]> git.proxmox.com Git - rustc.git/blob - src/librustc_middle/mir/traversal.rs
New upstream version 1.47.0+dfsg1
[rustc.git] / src / librustc_middle / mir / traversal.rs
1 use rustc_index::bit_set::BitSet;
2
3 use super::*;
4
5 /// Preorder traversal of a graph.
6 ///
7 /// Preorder traversal is when each node is visited before any of its
8 /// successors
9 ///
10 /// ```text
11 ///
12 /// A
13 /// / \
14 /// / \
15 /// B C
16 /// \ /
17 /// \ /
18 /// D
19 /// ```
20 ///
21 /// A preorder traversal of this graph is either `A B D C` or `A C D B`
22 #[derive(Clone)]
23 pub struct Preorder<'a, 'tcx> {
24 body: &'a Body<'tcx>,
25 visited: BitSet<BasicBlock>,
26 worklist: Vec<BasicBlock>,
27 root_is_start_block: bool,
28 }
29
30 impl<'a, 'tcx> Preorder<'a, 'tcx> {
31 pub fn new(body: &'a Body<'tcx>, root: BasicBlock) -> Preorder<'a, 'tcx> {
32 let worklist = vec![root];
33
34 Preorder {
35 body,
36 visited: BitSet::new_empty(body.basic_blocks().len()),
37 worklist,
38 root_is_start_block: root == START_BLOCK,
39 }
40 }
41 }
42
43 pub fn preorder<'a, 'tcx>(body: &'a Body<'tcx>) -> Preorder<'a, 'tcx> {
44 Preorder::new(body, START_BLOCK)
45 }
46
47 impl<'a, 'tcx> Iterator for Preorder<'a, 'tcx> {
48 type Item = (BasicBlock, &'a BasicBlockData<'tcx>);
49
50 fn next(&mut self) -> Option<(BasicBlock, &'a BasicBlockData<'tcx>)> {
51 while let Some(idx) = self.worklist.pop() {
52 if !self.visited.insert(idx) {
53 continue;
54 }
55
56 let data = &self.body[idx];
57
58 if let Some(ref term) = data.terminator {
59 self.worklist.extend(term.successors());
60 }
61
62 return Some((idx, data));
63 }
64
65 None
66 }
67
68 fn size_hint(&self) -> (usize, Option<usize>) {
69 // All the blocks, minus the number of blocks we've visited.
70 let upper = self.body.basic_blocks().len() - self.visited.count();
71
72 let lower = if self.root_is_start_block {
73 // We will visit all remaining blocks exactly once.
74 upper
75 } else {
76 self.worklist.len()
77 };
78
79 (lower, Some(upper))
80 }
81 }
82
83 /// Postorder traversal of a graph.
84 ///
85 /// Postorder traversal is when each node is visited after all of its
86 /// successors, except when the successor is only reachable by a back-edge
87 ///
88 ///
89 /// ```text
90 ///
91 /// A
92 /// / \
93 /// / \
94 /// B C
95 /// \ /
96 /// \ /
97 /// D
98 /// ```
99 ///
100 /// A Postorder traversal of this graph is `D B C A` or `D C B A`
101 pub struct Postorder<'a, 'tcx> {
102 body: &'a Body<'tcx>,
103 visited: BitSet<BasicBlock>,
104 visit_stack: Vec<(BasicBlock, Successors<'a>)>,
105 root_is_start_block: bool,
106 }
107
108 impl<'a, 'tcx> Postorder<'a, 'tcx> {
109 pub fn new(body: &'a Body<'tcx>, root: BasicBlock) -> Postorder<'a, 'tcx> {
110 let mut po = Postorder {
111 body,
112 visited: BitSet::new_empty(body.basic_blocks().len()),
113 visit_stack: Vec::new(),
114 root_is_start_block: root == START_BLOCK,
115 };
116
117 let data = &po.body[root];
118
119 if let Some(ref term) = data.terminator {
120 po.visited.insert(root);
121 po.visit_stack.push((root, term.successors()));
122 po.traverse_successor();
123 }
124
125 po
126 }
127
128 fn traverse_successor(&mut self) {
129 // This is quite a complex loop due to 1. the borrow checker not liking it much
130 // and 2. what exactly is going on is not clear
131 //
132 // It does the actual traversal of the graph, while the `next` method on the iterator
133 // just pops off of the stack. `visit_stack` is a stack containing pairs of nodes and
134 // iterators over the successors of those nodes. Each iteration attempts to get the next
135 // node from the top of the stack, then pushes that node and an iterator over the
136 // successors to the top of the stack. This loop only grows `visit_stack`, stopping when
137 // we reach a child that has no children that we haven't already visited.
138 //
139 // For a graph that looks like this:
140 //
141 // A
142 // / \
143 // / \
144 // B C
145 // | |
146 // | |
147 // D |
148 // \ /
149 // \ /
150 // E
151 //
152 // The state of the stack starts out with just the root node (`A` in this case);
153 // [(A, [B, C])]
154 //
155 // When the first call to `traverse_successor` happens, the following happens:
156 //
157 // [(B, [D]), // `B` taken from the successors of `A`, pushed to the
158 // // top of the stack along with the successors of `B`
159 // (A, [C])]
160 //
161 // [(D, [E]), // `D` taken from successors of `B`, pushed to stack
162 // (B, []),
163 // (A, [C])]
164 //
165 // [(E, []), // `E` taken from successors of `D`, pushed to stack
166 // (D, []),
167 // (B, []),
168 // (A, [C])]
169 //
170 // Now that the top of the stack has no successors we can traverse, each item will
171 // be popped off during iteration until we get back to `A`. This yields [E, D, B].
