FxHashSet<Ty<'tcx>>, ty: Ty<'tcx>) -> FfiResult<'tcx> {
742 use FfiResult::*;
743
744 let tcx = self.cx.tcx;
745
746 // Protect against infinite recursion, for example
747 // `struct S(*mut S);`.
748 // FIXME: A recursion limit is necessary as well, for irregular
749 // recursive types.
750 if !cache.insert(ty) {
751 return FfiSafe;
752 }
753
754 match ty.kind {
755 ty::Adt(def, _) if def.is_box() && matches!(self.mode, CItemKind::Definition) => {
756 FfiSafe
757 }
758
759 ty::Adt(def, substs) => {
760 if def.is_phantom_data() {
761 return FfiPhantom(ty);
762 }
763 match def.adt_kind() {
764 AdtKind::Struct | AdtKind::Union => {
765 let kind = if def.is_struct() { "struct" } else { "union" };
766
767 if !def.repr.c() && !def.repr.transparent() {
768 return FfiUnsafe {
769 ty,
770 reason: format!("this {} has unspecified layout", kind),
771 help: Some(format!(
772 "consider adding a `#[repr(C)]` or \
773 `#[repr(transparent)]` attribute to this {}",
774 kind
775 )),
776 };
777 }
778
779 let is_non_exhaustive =
780 def.non_enum_variant().is_field_list_non_exhaustive();
781 if is_non_exhaustive && !def.did.is_local() {
782 return FfiUnsafe {
783 ty,
784 reason: format!("this {} is non-exhaustive", kind),
785 help: None,
786 };
787 }
788
789 if def.non_enum_variant().fields.is_empty() {
790 return FfiUnsafe {
791 ty,
792 reason: format!("this {} has no fields", kind),
793 help: Some(format!("consider adding a member to this {}", kind)),
794 };
795 }
796
797 self.check_variant_for_ffi(cache, ty, def, def.non_enum_variant(), substs)
798 }
799 AdtKind::Enum => {
800 if def.variants.is_empty() {
801 // Empty enums are okay... although sort of useless.
802 return FfiSafe;
803 }
804
805 // Check for a repr() attribute to specify the size of the
806 // discriminant.
807 if !def.repr.c() && !def.repr.transparent() && def.repr.int.is_none() {
808 // Special-case types like `Option<extern fn()>`.
809 if repr_nullable_ptr(self.cx, ty, self.mode).is_none() {
810 return FfiUnsafe {
811 ty,
812 reason: "enum has no representation hint".into(),
813 help: Some(
814 "consider adding a `#[repr(C)]`, \
815 `#[repr(transparent)]`, or integer `#[repr(...)]` \
816 attribute to this enum"
817 .into(),
818 ),
819 };
820 }
821 }
822
823 if def.is_variant_list_non_exhaustive() && !def.did.is_local() {
824 return FfiUnsafe {
825 ty,
826 reason: "this enum is non-exhaustive".into(),
827 help: None,
828 };
829 }
830
831 // Check the contained variants.
832 for variant in &def.variants {
833 let is_non_exhaustive = variant.is_field_list_non_exhaustive();
834 if is_non_exhaustive && !variant.def_id.is_local() {
835 return FfiUnsafe {
836 ty,
837 reason: "this enum has non-exhaustive variants".into(),
838 help: None,
839 };
840 }
841
842 match self.check_variant_for_ffi(cache, ty, def, variant, substs) {
843 FfiSafe => (),
844 r => return r,
845 }
846 }
847
848 FfiSafe
849 }
850 }
851 }
852
853 ty::Char => FfiUnsafe {
854 ty,
855 reason: "the `char` type has no C equivalent".into(),
856 help: Some("consider using `u32` or `libc::wchar_t` instead".into()),
857 },
858
859 ty::Int(ast::IntTy::I128) | ty::Uint(ast::UintTy::U128) => FfiUnsafe {
860 ty,
861 reason: "128-bit integers don't currently have a known stable ABI".into(),
862 help: None,
863 },
864
865 // Primitive types with a stable representation.
