]> git.proxmox.com Git - rustc.git/blob - src/librustc_metadata/locator.rs
New upstream version 1.29.0+dfsg1
[rustc.git] / src / librustc_metadata / locator.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Finds crate binaries and loads their metadata
12 //!
13 //! Might I be the first to welcome you to a world of platform differences,
14 //! version requirements, dependency graphs, conflicting desires, and fun! This
15 //! is the major guts (along with metadata::creader) of the compiler for loading
16 //! crates and resolving dependencies. Let's take a tour!
17 //!
18 //! # The problem
19 //!
20 //! Each invocation of the compiler is immediately concerned with one primary
21 //! problem, to connect a set of crates to resolved crates on the filesystem.
22 //! Concretely speaking, the compiler follows roughly these steps to get here:
23 //!
24 //! 1. Discover a set of `extern crate` statements.
25 //! 2. Transform these directives into crate names. If the directive does not
26 //! have an explicit name, then the identifier is the name.
27 //! 3. For each of these crate names, find a corresponding crate on the
28 //! filesystem.
29 //!
30 //! Sounds easy, right? Let's walk into some of the nuances.
31 //!
32 //! ## Transitive Dependencies
33 //!
34 //! Let's say we've got three crates: A, B, and C. A depends on B, and B depends
35 //! on C. When we're compiling A, we primarily need to find and locate B, but we
36 //! also end up needing to find and locate C as well.
37 //!
38 //! The reason for this is that any of B's types could be composed of C's types,
39 //! any function in B could return a type from C, etc. To be able to guarantee
40 //! that we can always typecheck/translate any function, we have to have
41 //! complete knowledge of the whole ecosystem, not just our immediate
42 //! dependencies.
43 //!
44 //! So now as part of the "find a corresponding crate on the filesystem" step
45 //! above, this involves also finding all crates for *all upstream
46 //! dependencies*. This includes all dependencies transitively.
47 //!
48 //! ## Rlibs and Dylibs
49 //!
50 //! The compiler has two forms of intermediate dependencies. These are dubbed
51 //! rlibs and dylibs for the static and dynamic variants, respectively. An rlib
52 //! is a rustc-defined file format (currently just an ar archive) while a dylib
53 //! is a platform-defined dynamic library. Each library has a metadata somewhere
54 //! inside of it.
55 //!
56 //! A third kind of dependency is an rmeta file. These are metadata files and do
57 //! not contain any code, etc. To a first approximation, these are treated in the
58 //! same way as rlibs. Where there is both an rlib and an rmeta file, the rlib
59 //! gets priority (even if the rmeta file is newer). An rmeta file is only
60 //! useful for checking a downstream crate, attempting to link one will cause an
61 //! error.
62 //!
63 //! When translating a crate name to a crate on the filesystem, we all of a
64 //! sudden need to take into account both rlibs and dylibs! Linkage later on may
65 //! use either one of these files, as each has their pros/cons. The job of crate
66 //! loading is to discover what's possible by finding all candidates.
67 //!
68 //! Most parts of this loading systems keep the dylib/rlib as just separate
69 //! variables.
70 //!
71 //! ## Where to look?
72 //!
73 //! We can't exactly scan your whole hard drive when looking for dependencies,
74 //! so we need to places to look. Currently the compiler will implicitly add the
75 //! target lib search path ($prefix/lib/rustlib/$target/lib) to any compilation,
76 //! and otherwise all -L flags are added to the search paths.
77 //!
78 //! ## What criterion to select on?
79 //!
80 //! This a pretty tricky area of loading crates. Given a file, how do we know
81 //! whether it's the right crate? Currently, the rules look along these lines:
82 //!
83 //! 1. Does the filename match an rlib/dylib pattern? That is to say, does the
84 //! filename have the right prefix/suffix?
85 //! 2. Does the filename have the right prefix for the crate name being queried?
86 //! This is filtering for files like `libfoo*.rlib` and such. If the crate
87 //! we're looking for was originally compiled with -C extra-filename, the
88 //! extra filename will be included in this prefix to reduce reading
89 //! metadata from crates that would otherwise share our prefix.
90 //! 3. Is the file an actual rust library? This is done by loading the metadata
91 //! from the library and making sure it's actually there.
92 //! 4. Does the name in the metadata agree with the name of the library?
93 //! 5. Does the target in the metadata agree with the current target?
94 //! 6. Does the SVH match? (more on this later)
95 //!
