]> git.proxmox.com Git - rustc.git/blob - src/librustc_metadata/loader.rs
New upstream version 1.12.0+dfsg1
[rustc.git] / src / librustc_metadata / loader.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Finds crate binaries and loads their metadata
12 //!
13 //! Might I be the first to welcome you to a world of platform differences,
14 //! version requirements, dependency graphs, conflicting desires, and fun! This
15 //! is the major guts (along with metadata::creader) of the compiler for loading
16 //! crates and resolving dependencies. Let's take a tour!
17 //!
18 //! # The problem
19 //!
20 //! Each invocation of the compiler is immediately concerned with one primary
21 //! problem, to connect a set of crates to resolved crates on the filesystem.
22 //! Concretely speaking, the compiler follows roughly these steps to get here:
23 //!
24 //! 1. Discover a set of `extern crate` statements.
25 //! 2. Transform these directives into crate names. If the directive does not
26 //! have an explicit name, then the identifier is the name.
27 //! 3. For each of these crate names, find a corresponding crate on the
28 //! filesystem.
29 //!
30 //! Sounds easy, right? Let's walk into some of the nuances.
31 //!
32 //! ## Transitive Dependencies
33 //!
34 //! Let's say we've got three crates: A, B, and C. A depends on B, and B depends
35 //! on C. When we're compiling A, we primarily need to find and locate B, but we
36 //! also end up needing to find and locate C as well.
37 //!
38 //! The reason for this is that any of B's types could be composed of C's types,
39 //! any function in B could return a type from C, etc. To be able to guarantee
40 //! that we can always typecheck/translate any function, we have to have
41 //! complete knowledge of the whole ecosystem, not just our immediate
42 //! dependencies.
43 //!
44 //! So now as part of the "find a corresponding crate on the filesystem" step
45 //! above, this involves also finding all crates for *all upstream
46 //! dependencies*. This includes all dependencies transitively.
47 //!
48 //! ## Rlibs and Dylibs
49 //!
50 //! The compiler has two forms of intermediate dependencies. These are dubbed
51 //! rlibs and dylibs for the static and dynamic variants, respectively. An rlib
52 //! is a rustc-defined file format (currently just an ar archive) while a dylib
53 //! is a platform-defined dynamic library. Each library has a metadata somewhere
54 //! inside of it.
55 //!
56 //! When translating a crate name to a crate on the filesystem, we all of a
57 //! sudden need to take into account both rlibs and dylibs! Linkage later on may
58 //! use either one of these files, as each has their pros/cons. The job of crate
59 //! loading is to discover what's possible by finding all candidates.
60 //!
61 //! Most parts of this loading systems keep the dylib/rlib as just separate
62 //! variables.
63 //!
64 //! ## Where to look?
65 //!
66 //! We can't exactly scan your whole hard drive when looking for dependencies,
67 //! so we need to places to look. Currently the compiler will implicitly add the
68 //! target lib search path ($prefix/lib/rustlib/$target/lib) to any compilation,
69 //! and otherwise all -L flags are added to the search paths.
70 //!
71 //! ## What criterion to select on?
72 //!
73 //! This a pretty tricky area of loading crates. Given a file, how do we know
74 //! whether it's the right crate? Currently, the rules look along these lines:
75 //!
76 //! 1. Does the filename match an rlib/dylib pattern? That is to say, does the
77 //! filename have the right prefix/suffix?
78 //! 2. Does the filename have the right prefix for the crate name being queried?
79 //! This is filtering for files like `libfoo*.rlib` and such.
80 //! 3. Is the file an actual rust library? This is done by loading the metadata
81 //! from the library and making sure it's actually there.
82 //! 4. Does the name in the metadata agree with the name of the library?
83 //! 5. Does the target in the metadata agree with the current target?
84 //! 6. Does the SVH match? (more on this later)
85 //!
86 //! If the file answers `yes` to all these questions, then the file is
87 //! considered as being *candidate* for being accepted. It is illegal to have
88 //! more than two candidates as the compiler has no method by which to resolve
89 //! this conflict. Additionally, rlib/dylib candidates are considered
90 //! separately.
91 //!
92 //! After all this has happened, we have 1 or two files as candidates. These
93 //! represent the rlib/dylib file found for a library, and they're returned as
94 //! being found.
95 //!
96 //! ### What about versions?
97 //!
98 //! A lot of effort has been put forth to remove versioning from the compiler.