172 //
173 // When we yield `B` and call `traverse_successor`, we push `C` to the stack, but
174 // since we've already visited `E`, that child isn't added to the stack. The last
175 // two iterations yield `C` and finally `A` for a final traversal of [E, D, B, C, A]
176 loop {
177 let bb = if let Some(&mut (_, ref mut iter)) = self.visit_stack.last_mut() {
178 if let Some(&bb) = iter.next() {
179 bb
180 } else {
181 break;
182 }
183 } else {
184 break;
185 };
186
187 if self.visited.insert(bb) {
188 if let Some(term) = &self.body[bb].terminator {
189 self.visit_stack.push((bb, term.successors()));
190 }
191 }
192 }
193 }
194 }
195
196 pub fn postorder<'a, 'tcx>(body: &'a Body<'tcx>) -> Postorder<'a, 'tcx> {
197 Postorder::new(body, START_BLOCK)
198 }
199
200 impl<'a, 'tcx> Iterator for Postorder<'a, 'tcx> {
201 type Item = (BasicBlock, &'a BasicBlockData<'tcx>);
202
203 fn next(&mut self) -> Option<(BasicBlock, &'a BasicBlockData<'tcx>)> {
204 let next = self.visit_stack.pop();
205 if next.is_some() {
206 self.traverse_successor();
207 }
208
209 next.map(|(bb, _)| (bb, &self.body[bb]))
210 }
211
212 fn size_hint(&self) -> (usize, Option<usize>) {
213 // All the blocks, minus the number of blocks we've visited.
214 let upper = self.body.basic_blocks().len() - self.visited.count();
215
216 let lower = if self.root_is_start_block {
217 // We will visit all remaining blocks exactly once.
218 upper
219 } else {
220 self.visit_stack.len()
221 };
222
223 (lower, Some(upper))
224 }
225 }
226
227 /// Reverse postorder traversal of a graph
228 ///
229 /// Reverse postorder is the reverse order of a postorder traversal.
230 /// This is different to a preorder traversal and represents a natural
231 /// linearization of control-flow.
232 ///
233 /// ```text
234 ///
235 /// A
236 /// / \
237 /// / \
238 /// B C
239 /// \ /
240 /// \ /
241 /// D
242 /// ```
243 ///
244 /// A reverse postorder traversal of this graph is either `A B C D` or `A C B D`
245 /// Note that for a graph containing no loops (i.e., A DAG), this is equivalent to
246 /// a topological sort.
247 ///
248 /// Construction of a `ReversePostorder` traversal requires doing a full
249 /// postorder traversal of the graph, therefore this traversal should be
250 /// constructed as few times as possible. Use the `reset` method to be able
251 /// to re-use the traversal
252 #[derive(Clone)]
253 pub struct ReversePostorder<'a, 'tcx> {
254 body: &'a Body<'tcx>,
255 blocks: Vec<BasicBlock>,
256 idx: usize,
257 }
258
259 impl<'a, 'tcx> ReversePostorder<'a, 'tcx> {
260 pub fn new(body: &'a Body<'tcx>, root: BasicBlock) -> ReversePostorder<'a, 'tcx> {
261 let blocks: Vec<_> = Postorder::new(body, root).map(|(bb, _)| bb).collect();
262
263 let len = blocks.len();
264
265 ReversePostorder { body, blocks, idx: len }
266 }
267
268 pub fn reset(&mut self) {
269 self.idx = self.blocks.len();
270 }
271 }
272
273 pub fn reverse_postorder<'a, 'tcx>(body: &'a Body<'tcx>) -> ReversePostorder<'a, 'tcx> {
274 ReversePostorder::new(body, START_BLOCK)
275 }
276
277 impl<'a, 'tcx> Iterator for ReversePostorder<'a, 'tcx> {
278 type Item = (BasicBlock, &'a BasicBlockData<'tcx>);
279
280 fn next(&mut self) -> Option<(BasicBlock, &'a BasicBlockData<'tcx>)> {
281 if self.idx == 0 {
282 return None;
283 }
284 self.idx -= 1;
285
286 self.blocks.get(self.idx).map(|&bb| (bb, &self.body[bb]))
287 }
288
289 fn size_hint(&self) -> (usize, Option<usize>) {
290 (self.idx, Some(self.idx))
291 }
292 }
293
294 impl<'a, 'tcx> ExactSizeIterator for ReversePostorder<'a, 'tcx> {}
295
296 /// Returns an iterator over all basic blocks reachable from the `START_BLOCK` in no particular
297 /// order.
298 ///
299 /// This is clearer than writing `preorder` in cases where the order doesn't matter.
300 pub fn reachable<'a, 'tcx>(
301 body: &'a Body<'tcx>,
302 ) -> impl 'a + Iterator<Item = (BasicBlock, &'a BasicBlockData<'tcx>)> {
303 preorder(body)
304 }
305
306 /// Returns a `BitSet` containing all basic blocks reachable from the `START_BLOCK`.
307 pub fn reachable_as_bitset(body: &Body<'tcx>) -> BitSet<BasicBlock> {
308 let mut iter = preorder(body);
309 (&mut iter).for_each(drop);
310 iter.visited
311 }