96 //! If the file answers `yes` to all these questions, then the file is
97 //! considered as being *candidate* for being accepted. It is illegal to have
98 //! more than two candidates as the compiler has no method by which to resolve
99 //! this conflict. Additionally, rlib/dylib candidates are considered
100 //! separately.
101 //!
102 //! After all this has happened, we have 1 or two files as candidates. These
103 //! represent the rlib/dylib file found for a library, and they're returned as
104 //! being found.
105 //!
106 //! ### What about versions?
107 //!
108 //! A lot of effort has been put forth to remove versioning from the compiler.
109 //! There have been forays in the past to have versioning baked in, but it was
110 //! largely always deemed insufficient to the point that it was recognized that
111 //! it's probably something the compiler shouldn't do anyway due to its
112 //! complicated nature and the state of the half-baked solutions.
113 //!
114 //! With a departure from versioning, the primary criterion for loading crates
115 //! is just the name of a crate. If we stopped here, it would imply that you
116 //! could never link two crates of the same name from different sources
117 //! together, which is clearly a bad state to be in.
118 //!
119 //! To resolve this problem, we come to the next section!
120 //!
121 //! # Expert Mode
122 //!
123 //! A number of flags have been added to the compiler to solve the "version
124 //! problem" in the previous section, as well as generally enabling more
125 //! powerful usage of the crate loading system of the compiler. The goal of
126 //! these flags and options are to enable third-party tools to drive the
127 //! compiler with prior knowledge about how the world should look.
128 //!
129 //! ## The `--extern` flag
130 //!
131 //! The compiler accepts a flag of this form a number of times:
132 //!
133 //! ```text
134 //! --extern crate-name=path/to/the/crate.rlib
135 //! ```
136 //!
137 //! This flag is basically the following letter to the compiler:
138 //!
139 //! > Dear rustc,
140 //! >
141 //! > When you are attempting to load the immediate dependency `crate-name`, I
142 //! > would like you to assume that the library is located at
143 //! > `path/to/the/crate.rlib`, and look nowhere else. Also, please do not
144 //! > assume that the path I specified has the name `crate-name`.
145 //!
146 //! This flag basically overrides most matching logic except for validating that
147 //! the file is indeed a rust library. The same `crate-name` can be specified
148 //! twice to specify the rlib/dylib pair.
149 //!
150 //! ## Enabling "multiple versions"
151 //!
152 //! This basically boils down to the ability to specify arbitrary packages to
153 //! the compiler. For example, if crate A wanted to use Bv1 and Bv2, then it
154 //! would look something like:
155 //!
156 //! ```compile_fail,E0463
157 //! extern crate b1;
158 //! extern crate b2;
159 //!
160 //! fn main() {}
161 //! ```
162 //!
163 //! and the compiler would be invoked as:
164 //!
165 //! ```text
166 //! rustc a.rs --extern b1=path/to/libb1.rlib --extern b2=path/to/libb2.rlib
167 //! ```
168 //!
169 //! In this scenario there are two crates named `b` and the compiler must be
170 //! manually driven to be informed where each crate is.
171 //!
172 //! ## Frobbing symbols
173 //!
174 //! One of the immediate problems with linking the same library together twice
175 //! in the same problem is dealing with duplicate symbols. The primary way to
176 //! deal with this in rustc is to add hashes to the end of each symbol.
177 //!
178 //! In order to force hashes to change between versions of a library, if
179 //! desired, the compiler exposes an option `-C metadata=foo`, which is used to
180 //! initially seed each symbol hash. The string `foo` is prepended to each
181 //! string-to-hash to ensure that symbols change over time.
182 //!
183 //! ## Loading transitive dependencies
184 //!
185 //! Dealing with same-named-but-distinct crates is not just a local problem, but
186 //! one that also needs to be dealt with for transitive dependencies. Note that
187 //! in the letter above `--extern` flags only apply to the *local* set of
188 //! dependencies, not the upstream transitive dependencies. Consider this
189 //! dependency graph:
190 //!
191 //! ```text
192 //! A.1 A.2
193 //! | |
194 //! | |
195 //! B C
196 //! \ /
197 //! \ /
198 //! D
199 //! ```
200 //!
201 //! In this scenario, when we compile `D`, we need to be able to distinctly
202 //! resolve `A.1` and `A.2`, but an `--extern` flag cannot apply to these
203 //! transitive dependencies.
204 //!
205 //! Note that the key idea here is that `B` and `C` are both *already compiled*.