99 //! There have been forays in the past to have versioning baked in, but it was
100 //! largely always deemed insufficient to the point that it was recognized that
101 //! it's probably something the compiler shouldn't do anyway due to its
102 //! complicated nature and the state of the half-baked solutions.
103 //!
104 //! With a departure from versioning, the primary criterion for loading crates
105 //! is just the name of a crate. If we stopped here, it would imply that you
106 //! could never link two crates of the same name from different sources
107 //! together, which is clearly a bad state to be in.
108 //!
109 //! To resolve this problem, we come to the next section!
110 //!
111 //! # Expert Mode
112 //!
113 //! A number of flags have been added to the compiler to solve the "version
114 //! problem" in the previous section, as well as generally enabling more
115 //! powerful usage of the crate loading system of the compiler. The goal of
116 //! these flags and options are to enable third-party tools to drive the
117 //! compiler with prior knowledge about how the world should look.
118 //!
119 //! ## The `--extern` flag
120 //!
121 //! The compiler accepts a flag of this form a number of times:
122 //!
123 //! ```text
124 //! --extern crate-name=path/to/the/crate.rlib
125 //! ```
126 //!
127 //! This flag is basically the following letter to the compiler:
128 //!
129 //! > Dear rustc,
130 //! >
131 //! > When you are attempting to load the immediate dependency `crate-name`, I
132 //! > would like you to assume that the library is located at
133 //! > `path/to/the/crate.rlib`, and look nowhere else. Also, please do not
134 //! > assume that the path I specified has the name `crate-name`.
135 //!
136 //! This flag basically overrides most matching logic except for validating that
137 //! the file is indeed a rust library. The same `crate-name` can be specified
138 //! twice to specify the rlib/dylib pair.
139 //!
140 //! ## Enabling "multiple versions"
141 //!
142 //! This basically boils down to the ability to specify arbitrary packages to
143 //! the compiler. For example, if crate A wanted to use Bv1 and Bv2, then it
144 //! would look something like:
145 //!
146 //! ```ignore
147 //! extern crate b1;
148 //! extern crate b2;
149 //!
150 //! fn main() {}
151 //! ```
152 //!
153 //! and the compiler would be invoked as:
154 //!
155 //! ```text
156 //! rustc a.rs --extern b1=path/to/libb1.rlib --extern b2=path/to/libb2.rlib
157 //! ```
158 //!
159 //! In this scenario there are two crates named `b` and the compiler must be
160 //! manually driven to be informed where each crate is.
161 //!
162 //! ## Frobbing symbols
163 //!
164 //! One of the immediate problems with linking the same library together twice
165 //! in the same problem is dealing with duplicate symbols. The primary way to
166 //! deal with this in rustc is to add hashes to the end of each symbol.
167 //!
168 //! In order to force hashes to change between versions of a library, if
169 //! desired, the compiler exposes an option `-C metadata=foo`, which is used to
170 //! initially seed each symbol hash. The string `foo` is prepended to each
171 //! string-to-hash to ensure that symbols change over time.
172 //!
173 //! ## Loading transitive dependencies
174 //!
175 //! Dealing with same-named-but-distinct crates is not just a local problem, but
176 //! one that also needs to be dealt with for transitive dependencies. Note that
177 //! in the letter above `--extern` flags only apply to the *local* set of
178 //! dependencies, not the upstream transitive dependencies. Consider this
179 //! dependency graph:
180 //!
181 //! ```text
182 //! A.1 A.2
183 //! | |
184 //! | |
185 //! B C
186 //! \ /
187 //! \ /
188 //! D
189 //! ```
190 //!
191 //! In this scenario, when we compile `D`, we need to be able to distinctly
192 //! resolve `A.1` and `A.2`, but an `--extern` flag cannot apply to these
193 //! transitive dependencies.
194 //!
195 //! Note that the key idea here is that `B` and `C` are both *already compiled*.
196 //! That is, they have already resolved their dependencies. Due to unrelated
197 //! technical reasons, when a library is compiled, it is only compatible with
198 //! the *exact same* version of the upstream libraries it was compiled against.
199 //! We use the "Strict Version Hash" to identify the exact copy of an upstream
200 //! library.
201 //!
202 //! With this knowledge, we know that `B` and `C` will depend on `A` with
203 //! different SVH values, so we crawl the normal `-L` paths looking for
204 //! `liba*.rlib` and filter based on the contained SVH.
205 //!
206 //! In the end, this ends up not needing `--extern` to specify upstream
207 //! transitive dependencies.