866 ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,
867
868 ty::Slice(_) => FfiUnsafe {
869 ty,
870 reason: "slices have no C equivalent".into(),
871 help: Some("consider using a raw pointer instead".into()),
872 },
873
874 ty::Dynamic(..) => {
875 FfiUnsafe { ty, reason: "trait objects have no C equivalent".into(), help: None }
876 }
877
878 ty::Str => FfiUnsafe {
879 ty,
880 reason: "string slices have no C equivalent".into(),
881 help: Some("consider using `*const u8` and a length instead".into()),
882 },
883
884 ty::Tuple(..) => FfiUnsafe {
885 ty,
886 reason: "tuples have unspecified layout".into(),
887 help: Some("consider using a struct instead".into()),
888 },
889
890 ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _)
891 if {
892 matches!(self.mode, CItemKind::Definition)
893 && ty.is_sized(self.cx.tcx.at(DUMMY_SP), self.cx.param_env)
894 } =>
895 {
896 FfiSafe
897 }
898
899 ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => {
900 self.check_type_for_ffi(cache, ty)
901 }
902
903 ty::Array(inner_ty, _) => self.check_type_for_ffi(cache, inner_ty),
904
905 ty::FnPtr(sig) => {
906 if self.is_internal_abi(sig.abi()) {
907 return FfiUnsafe {
908 ty,
909 reason: "this function pointer has Rust-specific calling convention".into(),
910 help: Some(
911 "consider using an `extern fn(...) -> ...` \
912 function pointer instead"
913 .into(),
914 ),
915 };
916 }
917
918 let sig = tcx.erase_late_bound_regions(&sig);
919 if !sig.output().is_unit() {
920 let r = self.check_type_for_ffi(cache, sig.output());
921 match r {
922 FfiSafe => {}
923 _ => {
924 return r;
925 }
926 }
927 }
928 for arg in sig.inputs() {
929 let r = self.check_type_for_ffi(cache, arg);
930 match r {
931 FfiSafe => {}
932 _ => {
933 return r;
934 }
935 }
936 }
937 FfiSafe
938 }
939
940 ty::Foreign(..) => FfiSafe,
941
942 // While opaque types are checked for earlier, if a projection in a struct field
943 // normalizes to an opaque type, then it will reach this branch.
944 ty::Opaque(..) => {
945 FfiUnsafe { ty, reason: "opaque types have no C equivalent".into(), help: None }
946 }
947
948 // `extern "C" fn` functions can have type parameters, which may or may not be FFI-safe,
949 // so they are currently ignored for the purposes of this lint.
950 ty::Param(..) | ty::Projection(..) if matches!(self.mode, CItemKind::Definition) => {
951 FfiSafe
952 }
953
954 ty::Param(..)
955 | ty::Projection(..)
956 | ty::Infer(..)
957 | ty::Bound(..)
958 | ty::Error(_)
959 | ty::Closure(..)
960 | ty::Generator(..)
961 | ty::GeneratorWitness(..)
962 | ty::Placeholder(..)
963 | ty::FnDef(..) => bug!("unexpected type in foreign function: {:?}", ty),
964 }
965 }
966
967 fn emit_ffi_unsafe_type_lint(
968 &mut self,
969 ty: Ty<'tcx>,
970 sp: Span,
971 note: &str,
972 help: Option<&str>,
973 ) {
974 let lint = match self.mode {
975 CItemKind::Declaration => IMPROPER_CTYPES,
976 CItemKind::Definition => IMPROPER_CTYPES_DEFINITIONS,
977 };
978
979 self.cx.struct_span_lint(lint, sp, |lint| {
980 let item_description = match self.mode {
981 CItemKind::Declaration => "block",
982 CItemKind::Definition => "fn",
983 };
984 let mut diag = lint.build(&format!(
985 "`extern` {} uses type `{}`, which is not FFI-safe",
986 item_description, ty
987 ));
988 diag.span_label(sp, "not FFI-safe");
989 if let Some(help) = help {
990 diag.help(help);
991 }
992 diag.note(note);
993 if let ty::Adt(def, _) = ty.kind {
994 if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did) {
995 diag.span_note(sp, "the type is defined here");
996 }
997 }
998 diag.emit();
999 });
1000 }
1001
1002 fn check_for_opaque_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
1003 struct ProhibitOpaqueTypes<'a, 'tcx> {
1004 cx: &'a LateContext<'tcx>,
1005 ty: Option<Ty<'tcx>>,
1006 };
1007
1008 impl<'a, 'tcx> ty::fold::TypeVisitor<'tcx> for ProhibitOpaqueTypes<'a, 'tcx> {
1009 fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
1010 match ty.kind {
1011 ty::Opaque(..) => {
1012 self.ty = Some(ty);
1013 true
1014 }
1015 // Consider opaque types within projections FFI-safe if they do not normalize
1016 // to more opaque types.