206 //! That is, they have already resolved their dependencies. Due to unrelated
207 //! technical reasons, when a library is compiled, it is only compatible with
208 //! the *exact same* version of the upstream libraries it was compiled against.
209 //! We use the "Strict Version Hash" to identify the exact copy of an upstream
210 //! library.
211 //!
212 //! With this knowledge, we know that `B` and `C` will depend on `A` with
213 //! different SVH values, so we crawl the normal `-L` paths looking for
214 //! `liba*.rlib` and filter based on the contained SVH.
215 //!
216 //! In the end, this ends up not needing `--extern` to specify upstream
217 //! transitive dependencies.
218 //!
219 //! # Wrapping up
220 //!
221 //! That's the general overview of loading crates in the compiler, but it's by
222 //! no means all of the necessary details. Take a look at the rest of
223 //! metadata::locator or metadata::creader for all the juicy details!
224
225 use cstore::{MetadataRef, MetadataBlob};
226 use creader::Library;
227 use schema::{METADATA_HEADER, rustc_version};
228
229 use rustc::hir::svh::Svh;
230 use rustc::middle::cstore::MetadataLoader;
231 use rustc::session::{config, Session};
232 use rustc::session::filesearch::{FileSearch, FileMatches, FileDoesntMatch};
233 use rustc::session::search_paths::PathKind;
234 use rustc::util::nodemap::FxHashMap;
235
236 use errors::DiagnosticBuilder;
237 use syntax::symbol::Symbol;
238 use syntax_pos::Span;
239 use rustc_target::spec::{Target, TargetTriple};
240
241 use std::cmp;
242 use std::collections::HashSet;
243 use std::fmt;
244 use std::fs;
245 use std::io::{self, Read};
246 use std::path::{Path, PathBuf};
247 use std::time::Instant;
248
249 use flate2::read::DeflateDecoder;
250
251 use rustc_data_structures::owning_ref::OwningRef;
252 pub struct CrateMismatch {
253 path: PathBuf,
254 got: String,
255 }
256
257 pub struct Context<'a> {
258 pub sess: &'a Session,
259 pub span: Span,
260 pub ident: Symbol,
261 pub crate_name: Symbol,
262 pub hash: Option<&'a Svh>,
263 pub extra_filename: Option<&'a str>,
264 // points to either self.sess.target.target or self.sess.host, must match triple
265 pub target: &'a Target,
266 pub triple: &'a TargetTriple,
267 pub filesearch: FileSearch<'a>,
268 pub root: &'a Option<CratePaths>,
269 pub rejected_via_hash: Vec<CrateMismatch>,
270 pub rejected_via_triple: Vec<CrateMismatch>,
271 pub rejected_via_kind: Vec<CrateMismatch>,
272 pub rejected_via_version: Vec<CrateMismatch>,
273 pub rejected_via_filename: Vec<CrateMismatch>,
274 pub should_match_name: bool,
275 pub is_proc_macro: Option<bool>,
276 pub metadata_loader: &'a dyn MetadataLoader,
277 }
278
279 pub struct CratePaths {
280 pub ident: String,
281 pub dylib: Option<PathBuf>,
282 pub rlib: Option<PathBuf>,
283 pub rmeta: Option<PathBuf>,
284 }
285
286 #[derive(Copy, Clone, PartialEq)]
287 enum CrateFlavor {
288 Rlib,
289 Rmeta,
290 Dylib,
291 }
292
293 impl fmt::Display for CrateFlavor {
294 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
295 f.write_str(match *self {
296 CrateFlavor::Rlib => "rlib",
297 CrateFlavor::Rmeta => "rmeta",
298 CrateFlavor::Dylib => "dylib",
299 })
300 }
301 }
302
303 impl CratePaths {
304 fn paths(&self) -> Vec<PathBuf> {
305 self.dylib.iter().chain(self.rlib.iter()).chain(self.rmeta.iter()).cloned().collect()
306 }
307 }
308
309 impl<'a> Context<'a> {
310 pub fn maybe_load_library_crate(&mut self) -> Option<Library> {
311 let mut seen_paths = HashSet::new();
312 match self.extra_filename {
313 Some(s) => self.find_library_crate(s, &mut seen_paths)
314 .or_else(|| self.find_library_crate("", &mut seen_paths)),
315 None => self.find_library_crate("", &mut seen_paths)