208 //!
209 //! # Wrapping up
210 //!
211 //! That's the general overview of loading crates in the compiler, but it's by
212 //! no means all of the necessary details. Take a look at the rest of
213 //! metadata::loader or metadata::creader for all the juicy details!
214
215 use cstore::{MetadataBlob, MetadataVec, MetadataArchive};
216 use common::{metadata_encoding_version, rustc_version};
217 use decoder;
218
219 use rustc::hir::svh::Svh;
220 use rustc::session::Session;
221 use rustc::session::filesearch::{FileSearch, FileMatches, FileDoesntMatch};
222 use rustc::session::search_paths::PathKind;
223 use rustc::util::common;
224
225 use rustc_llvm as llvm;
226 use rustc_llvm::{False, ObjectFile, mk_section_iter};
227 use rustc_llvm::archive_ro::ArchiveRO;
228 use errors::DiagnosticBuilder;
229 use syntax_pos::Span;
230 use rustc_back::target::Target;
231
232 use std::cmp;
233 use std::collections::HashMap;
234 use std::fmt;
235 use std::fs;
236 use std::io;
237 use std::path::{Path, PathBuf};
238 use std::ptr;
239 use std::slice;
240 use std::time::Instant;
241
242 use flate;
243
244 pub struct CrateMismatch {
245 path: PathBuf,
246 got: String,
247 }
248
249 pub struct Context<'a> {
250 pub sess: &'a Session,
251 pub span: Span,
252 pub ident: &'a str,
253 pub crate_name: &'a str,
254 pub hash: Option<&'a Svh>,
255 // points to either self.sess.target.target or self.sess.host, must match triple
256 pub target: &'a Target,
257 pub triple: &'a str,
258 pub filesearch: FileSearch<'a>,
259 pub root: &'a Option<CratePaths>,
260 pub rejected_via_hash: Vec<CrateMismatch>,
261 pub rejected_via_triple: Vec<CrateMismatch>,
262 pub rejected_via_kind: Vec<CrateMismatch>,
263 pub rejected_via_version: Vec<CrateMismatch>,
264 pub should_match_name: bool,
265 }
266
267 pub struct Library {
268 pub dylib: Option<(PathBuf, PathKind)>,
269 pub rlib: Option<(PathBuf, PathKind)>,
270 pub metadata: MetadataBlob,
271 }
272
273 pub struct ArchiveMetadata {
274 _archive: ArchiveRO,
275 // points into self._archive
276 data: *const [u8],
277 }
278
279 pub struct CratePaths {
280 pub ident: String,
281 pub dylib: Option<PathBuf>,
282 pub rlib: Option<PathBuf>
283 }
284
285 pub const METADATA_FILENAME: &'static str = "rust.metadata.bin";
286
287 #[derive(Copy, Clone, PartialEq)]
288 enum CrateFlavor {
289 Rlib,
290 Dylib
291 }
292
293 impl fmt::Display for CrateFlavor {
294 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
295 f.write_str(match *self {
296 CrateFlavor::Rlib => "rlib",
297 CrateFlavor::Dylib => "dylib"
298 })
299 }
300 }
301
302 impl CratePaths {
303 fn paths(&self) -> Vec<PathBuf> {
304 match (&self.dylib, &self.rlib) {
305 (&None, &None) => vec!(),
306 (&Some(ref p), &None) |
307 (&None, &Some(ref p)) => vec!(p.clone()),
308 (&Some(ref p1), &Some(ref p2)) => vec!(p1.clone(), p2.clone()),
309 }
310 }
311 }
312
313 impl<'a> Context<'a> {
314 pub fn maybe_load_library_crate(&mut self) -> Option<Library> {
315 self.find_library_crate()
316 }
317
318 pub fn load_library_crate(&mut self) -> Library {
319 self.find_library_crate().unwrap_or_else(|| self.report_load_errs())
320 }
321
322 pub fn report_load_errs(&mut self) -> ! {
323 let add = match self.root {
324 &None => String::new(),
325 &Some(ref r) => format!(" which `{}` depends on",
326 r.ident)
327 };
328 let mut err = if !self.rejected_via_hash.is_empty() {
329 struct_span_err!(self.sess, self.span, E0460,
330 "found possibly newer version of crate `{}`{}",
331 self.ident, add)
332 } else if !self.rejected_via_triple.is_empty() {
333 struct_span_err!(self.sess, self.span, E0461,
334 "couldn't find crate `{}` with expected target triple {}{}",
335 self.ident, self.triple, add)
336 } else if !self.rejected_via_kind.is_empty() {