1017 ty::Projection(..) => {
1018 let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
1019
1020 // If `ty` is a opaque type directly then `super_visit_with` won't invoke
1021 // this function again.
1022 if ty.has_opaque_types() { self.visit_ty(ty) } else { false }
1023 }
1024 _ => ty.super_visit_with(self),
1025 }
1026 }
1027 }
1028
1029 let mut visitor = ProhibitOpaqueTypes { cx: self.cx, ty: None };
1030 ty.visit_with(&mut visitor);
1031 if let Some(ty) = visitor.ty {
1032 self.emit_ffi_unsafe_type_lint(ty, sp, "opaque types have no C equivalent", None);
1033 true
1034 } else {
1035 false
1036 }
1037 }
1038
1039 fn check_type_for_ffi_and_report_errors(
1040 &mut self,
1041 sp: Span,
1042 ty: Ty<'tcx>,
1043 is_static: bool,
1044 is_return_type: bool,
1045 ) {
1046 // We have to check for opaque types before `normalize_erasing_regions`,
1047 // which will replace opaque types with their underlying concrete type.
1048 if self.check_for_opaque_ty(sp, ty) {
1049 // We've already emitted an error due to an opaque type.
1050 return;
1051 }
1052
1053 // it is only OK to use this function because extern fns cannot have
1054 // any generic types right now:
1055 let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
1056
1057 // C doesn't really support passing arrays by value - the only way to pass an array by value
1058 // is through a struct. So, first test that the top level isn't an array, and then
1059 // recursively check the types inside.
1060 if !is_static && self.check_for_array_ty(sp, ty) {
1061 return;
1062 }
1063
1064 // Don't report FFI errors for unit return types. This check exists here, and not in
1065 // `check_foreign_fn` (where it would make more sense) so that normalization has definitely
1066 // happened.
1067 if is_return_type && ty.is_unit() {
1068 return;
1069 }
1070
1071 match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
1072 FfiResult::FfiSafe => {}
1073 FfiResult::FfiPhantom(ty) => {
1074 self.emit_ffi_unsafe_type_lint(ty, sp, "composed only of `PhantomData`", None);
1075 }
1076 // If `ty` is a `repr(transparent)` newtype, and the non-zero-sized type is a generic
1077 // argument, which after substitution, is `()`, then this branch can be hit.
1078 FfiResult::FfiUnsafe { ty, .. } if is_return_type && ty.is_unit() => {}
1079 FfiResult::FfiUnsafe { ty, reason, help } => {
1080 self.emit_ffi_unsafe_type_lint(ty, sp, &reason, help.as_deref());
1081 }
1082 }
1083 }
1084
1085 fn check_foreign_fn(&mut self, id: hir::HirId, decl: &hir::FnDecl<'_>) {
1086 let def_id = self.cx.tcx.hir().local_def_id(id);
1087 let sig = self.cx.tcx.fn_sig(def_id);
1088 let sig = self.cx.tcx.erase_late_bound_regions(&sig);
1089
1090 for (input_ty, input_hir) in sig.inputs().iter().zip(decl.inputs) {
1091 self.check_type_for_ffi_and_report_errors(input_hir.span, input_ty, false, false);
1092 }
1093
1094 if let hir::FnRetTy::Return(ref ret_hir) = decl.output {
1095 let ret_ty = sig.output();
1096 self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty, false, true);
1097 }
1098 }
1099
1100 fn check_foreign_static(&mut self, id: hir::HirId, span: Span) {
1101 let def_id = self.cx.tcx.hir().local_def_id(id);
1102 let ty = self.cx.tcx.type_of(def_id);
1103 self.check_type_for_ffi_and_report_errors(span, ty, true, false);
1104 }
1105
1106 fn is_internal_abi(&self, abi: SpecAbi) -> bool {
1107 if let SpecAbi::Rust
1108 | SpecAbi::RustCall
1109 | SpecAbi::RustIntrinsic