316 }
317 }
318
319 pub fn report_errs(&mut self) -> ! {
320 let add = match self.root {
321 &None => String::new(),
322 &Some(ref r) => format!(" which `{}` depends on", r.ident),
323 };
324 let mut msg = "the following crate versions were found:".to_string();
325 let mut err = if !self.rejected_via_hash.is_empty() {
326 let mut err = struct_span_err!(self.sess,
327 self.span,
328 E0460,
329 "found possibly newer version of crate `{}`{}",
330 self.ident,
331 add);
332 err.note("perhaps that crate needs to be recompiled?");
333 let mismatches = self.rejected_via_hash.iter();
334 for &CrateMismatch { ref path, .. } in mismatches {
335 msg.push_str(&format!("\ncrate `{}`: {}", self.ident, path.display()));
336 }
337 match self.root {
338 &None => {}
339 &Some(ref r) => {
340 for path in r.paths().iter() {
341 msg.push_str(&format!("\ncrate `{}`: {}", r.ident, path.display()));
342 }
343 }
344 }
345 err.note(&msg);
346 err
347 } else if !self.rejected_via_triple.is_empty() {
348 let mut err = struct_span_err!(self.sess,
349 self.span,
350 E0461,
351 "couldn't find crate `{}` \
352 with expected target triple {}{}",
353 self.ident,
354 self.triple,
355 add);
356 let mismatches = self.rejected_via_triple.iter();
357 for &CrateMismatch { ref path, ref got } in mismatches {
358 msg.push_str(&format!("\ncrate `{}`, target triple {}: {}",
359 self.ident,
360 got,
361 path.display()));
362 }
363 err.note(&msg);
364 err
365 } else if !self.rejected_via_kind.is_empty() {
366 let mut err = struct_span_err!(self.sess,
367 self.span,
368 E0462,
369 "found staticlib `{}` instead of rlib or dylib{}",
370 self.ident,
371 add);
372 err.help("please recompile that crate using --crate-type lib");
373 let mismatches = self.rejected_via_kind.iter();
374 for &CrateMismatch { ref path, .. } in mismatches {
375 msg.push_str(&format!("\ncrate `{}`: {}", self.ident, path.display()));
376 }
377 err.note(&msg);
378 err
379 } else if !self.rejected_via_version.is_empty() {
380 let mut err = struct_span_err!(self.sess,
381 self.span,
382 E0514,
383 "found crate `{}` compiled by an incompatible version \
384 of rustc{}",
385 self.ident,
386 add);
387 err.help(&format!("please recompile that crate using this compiler ({})",
388 rustc_version()));
389 let mismatches = self.rejected_via_version.iter();
390 for &CrateMismatch { ref path, ref got } in mismatches {
391 msg.push_str(&format!("\ncrate `{}` compiled by {}: {}",
392 self.ident,
393 got,
394 path.display()));
395 }
396 err.note(&msg);
397 err
398 } else {
399 let mut err = struct_span_err!(self.sess,
400 self.span,
401 E0463,
402 "can't find crate for `{}`{}",
403 self.ident,
404 add);
405
406 if (self.ident == "std" || self.ident == "core")
407 && self.triple != &TargetTriple::from_triple(config::host_triple()) {
408 err.note(&format!("the `{}` target may not be installed", self.triple));
409 }
410 err.span_label(self.span, "can't find crate");
411 err
412 };
413
414 if !self.rejected_via_filename.is_empty() {
415 let dylibname = self.dylibname();
416 let mismatches = self.rejected_via_filename.iter();
417 for &CrateMismatch { ref path, .. } in mismatches {
418 err.note(&format!("extern location for {} is of an unknown type: {}",
419 self.crate_name,
420 path.display()))
421 .help(&format!("file name should be lib*.rlib or {}*.{}",
422 dylibname.0,
423 dylibname.1));
424 }
425 }
426
427 err.emit();
428 self.sess.abort_if_errors();
429 unreachable!();
430 }
431
432 fn find_library_crate(&mut self,
433 extra_prefix: &str,
434 seen_paths: &mut HashSet<PathBuf>)
435 -> Option<Library> {
436 // If an SVH is specified, then this is a transitive dependency that
437 // must be loaded via -L plus some filtering.