337 struct_span_err!(self.sess, self.span, E0462,
338 "found staticlib `{}` instead of rlib or dylib{}",
339 self.ident, add)
340 } else if !self.rejected_via_version.is_empty() {
341 struct_span_err!(self.sess, self.span, E0514,
342 "found crate `{}` compiled by an incompatible version of rustc{}",
343 self.ident, add)
344 } else {
345 struct_span_err!(self.sess, self.span, E0463,
346 "can't find crate for `{}`{}",
347 self.ident, add)
348 };
349
350 if !self.rejected_via_triple.is_empty() {
351 let mismatches = self.rejected_via_triple.iter();
352 for (i, &CrateMismatch{ ref path, ref got }) in mismatches.enumerate() {
353 err.note(&format!("crate `{}`, path #{}, triple {}: {}",
354 self.ident, i+1, got, path.display()));
355 }
356 }
357 if !self.rejected_via_hash.is_empty() {
358 err.note("perhaps that crate needs to be recompiled?");
359 let mismatches = self.rejected_via_hash.iter();
360 for (i, &CrateMismatch{ ref path, .. }) in mismatches.enumerate() {
361 err.note(&format!("crate `{}` path #{}: {}",
362 self.ident, i+1, path.display()));
363 }
364 match self.root {
365 &None => {}
366 &Some(ref r) => {
367 for (i, path) in r.paths().iter().enumerate() {
368 err.note(&format!("crate `{}` path #{}: {}",
369 r.ident, i+1, path.display()));
370 }
371 }
372 }
373 }
374 if !self.rejected_via_kind.is_empty() {
375 err.help("please recompile that crate using --crate-type lib");
376 let mismatches = self.rejected_via_kind.iter();
377 for (i, &CrateMismatch { ref path, .. }) in mismatches.enumerate() {
378 err.note(&format!("crate `{}` path #{}: {}",
379 self.ident, i+1, path.display()));
380 }
381 }
382 if !self.rejected_via_version.is_empty() {
383 err.help(&format!("please recompile that crate using this compiler ({})",
384 rustc_version()));
385 let mismatches = self.rejected_via_version.iter();
386 for (i, &CrateMismatch { ref path, ref got }) in mismatches.enumerate() {
387 err.note(&format!("crate `{}` path #{}: {} compiled by {:?}",
388 self.ident, i+1, path.display(), got));
389 }
390 }
391
392 err.emit();
393 self.sess.abort_if_errors();
394 unreachable!();
395 }
396
397 fn find_library_crate(&mut self) -> Option<Library> {
398 // If an SVH is specified, then this is a transitive dependency that
399 // must be loaded via -L plus some filtering.
400 if self.hash.is_none() {
401 self.should_match_name = false;
402 if let Some(s) = self.sess.opts.externs.get(self.crate_name) {
403 return self.find_commandline_library(s.iter());
404 }
405 self.should_match_name = true;
406 }
407
408 let dypair = self.dylibname();
409 let staticpair = self.staticlibname();
410
411 // want: crate_name.dir_part() + prefix + crate_name.file_part + "-"
412 let dylib_prefix = format!("{}{}", dypair.0, self.crate_name);
413 let rlib_prefix = format!("lib{}", self.crate_name);
414 let staticlib_prefix = format!("{}{}", staticpair.0, self.crate_name);
415
416 let mut candidates = HashMap::new();
417 let mut staticlibs = vec!();
418
419 // First, find all possible candidate rlibs and dylibs purely based on
420 // the name of the files themselves. We're trying to match against an
421 // exact crate name and a possibly an exact hash.
422 //
423 // During this step, we can filter all found libraries based on the
424 // name and id found in the crate id (we ignore the path portion for
425 // filename matching), as well as the exact hash (if specified). If we
426 // end up having many candidates, we must look at the metadata to
427 // perform exact matches against hashes/crate ids. Note that opening up
428 // the metadata is where we do an exact match against the full contents
429 // of the crate id (path/name/id).
430 //
431 // The goal of this step is to look at as little metadata as possible.