1110 | SpecAbi::PlatformIntrinsic = abi
1111 {
1112 true
1113 } else {
1114 false
1115 }
1116 }
1117 }
1118
1119 impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDeclarations {
1120 fn check_foreign_item(&mut self, cx: &LateContext<'_>, it: &hir::ForeignItem<'_>) {
1121 let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Declaration };
1122 let abi = cx.tcx.hir().get_foreign_abi(it.hir_id);
1123
1124 if !vis.is_internal_abi(abi) {
1125 match it.kind {
1126 hir::ForeignItemKind::Fn(ref decl, _, _) => {
1127 vis.check_foreign_fn(it.hir_id, decl);
1128 }
1129 hir::ForeignItemKind::Static(ref ty, _) => {
1130 vis.check_foreign_static(it.hir_id, ty.span);
1131 }
1132 hir::ForeignItemKind::Type => (),
1133 }
1134 }
1135 }
1136 }
1137
1138 impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDefinitions {
1139 fn check_fn(
1140 &mut self,
1141 cx: &LateContext<'tcx>,
1142 kind: hir::intravisit::FnKind<'tcx>,
1143 decl: &'tcx hir::FnDecl<'_>,
1144 _: &'tcx hir::Body<'_>,
1145 _: Span,
1146 hir_id: hir::HirId,
1147 ) {
1148 use hir::intravisit::FnKind;
1149
1150 let abi = match kind {
1151 FnKind::ItemFn(_, _, header, ..) => header.abi,
1152 FnKind::Method(_, sig, ..) => sig.header.abi,
1153 _ => return,
1154 };
1155
1156 let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Definition };
1157 if !vis.is_internal_abi(abi) {
1158 vis.check_foreign_fn(hir_id, decl);
1159 }
1160 }
1161 }
1162
1163 declare_lint_pass!(VariantSizeDifferences => [VARIANT_SIZE_DIFFERENCES]);
1164
1165 impl<'tcx> LateLintPass<'tcx> for VariantSizeDifferences {
1166 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1167 if let hir::ItemKind::Enum(ref enum_definition, _) = it.kind {
1168 let item_def_id = cx.tcx.hir().local_def_id(it.hir_id);
1169 let t = cx.tcx.type_of(item_def_id);
1170 let ty = cx.tcx.erase_regions(&t);
1171 let layout = match cx.layout_of(ty) {
1172 Ok(layout) => layout,
1173 Err(
1174 ty::layout::LayoutError::Unknown(_) | ty::layout::LayoutError::SizeOverflow(_),
1175 ) => return,
1176 };
1177 let (variants, tag) = match layout.variants {
1178 Variants::Multiple {
1179 tag_encoding: TagEncoding::Direct,
1180 ref tag,
1181 ref variants,
1182 ..
1183 } => (variants, tag),
1184 _ => return,
1185 };
1186
1187 let tag_size = tag.value.size(&cx.tcx).bytes();
1188
1189 debug!(
1190 "enum `{}` is {} bytes large with layout:\n{:#?}",
1191 t,
1192 layout.size.bytes(),
1193 layout
1194 );
1195
1196 let (largest, slargest, largest_index) = enum_definition
1197 .variants
1198 .iter()
1199 .zip(variants)
1200 .map(|(variant, variant_layout)| {
1201 // Subtract the size of the enum tag.
1202 let bytes = variant_layout.size.bytes().saturating_sub(tag_size);
1203
1204 debug!("- variant `{}` is {} bytes large", variant.ident, bytes);
1205 bytes
1206 })
1207 .enumerate()
1208 .fold((0, 0, 0), |(l, s, li), (idx, size)| {
1209 if size > l {
1210 (size, l, idx)
1211 } else if size > s {
1212 (l, size, li)
1213 } else {
1214 (l, s, li)
1215 }
1216 });
1217
1218 // We only warn if the largest variant is at least thrice as large as
1219 // the second-largest.
1220 if largest > slargest * 3 && slargest > 0 {
1221 cx.struct_span_lint(
1222 VARIANT_SIZE_DIFFERENCES,
1223 enum_definition.variants[largest_index].span,
1224 |lint| {
1225 lint.build(&format!(
1226 "enum variant is more than three times \
1227 larger ({} bytes) than the next largest",
1228 largest
1229 ))
1230 .emit()
1231 },
1232 );
1233 }
1234 }
1235 }
1236 }