438 if self.hash.is_none() {
439 self.should_match_name = false;
440 if let Some(s) = self.sess.opts.externs.get(&self.crate_name.as_str()) {
441 return self.find_commandline_library(s.iter());
442 }
443 self.should_match_name = true;
444 }
445
446 let dypair = self.dylibname();
447 let staticpair = self.staticlibname();
448
449 // want: crate_name.dir_part() + prefix + crate_name.file_part + "-"
450 let dylib_prefix = format!("{}{}{}", dypair.0, self.crate_name, extra_prefix);
451 let rlib_prefix = format!("lib{}{}", self.crate_name, extra_prefix);
452 let staticlib_prefix = format!("{}{}{}", staticpair.0, self.crate_name, extra_prefix);
453
454 let mut candidates = FxHashMap();
455 let mut staticlibs = vec![];
456
457 // First, find all possible candidate rlibs and dylibs purely based on
458 // the name of the files themselves. We're trying to match against an
459 // exact crate name and a possibly an exact hash.
460 //
461 // During this step, we can filter all found libraries based on the
462 // name and id found in the crate id (we ignore the path portion for
463 // filename matching), as well as the exact hash (if specified). If we
464 // end up having many candidates, we must look at the metadata to
465 // perform exact matches against hashes/crate ids. Note that opening up
466 // the metadata is where we do an exact match against the full contents
467 // of the crate id (path/name/id).
468 //
469 // The goal of this step is to look at as little metadata as possible.
470 self.filesearch.search(|path, kind| {
471 let file = match path.file_name().and_then(|s| s.to_str()) {
472 None => return FileDoesntMatch,
473 Some(file) => file,
474 };
475 let (hash, found_kind) =
476 if file.starts_with(&rlib_prefix) && file.ends_with(".rlib") {
477 (&file[(rlib_prefix.len())..(file.len() - ".rlib".len())], CrateFlavor::Rlib)
478 } else if file.starts_with(&rlib_prefix) && file.ends_with(".rmeta") {
479 (&file[(rlib_prefix.len())..(file.len() - ".rmeta".len())], CrateFlavor::Rmeta)
480 } else if file.starts_with(&dylib_prefix) &&
481 file.ends_with(&dypair.1) {
482 (&file[(dylib_prefix.len())..(file.len() - dypair.1.len())], CrateFlavor::Dylib)
483 } else {
484 if file.starts_with(&staticlib_prefix) && file.ends_with(&staticpair.1) {
485 staticlibs.push(CrateMismatch {
486 path: path.to_path_buf(),
487 got: "static".to_string(),
488 });
489 }
490 return FileDoesntMatch;
491 };
492
493 info!("lib candidate: {}", path.display());
494
495 let hash_str = hash.to_string();
496 let slot = candidates.entry(hash_str)
497 .or_insert_with(|| (FxHashMap(), FxHashMap(), FxHashMap()));
498 let (ref mut rlibs, ref mut rmetas, ref mut dylibs) = *slot;
499 fs::canonicalize(path)
500 .map(|p| {
501 if seen_paths.contains(&p) {
502 return FileDoesntMatch
503 };
504 seen_paths.insert(p.clone());
505 match found_kind {
506 CrateFlavor::Rlib => { rlibs.insert(p, kind); }
507 CrateFlavor::Rmeta => { rmetas.insert(p, kind); }
508 CrateFlavor::Dylib => { dylibs.insert(p, kind); }
509 }
510 FileMatches
511 })
512 .unwrap_or(FileDoesntMatch)
513 });
514 self.rejected_via_kind.extend(staticlibs);
515
516 // We have now collected all known libraries into a set of candidates
517 // keyed of the filename hash listed. For each filename, we also have a
518 // list of rlibs/dylibs that apply. Here, we map each of these lists
519 // (per hash), to a Library candidate for returning.
520 //
521 // A Library candidate is created if the metadata for the set of
522 // libraries corresponds to the crate id and hash criteria that this
523 // search is being performed for.
524 let mut libraries = FxHashMap();
525 for (_hash, (rlibs, rmetas, dylibs)) in candidates {
526 let mut slot = None;
527 let rlib = self.extract_one(rlibs, CrateFlavor::Rlib, &mut slot);
528 let rmeta = self.extract_one(rmetas, CrateFlavor::Rmeta, &mut slot);
529 let dylib = self.extract_one(dylibs, CrateFlavor::Dylib, &mut slot);
530 if let Some((h, m)) = slot {
531 libraries.insert(h,
532 Library {
533 dylib,
534 rlib,
535 rmeta,
536 metadata: m,
537 });
538 }
539 }
540
541 // Having now translated all relevant found hashes into libraries, see
542 // what we've got and figure out if we found multiple candidates for
543 // libraries or not.