432 self.filesearch.search(|path, kind| {
433 let file = match path.file_name().and_then(|s| s.to_str()) {
434 None => return FileDoesntMatch,
435 Some(file) => file,
436 };
437 let (hash, rlib) = if file.starts_with(&rlib_prefix[..]) &&
438 file.ends_with(".rlib") {
439 (&file[(rlib_prefix.len()) .. (file.len() - ".rlib".len())],
440 true)
441 } else if file.starts_with(&dylib_prefix) &&
442 file.ends_with(&dypair.1) {
443 (&file[(dylib_prefix.len()) .. (file.len() - dypair.1.len())],
444 false)
445 } else {
446 if file.starts_with(&staticlib_prefix[..]) &&
447 file.ends_with(&staticpair.1) {
448 staticlibs.push(CrateMismatch {
449 path: path.to_path_buf(),
450 got: "static".to_string()
451 });
452 }
453 return FileDoesntMatch
454 };
455 info!("lib candidate: {}", path.display());
456
457 let hash_str = hash.to_string();
458 let slot = candidates.entry(hash_str)
459 .or_insert_with(|| (HashMap::new(), HashMap::new()));
460 let (ref mut rlibs, ref mut dylibs) = *slot;
461 fs::canonicalize(path).map(|p| {
462 if rlib {
463 rlibs.insert(p, kind);
464 } else {
465 dylibs.insert(p, kind);
466 }
467 FileMatches
468 }).unwrap_or(FileDoesntMatch)
469 });
470 self.rejected_via_kind.extend(staticlibs);
471
472 // We have now collected all known libraries into a set of candidates
473 // keyed of the filename hash listed. For each filename, we also have a
474 // list of rlibs/dylibs that apply. Here, we map each of these lists
475 // (per hash), to a Library candidate for returning.
476 //
477 // A Library candidate is created if the metadata for the set of
478 // libraries corresponds to the crate id and hash criteria that this
479 // search is being performed for.
480 let mut libraries = HashMap::new();
481 for (_hash, (rlibs, dylibs)) in candidates {
482 let mut slot = None;
483 let rlib = self.extract_one(rlibs, CrateFlavor::Rlib, &mut slot);
484 let dylib = self.extract_one(dylibs, CrateFlavor::Dylib, &mut slot);
485 if let Some((h, m)) = slot {
486 libraries.insert(h, Library {
487 dylib: dylib,
488 rlib: rlib,
489 metadata: m,
490 });
491 }
492 }
493
494 // Having now translated all relevant found hashes into libraries, see
495 // what we've got and figure out if we found multiple candidates for
496 // libraries or not.
497 match libraries.len() {
498 0 => None,
499 1 => Some(libraries.into_iter().next().unwrap().1),
500 _ => {
501 let mut err = struct_span_err!(self.sess, self.span, E0464,
502 "multiple matching crates for `{}`",
503 self.crate_name);
504 err.note("candidates:");
505 for (_, lib) in libraries {
506 if let Some((ref p, _)) = lib.dylib {
507 err.note(&format!("path: {}", p.display()));
508 }
509 if let Some((ref p, _)) = lib.rlib {
510 err.note(&format!("path: {}", p.display()));
511 }
512 let data = lib.metadata.as_slice();
513 let name = decoder::get_crate_name(data);
514 note_crate_name(&mut err, &name);
515 }
516 err.emit();
517 None
518 }
519 }
520 }
521
522 // Attempts to extract *one* library from the set `m`. If the set has no
523 // elements, `None` is returned. If the set has more than one element, then
524 // the errors and notes are emitted about the set of libraries.
525 //
526 // With only one library in the set, this function will extract it, and then
527 // read the metadata from it if `*slot` is `None`. If the metadata couldn't
528 // be read, it is assumed that the file isn't a valid rust library (no
529 // errors are emitted).
530 fn extract_one(&mut self, m: HashMap<PathBuf, PathKind>, flavor: CrateFlavor,
531 slot: &mut Option<(Svh, MetadataBlob)>) -> Option<(PathBuf, PathKind)> {
532 let mut ret: Option<(PathBuf, PathKind)> = None;
533 let mut error = 0;
534
535 if slot.is_some() {
536 // FIXME(#10786): for an optimization, we only read one of the
537 // libraries' metadata sections. In theory we should
538 // read both, but reading dylib metadata is quite
539 // slow.