544 match libraries.len() {
545 0 => None,
546 1 => Some(libraries.into_iter().next().unwrap().1),
547 _ => {
548 let mut err = struct_span_err!(self.sess,
549 self.span,
550 E0464,
551 "multiple matching crates for `{}`",
552 self.crate_name);
553 let candidates = libraries.iter().filter_map(|(_, lib)| {
554 let crate_name = &lib.metadata.get_root().name.as_str();
555 match &(&lib.dylib, &lib.rlib) {
556 &(&Some((ref pd, _)), &Some((ref pr, _))) => {
557 Some(format!("\ncrate `{}`: {}\n{:>padding$}",
558 crate_name,
559 pd.display(),
560 pr.display(),
561 padding=8 + crate_name.len()))
562 }
563 &(&Some((ref p, _)), &None) | &(&None, &Some((ref p, _))) => {
564 Some(format!("\ncrate `{}`: {}", crate_name, p.display()))
565 }
566 &(&None, &None) => None,
567 }
568 }).collect::<String>();
569 err.note(&format!("candidates:{}", candidates));
570 err.emit();
571 None
572 }
573 }
574 }
575
576 // Attempts to extract *one* library from the set `m`. If the set has no
577 // elements, `None` is returned. If the set has more than one element, then
578 // the errors and notes are emitted about the set of libraries.
579 //
580 // With only one library in the set, this function will extract it, and then
581 // read the metadata from it if `*slot` is `None`. If the metadata couldn't
582 // be read, it is assumed that the file isn't a valid rust library (no
583 // errors are emitted).
584 fn extract_one(&mut self,
585 m: FxHashMap<PathBuf, PathKind>,
586 flavor: CrateFlavor,
587 slot: &mut Option<(Svh, MetadataBlob)>)
588 -> Option<(PathBuf, PathKind)> {
589 let mut ret: Option<(PathBuf, PathKind)> = None;
590 let mut error = 0;
591
592 if slot.is_some() {
593 // FIXME(#10786): for an optimization, we only read one of the
594 // libraries' metadata sections. In theory we should
595 // read both, but reading dylib metadata is quite
596 // slow.
597 if m.is_empty() {
598 return None;
599 } else if m.len() == 1 {
600 return Some(m.into_iter().next().unwrap());
601 }
602 }
603
604 let mut err: Option<DiagnosticBuilder> = None;
605 for (lib, kind) in m {
606 info!("{} reading metadata from: {}", flavor, lib.display());
607 let (hash, metadata) =
608 match get_metadata_section(self.target, flavor, &lib, self.metadata_loader) {
609 Ok(blob) => {
610 if let Some(h) = self.crate_matches(&blob, &lib) {
611 (h, blob)
612 } else {
613 info!("metadata mismatch");
614 continue;
615 }
616 }
617 Err(err) => {
618 info!("no metadata found: {}", err);
619 continue;
620 }
621 };
622 // If we see multiple hashes, emit an error about duplicate candidates.
623 if slot.as_ref().map_or(false, |s| s.0 != hash) {
624 let mut e = struct_span_err!(self.sess,
625 self.span,
626 E0465,
627 "multiple {} candidates for `{}` found",
628 flavor,
629 self.crate_name);
630 e.span_note(self.span,
631 &format!(r"candidate #1: {}",
632 ret.as_ref()
633 .unwrap()
634 .0
635 .display()));
636 if let Some(ref mut e) = err {
637 e.emit();
638 }
639 err = Some(e);
640 error = 1;
641 *slot = None;
642 }
643 if error > 0 {
644 error += 1;
645 err.as_mut().unwrap().span_note(self.span,
646 &format!(r"candidate #{}: {}",
647 error,
648 lib.display()));
649 continue;
650 }
651
652 // Ok so at this point we've determined that `(lib, kind)` above is
653 // a candidate crate to load, and that `slot` is either none (this
654 // is the first crate of its kind) or if some the previous path has
655 // the exact same hash (e.g. it's the exact same crate).
656 //
657 // In principle these two candidate crates are exactly the same so
658 // we can choose either of them to link. As a stupidly gross hack,
659 // however, we favor crate in the sysroot.
660 //
661 // You can find more info in rust-lang/rust#39518 and various linked
662 // issues, but the general gist is that during testing libstd the
663 // compilers has two candidates to choose from: one in the sysroot
664 // and one in the deps folder. These two crates are the exact same
665 // crate but if the compiler chooses the one in the deps folder
666 // it'll cause spurious errors on Windows.
667 //
668 // As a result, we favor the sysroot crate here. Note that the
669 // candidates are all canonicalized, so we canonicalize the sysroot
670 // as well.
671 if let Some((ref prev, _)) = ret {
672 let sysroot = self.sess.sysroot();
673 let sysroot = sysroot.canonicalize()
674 .unwrap_or(sysroot.to_path_buf());
675 if prev.starts_with(&sysroot) {
676 continue
677 }
678 }
679 *slot = Some((hash, metadata));
680 ret = Some((lib, kind));
681 }
682
683 if error > 0 {
684 err.unwrap().emit();
685 None
686 } else {
687 ret
688 }
689 }
690
691 fn crate_matches(&mut self, metadata: &MetadataBlob, libpath: &Path) -> Option<Svh> {
692 let rustc_version = rustc_version();
693 let found_version = metadata.get_rustc_version();
694 if found_version != rustc_version {
695 info!("Rejecting via version: expected {} got {}",
696 rustc_version,
697 found_version);
698 self.rejected_via_version.push(CrateMismatch {
699 path: libpath.to_path_buf(),
700 got: found_version,
701 });
702 return None;
703 }
704
705 let root = metadata.get_root();
706 if let Some(is_proc_macro) = self.is_proc_macro {
707 if root.macro_derive_registrar.is_some() != is_proc_macro {
708 return None;
709 }
710 }
711
712 if self.should_match_name {
713 if self.crate_name != root.name {
714 info!("Rejecting via crate name");
715 return None;
716 }
717 }
718
719 if &root.triple != self.triple {
720 info!("Rejecting via crate triple: expected {} got {}",
721 self.triple,
722 root.triple);
723 self.rejected_via_triple.push(CrateMismatch {
724 path: libpath.to_path_buf(),
725 got: root.triple.to_string(),
726 });
727 return None;
728 }
729
730 if let Some(myhash) = self.hash {
731 if *myhash != root.hash {
732 info!("Rejecting via hash: expected {} got {}", *myhash, root.hash);
733 self.rejected_via_hash.push(CrateMismatch {
734 path: libpath.to_path_buf(),
735 got: myhash.to_string(),
736 });
737 return None;
738 }
739 }
740
741 Some(root.hash)
742 }
743
744
745 // Returns the corresponding (prefix, suffix) that files need to have for
746 // dynamic libraries
747 fn dylibname(&self) -> (String, String) {
748 let t = &self.target;
749 (t.options.dll_prefix.clone(), t.options.dll_suffix.clone())
750 }
751
752 // Returns the corresponding (prefix, suffix) that files need to have for
753 // static libraries
754 fn staticlibname(&self) -> (String, String) {
755 let t = &self.target;
756 (t.options.staticlib_prefix.clone(), t.options.staticlib_suffix.clone())
757 }
758
759 fn find_commandline_library<'b, LOCS>(&mut self, locs: LOCS) -> Option<Library>
760 where LOCS: Iterator<Item = &'b String>
761 {
762 // First, filter out all libraries that look suspicious. We only accept
763 // files which actually exist that have the correct naming scheme for
764 // rlibs/dylibs.
765 let sess = self.sess;
766 let dylibname = self.dylibname();
767 let mut rlibs = FxHashMap();
768 let mut rmetas = FxHashMap();
769 let mut dylibs = FxHashMap();
770 {
771 let locs = locs.map(|l| PathBuf::from(l)).filter(|loc| {
772 if !loc.exists() {
773 sess.err(&format!("extern location for {} does not exist: {}",
774 self.crate_name,
775 loc.display()));
776 return false;
777 }
778 let file = match loc.file_name().and_then(|s| s.to_str()) {
779 Some(file) => file,
780 None => {
781 sess.err(&format!("extern location for {} is not a file: {}",
782 self.crate_name,
783 loc.display()));
784 return false;
785 }
786 };
787 if file.starts_with("lib") &&
788 (file.ends_with(".rlib") || file.ends_with(".rmeta")) {
789 return true;
790 } else {
791 let (ref prefix, ref suffix) = dylibname;
792 if file.starts_with(&prefix[..]) && file.ends_with(&suffix[..]) {
793 return true;
794 }
795 }
796
797 self.rejected_via_filename.push(CrateMismatch {
798 path: loc.clone(),
799 got: String::new(),
800 });
801
802 false
803 });
804
805 // Now that we have an iterator of good candidates, make sure
806 // there's at most one rlib and at most one dylib.