540 if m.is_empty() {
541 return None
542 } else if m.len() == 1 {
543 return Some(m.into_iter().next().unwrap())
544 }
545 }
546
547 let mut err: Option<DiagnosticBuilder> = None;
548 for (lib, kind) in m {
549 info!("{} reading metadata from: {}", flavor, lib.display());
550 let (hash, metadata) = match get_metadata_section(self.target, flavor, &lib) {
551 Ok(blob) => {
552 if let Some(h) = self.crate_matches(blob.as_slice(), &lib) {
553 (h, blob)
554 } else {
555 info!("metadata mismatch");
556 continue
557 }
558 }
559 Err(err) => {
560 info!("no metadata found: {}", err);
561 continue
562 }
563 };
564 // If we see multiple hashes, emit an error about duplicate candidates.
565 if slot.as_ref().map_or(false, |s| s.0 != hash) {
566 let mut e = struct_span_err!(self.sess, self.span, E0465,
567 "multiple {} candidates for `{}` found",
568 flavor, self.crate_name);
569 e.span_note(self.span,
570 &format!(r"candidate #1: {}",
571 ret.as_ref().unwrap().0
572 .display()));
573 if let Some(ref mut e) = err {
574 e.emit();
575 }
576 err = Some(e);
577 error = 1;
578 *slot = None;
579 }
580 if error > 0 {
581 error += 1;
582 err.as_mut().unwrap().span_note(self.span,
583 &format!(r"candidate #{}: {}", error,
584 lib.display()));
585 continue
586 }
587 *slot = Some((hash, metadata));
588 ret = Some((lib, kind));
589 }
590
591 if error > 0 {
592 err.unwrap().emit();
593 None
594 } else {
595 ret
596 }
597 }
598
599 fn crate_matches(&mut self, crate_data: &[u8], libpath: &Path) -> Option<Svh> {
600 let crate_rustc_version = decoder::crate_rustc_version(crate_data);
601 if crate_rustc_version != Some(rustc_version()) {
602 let message = crate_rustc_version.unwrap_or(format!("an unknown compiler"));
603 info!("Rejecting via version: expected {} got {}", rustc_version(), message);
604 self.rejected_via_version.push(CrateMismatch {
605 path: libpath.to_path_buf(),
606 got: message
607 });
608 return None;
609 }
610
611 if self.should_match_name {
612 match decoder::maybe_get_crate_name(crate_data) {
613 Some(ref name) if self.crate_name == *name => {}
614 _ => { info!("Rejecting via crate name"); return None }
615 }
616 }
617 let hash = match decoder::maybe_get_crate_hash(crate_data) {
618 None => { info!("Rejecting via lack of crate hash"); return None; }
619 Some(h) => h,
620 };
621
622 let triple = match decoder::get_crate_triple(crate_data) {
623 None => { debug!("triple not present"); return None }
624 Some(t) => t,
625 };
626 if triple != self.triple {
627 info!("Rejecting via crate triple: expected {} got {}", self.triple, triple);
628 self.rejected_via_triple.push(CrateMismatch {
629 path: libpath.to_path_buf(),
630 got: triple.to_string()
631 });
632 return None;
633 }
634
635 if let Some(myhash) = self.hash {
636 if *myhash != hash {
637 info!("Rejecting via hash: expected {} got {}", *myhash, hash);
638 self.rejected_via_hash.push(CrateMismatch {
639 path: libpath.to_path_buf(),
640 got: myhash.to_string()
641 });
642 return None;
643 }
644 }
645
646 Some(hash)
647 }
648
649
650 // Returns the corresponding (prefix, suffix) that files need to have for
651 // dynamic libraries
652 fn dylibname(&self) -> (String, String) {
653 let t = &self.target;
654 (t.options.dll_prefix.clone(), t.options.dll_suffix.clone())
655 }
656
657 // Returns the corresponding (prefix, suffix) that files need to have for
658 // static libraries
659 fn staticlibname(&self) -> (String, String) {
660 let t = &self.target;
661 (t.options.staticlib_prefix.clone(), t.options.staticlib_suffix.clone())
662 }
663
664 fn find_commandline_library<'b, LOCS> (&mut self, locs: LOCS) -> Option<Library>
665 where LOCS: Iterator<Item=&'b String>
666 {
667 // First, filter out all libraries that look suspicious. We only accept
668 // files which actually exist that have the correct naming scheme for
669 // rlibs/dylibs.
670 let sess = self.sess;
671 let dylibname = self.dylibname();
672 let mut rlibs = HashMap::new();
673 let mut dylibs = HashMap::new();
674 {
675 let locs = locs.map(|l| PathBuf::from(l)).filter(|loc| {
676 if !loc.exists() {
677 sess.err(&format!("extern location for {} does not exist: {}",
678 self.crate_name, loc.display()));
679 return false;
680 }
681 let file = match loc.file_name().and_then(|s| s.to_str()) {
682 Some(file) => file,
683 None => {
684 sess.err(&format!("extern location for {} is not a file: {}",
685 self.crate_name, loc.display()));
686 return false;
687 }
688 };
689 if file.starts_with("lib") && file.ends_with(".rlib") {
690 return true
691 } else {
692 let (ref prefix, ref suffix) = dylibname;
693 if file.starts_with(&prefix[..]) &&
694 file.ends_with(&suffix[..]) {
695 return true
696 }
697 }
698 sess.struct_err(&format!("extern location for {} is of an unknown type: {}",
699 self.crate_name, loc.display()))
700 .help(&format!("file name should be lib*.rlib or {}*.{}",
701 dylibname.0, dylibname.1))
702 .emit();
703 false
704 });
705
706 // Now that we have an iterator of good candidates, make sure
707 // there's at most one rlib and at most one dylib.
708 for loc in locs {
709 if loc.file_name().unwrap().to_str().unwrap().ends_with(".rlib") {
710 rlibs.insert(fs::canonicalize(&loc).unwrap(),
711 PathKind::ExternFlag);
712 } else {
713 dylibs.insert(fs::canonicalize(&loc).unwrap(),
714 PathKind::ExternFlag);
715 }
716 }
717 };
718
719 // Extract the rlib/dylib pair.
720 let mut slot = None;
721 let rlib = self.extract_one(rlibs, CrateFlavor::Rlib, &mut slot);
722 let dylib = self.extract_one(dylibs, CrateFlavor::Dylib, &mut slot);
723
724 if rlib.is_none() && dylib.is_none() { return None }
725 match slot {
726 Some((_, metadata)) => Some(Library {
727 dylib: dylib,
728 rlib: rlib,
729 metadata: metadata,
730 }),
731 None => None,
732 }
733 }
734 }
735
736 pub fn note_crate_name(err: &mut DiagnosticBuilder, name: &str) {
737 err.note(&format!("crate name: {}", name));
738 }
739
740 impl ArchiveMetadata {
741 fn new(ar: ArchiveRO) -> Option<ArchiveMetadata> {
742 let data = {
743 let section = ar.iter().filter_map(|s| s.ok()).find(|sect| {
744 sect.name() == Some(METADATA_FILENAME)
745 });
746 match section {
747 Some(s) => s.data() as *const [u8],
748 None => {
749 debug!("didn't find '{}' in the archive", METADATA_FILENAME);
750 return None;
751 }
752 }
753 };
754
755 Some(ArchiveMetadata {
756 _archive: ar,
757 data: data,
758 })
759 }
760
761 pub fn as_slice<'a>(&'a self) -> &'a [u8] { unsafe { &*self.data } }
762 }
763
764 fn verify_decompressed_encoding_version(blob: &MetadataBlob, filename: &Path)
765 -> Result<(), String>
766 {
767 let data = blob.as_slice_raw();
768 if data.len() < 4+metadata_encoding_version.len() ||
769 !<[u8]>::eq(&data[..4], &[0, 0, 0, 0]) ||
770 &data[4..4+metadata_encoding_version.len()] != metadata_encoding_version
771 {
772 Err((format!("incompatible metadata version found: '{}'",
773 filename.display())))
774 } else {
775 Ok(())
776 }
777 }
778
779 // Just a small wrapper to time how long reading metadata takes.
780 fn get_metadata_section(target: &Target, flavor: CrateFlavor, filename: &Path)
781 -> Result<MetadataBlob, String> {
782 let start = Instant::now();
783 let ret = get_metadata_section_imp(target, flavor, filename);
784 info!("reading {:?} => {:?}", filename.file_name().unwrap(),
785 start.elapsed());
786 return ret
787 }
788
789 fn get_metadata_section_imp(target: &Target, flavor: CrateFlavor, filename: &Path)
790 -> Result<MetadataBlob, String> {
791 if !filename.exists() {
792 return Err(format!("no such file: '{}'", filename.display()));
793 }
794 if flavor == CrateFlavor::Rlib {
795 // Use ArchiveRO for speed here, it's backed by LLVM and uses mmap
796 // internally to read the file. We also avoid even using a memcpy by
797 // just keeping the archive along while the metadata is in use.