807 for loc in locs {
808 if loc.file_name().unwrap().to_str().unwrap().ends_with(".rlib") {
809 rlibs.insert(fs::canonicalize(&loc).unwrap(), PathKind::ExternFlag);
810 } else if loc.file_name().unwrap().to_str().unwrap().ends_with(".rmeta") {
811 rmetas.insert(fs::canonicalize(&loc).unwrap(), PathKind::ExternFlag);
812 } else {
813 dylibs.insert(fs::canonicalize(&loc).unwrap(), PathKind::ExternFlag);
814 }
815 }
816 };
817
818 // Extract the rlib/dylib pair.
819 let mut slot = None;
820 let rlib = self.extract_one(rlibs, CrateFlavor::Rlib, &mut slot);
821 let rmeta = self.extract_one(rmetas, CrateFlavor::Rmeta, &mut slot);
822 let dylib = self.extract_one(dylibs, CrateFlavor::Dylib, &mut slot);
823
824 if rlib.is_none() && rmeta.is_none() && dylib.is_none() {
825 return None;
826 }
827 slot.map(|(_, metadata)|
828 Library {
829 dylib,
830 rlib,
831 rmeta,
832 metadata,
833 }
834 )
835 }
836 }
837
838 // Just a small wrapper to time how long reading metadata takes.
839 fn get_metadata_section(target: &Target,
840 flavor: CrateFlavor,
841 filename: &Path,
842 loader: &dyn MetadataLoader)
843 -> Result<MetadataBlob, String> {
844 let start = Instant::now();
845 let ret = get_metadata_section_imp(target, flavor, filename, loader);
846 info!("reading {:?} => {:?}",
847 filename.file_name().unwrap(),
848 start.elapsed());
849 return ret;
850 }
851
852 fn get_metadata_section_imp(target: &Target,
853 flavor: CrateFlavor,
854 filename: &Path,
855 loader: &dyn MetadataLoader)
856 -> Result<MetadataBlob, String> {
857 if !filename.exists() {
858 return Err(format!("no such file: '{}'", filename.display()));
859 }
860 let raw_bytes: MetadataRef = match flavor {
861 CrateFlavor::Rlib => loader.get_rlib_metadata(target, filename)?,
862 CrateFlavor::Dylib => {
863 let buf = loader.get_dylib_metadata(target, filename)?;
864 // The header is uncompressed
865 let header_len = METADATA_HEADER.len();
866 debug!("checking {} bytes of metadata-version stamp", header_len);
867 let header = &buf[..cmp::min(header_len, buf.len())];
868 if header != METADATA_HEADER {
869 return Err(format!("incompatible metadata version found: '{}'",
870 filename.display()));
871 }
872
873 // Header is okay -> inflate the actual metadata
874 let compressed_bytes = &buf[header_len..];
875 debug!("inflating {} bytes of compressed metadata", compressed_bytes.len());
876 let mut inflated = Vec::new();
877 match DeflateDecoder::new(compressed_bytes).read_to_end(&mut inflated) {
878 Ok(_) => {
879 let buf = unsafe { OwningRef::new_assert_stable_address(inflated) };
880 rustc_erase_owner!(buf.map_owner_box())
881 }
882 Err(_) => {
883 return Err(format!("failed to decompress metadata: {}", filename.display()));
884 }
885 }
886 }
887 CrateFlavor::Rmeta => {
888 let buf = fs::read(filename).map_err(|_|
889 format!("failed to read rmeta metadata: '{}'", filename.display()))?;
890 rustc_erase_owner!(OwningRef::new(buf).map_owner_box())
891 }
892 };
893 let blob = MetadataBlob(raw_bytes);
894 if blob.is_compatible() {
895 Ok(blob)
896 } else {
897 Err(format!("incompatible metadata version found: '{}'", filename.display()))
898 }
899 }
900
901 // A diagnostic function for dumping crate metadata to an output stream
902 pub fn list_file_metadata(target: &Target,
903 path: &Path,
904 loader: &dyn MetadataLoader,
905 out: &mut dyn io::Write)
906 -> io::Result<()> {
907 let filename = path.file_name().unwrap().to_str().unwrap();
908 let flavor = if filename.ends_with(".rlib") {
909 CrateFlavor::Rlib
910 } else if filename.ends_with(".rmeta") {
911 CrateFlavor::Rmeta
912 } else {
913 CrateFlavor::Dylib
914 };
915 match get_metadata_section(target, flavor, path, loader) {
916 Ok(metadata) => metadata.list_crate_metadata(out),
917 Err(msg) => write!(out, "{}\n", msg),
918 }
919 }