798 let archive = match ArchiveRO::open(filename) {
799 Some(ar) => ar,
800 None => {
801 debug!("llvm didn't like `{}`", filename.display());
802 return Err(format!("failed to read rlib metadata: '{}'",
803 filename.display()));
804 }
805 };
806 return match ArchiveMetadata::new(archive).map(|ar| MetadataArchive(ar)) {
807 None => Err(format!("failed to read rlib metadata: '{}'",
808 filename.display())),
809 Some(blob) => {
810 try!(verify_decompressed_encoding_version(&blob, filename));
811 Ok(blob)
812 }
813 };
814 }
815 unsafe {
816 let buf = common::path2cstr(filename);
817 let mb = llvm::LLVMRustCreateMemoryBufferWithContentsOfFile(buf.as_ptr());
818 if mb as isize == 0 {
819 return Err(format!("error reading library: '{}'",
820 filename.display()))
821 }
822 let of = match ObjectFile::new(mb) {
823 Some(of) => of,
824 _ => {
825 return Err((format!("provided path not an object file: '{}'",
826 filename.display())))
827 }
828 };
829 let si = mk_section_iter(of.llof);
830 while llvm::LLVMIsSectionIteratorAtEnd(of.llof, si.llsi) == False {
831 let mut name_buf = ptr::null();
832 let name_len = llvm::LLVMRustGetSectionName(si.llsi, &mut name_buf);
833 let name = slice::from_raw_parts(name_buf as *const u8,
834 name_len as usize).to_vec();
835 let name = String::from_utf8(name).unwrap();
836 debug!("get_metadata_section: name {}", name);
837 if read_meta_section_name(target) == name {
838 let cbuf = llvm::LLVMGetSectionContents(si.llsi);
839 let csz = llvm::LLVMGetSectionSize(si.llsi) as usize;
840 let cvbuf: *const u8 = cbuf as *const u8;
841 let vlen = metadata_encoding_version.len();
842 debug!("checking {} bytes of metadata-version stamp",
843 vlen);
844 let minsz = cmp::min(vlen, csz);
845 let buf0 = slice::from_raw_parts(cvbuf, minsz);
846 let version_ok = buf0 == metadata_encoding_version;
847 if !version_ok {
848 return Err((format!("incompatible metadata version found: '{}'",
849 filename.display())));
850 }
851
852 let cvbuf1 = cvbuf.offset(vlen as isize);
853 debug!("inflating {} bytes of compressed metadata",
854 csz - vlen);
855 let bytes = slice::from_raw_parts(cvbuf1, csz - vlen);
856 match flate::inflate_bytes(bytes) {
857 Ok(inflated) => {
858 let blob = MetadataVec(inflated);
859 try!(verify_decompressed_encoding_version(&blob, filename));
860 return Ok(blob);
861 }
862 Err(_) => {}
863 }
864 }
865 llvm::LLVMMoveToNextSection(si.llsi);
866 }
867 Err(format!("metadata not found: '{}'", filename.display()))
868 }
869 }
870
871 pub fn meta_section_name(target: &Target) -> &'static str {
872 // Historical note:
873 //
874 // When using link.exe it was seen that the section name `.note.rustc`
875 // was getting shortened to `.note.ru`, and according to the PE and COFF
876 // specification:
877 //
878 // > Executable images do not use a string table and do not support
879 // > section names longer than 8 characters
880 //
881 // https://msdn.microsoft.com/en-us/library/windows/hardware/gg463119.aspx
882 //
883 // As a result, we choose a slightly shorter name! As to why
884 // `.note.rustc` works on MinGW, that's another good question...
885
886 if target.options.is_like_osx {
887 "__DATA,.rustc"
888 } else {
889 ".rustc"
890 }
891 }
892
893 pub fn read_meta_section_name(_target: &Target) -> &'static str {
894 ".rustc"
895 }
896
897 // A diagnostic function for dumping crate metadata to an output stream
898 pub fn list_file_metadata(target: &Target, path: &Path,
899 out: &mut io::Write) -> io::Result<()> {
900 let filename = path.file_name().unwrap().to_str().unwrap();
901 let flavor = if filename.ends_with(".rlib") { CrateFlavor::Rlib } else { CrateFlavor::Dylib };
902 match get_metadata_section(target, flavor, path) {
903 Ok(bytes) => decoder::list_crate_metadata(bytes.as_slice(), out),
904 Err(msg) => {
905 write!(out, "{}\n", msg)
906 }
907 }
908 }