]> git.proxmox.com Git - rustc.git/blob - src/librustc_middle/ty/sty.rs
New upstream version 1.44.1+dfsg1
[rustc.git] / src / librustc_middle / ty / sty.rs
1 //! This module contains `TyKind` and its major components.
2
3 #![allow(rustc::usage_of_ty_tykind)]
4
5 use self::InferTy::*;
6 use self::TyKind::*;
7
8 use crate::infer::canonical::Canonical;
9 use crate::middle::region;
10 use crate::mir::interpret::ConstValue;
11 use crate::mir::interpret::{LitToConstInput, Scalar};
12 use crate::mir::Promoted;
13 use crate::ty::subst::{GenericArg, InternalSubsts, Subst, SubstsRef};
14 use crate::ty::{
15 self, AdtDef, DefIdTree, Discr, Ty, TyCtxt, TypeFlags, TypeFoldable, WithConstness,
16 };
17 use crate::ty::{List, ParamEnv, ParamEnvAnd, TyS};
18 use polonius_engine::Atom;
19 use rustc_ast::ast::{self, Ident};
20 use rustc_data_structures::captures::Captures;
21 use rustc_errors::ErrorReported;
22 use rustc_hir as hir;
23 use rustc_hir::def_id::{DefId, LocalDefId};
24 use rustc_index::vec::Idx;
25 use rustc_macros::HashStable;
26 use rustc_span::symbol::{kw, Symbol};
27 use rustc_target::abi::{Size, VariantIdx};
28 use rustc_target::spec::abi;
29 use std::borrow::Cow;
30 use std::cmp::Ordering;
31 use std::marker::PhantomData;
32 use std::ops::Range;
33
34 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, RustcEncodable, RustcDecodable)]
35 #[derive(HashStable, TypeFoldable, Lift)]
36 pub struct TypeAndMut<'tcx> {
37 pub ty: Ty<'tcx>,
38 pub mutbl: hir::Mutability,
39 }
40
41 #[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, RustcEncodable, RustcDecodable, Copy)]
42 #[derive(HashStable)]
43 /// A "free" region `fr` can be interpreted as "some region
44 /// at least as big as the scope `fr.scope`".
45 pub struct FreeRegion {
46 pub scope: DefId,
47 pub bound_region: BoundRegion,
48 }
49
50 #[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, RustcEncodable, RustcDecodable, Copy)]
51 #[derive(HashStable)]
52 pub enum BoundRegion {
53 /// An anonymous region parameter for a given fn (&T)
54 BrAnon(u32),
55
56 /// Named region parameters for functions (a in &'a T)
57 ///
58 /// The `DefId` is needed to distinguish free regions in
59 /// the event of shadowing.
60 BrNamed(DefId, Symbol),
61
62 /// Anonymous region for the implicit env pointer parameter
63 /// to a closure
64 BrEnv,
65 }
66
67 impl BoundRegion {
68 pub fn is_named(&self) -> bool {
69 match *self {
70 BoundRegion::BrNamed(_, name) => name != kw::UnderscoreLifetime,
71 _ => false,
72 }
73 }
74
75 /// When canonicalizing, we replace unbound inference variables and free
76 /// regions with anonymous late bound regions. This method asserts that
77 /// we have an anonymous late bound region, which hence may refer to
78 /// a canonical variable.
79 pub fn assert_bound_var(&self) -> BoundVar {
80 match *self {
81 BoundRegion::BrAnon(var) => BoundVar::from_u32(var),
82 _ => bug!("bound region is not anonymous"),
83 }
84 }
85 }
86
87 /// N.B., if you change this, you'll probably want to change the corresponding
88 /// AST structure in `librustc_ast/ast.rs` as well.
89 #[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable, Debug)]
90 #[derive(HashStable)]
91 #[rustc_diagnostic_item = "TyKind"]
92 pub enum TyKind<'tcx> {
93 /// The primitive boolean type. Written as `bool`.
94 Bool,
95
96 /// The primitive character type; holds a Unicode scalar value
97 /// (a non-surrogate code point). Written as `char`.
98 Char,
99
100 /// A primitive signed integer type. For example, `i32`.
101 Int(ast::IntTy),
102
103 /// A primitive unsigned integer type. For example, `u32`.
104 Uint(ast::UintTy),
105
106 /// A primitive floating-point type. For example, `f64`.
107 Float(ast::FloatTy),
108
109 /// Structures, enumerations and unions.
110 ///
111 /// InternalSubsts here, possibly against intuition, *may* contain `Param`s.
112 /// That is, even after substitution it is possible that there are type
113 /// variables. This happens when the `Adt` corresponds to an ADT
114 /// definition and not a concrete use of it.
115 Adt(&'tcx AdtDef, SubstsRef<'tcx>),
116
117 /// An unsized FFI type that is opaque to Rust. Written as `extern type T`.
118 Foreign(DefId),
119
120 /// The pointee of a string slice. Written as `str`.
121 Str,
122
123 /// An array with the given length. Written as `[T; n]`.
124 Array(Ty<'tcx>, &'tcx ty::Const<'tcx>),
125
126 /// The pointee of an array slice. Written as `[T]`.
127 Slice(Ty<'tcx>),
128
129 /// A raw pointer. Written as `*mut T` or `*const T`
130 RawPtr(TypeAndMut<'tcx>),
131
132 /// A reference; a pointer with an associated lifetime. Written as
133 /// `&'a mut T` or `&'a T`.
134 Ref(Region<'tcx>, Ty<'tcx>, hir::Mutability),
135
136 /// The anonymous type of a function declaration/definition. Each
137 /// function has a unique type, which is output (for a function
138 /// named `foo` returning an `i32`) as `fn() -> i32 {foo}`.
139 ///
140 /// For example the type of `bar` here:
141 ///
142 /// ```rust
143 /// fn foo() -> i32 { 1 }
144 /// let bar = foo; // bar: fn() -> i32 {foo}
145 /// ```
146 FnDef(DefId, SubstsRef<'tcx>),
147
148 /// A pointer to a function. Written as `fn() -> i32`.
149 ///
150 /// For example the type of `bar` here:
151 ///
152 /// ```rust
153 /// fn foo() -> i32 { 1 }
154 /// let bar: fn() -> i32 = foo;
155 /// ```
156 FnPtr(PolyFnSig<'tcx>),
157
158 /// A trait, defined with `trait`.
159 Dynamic(Binder<&'tcx List<ExistentialPredicate<'tcx>>>, ty::Region<'tcx>),
160
161 /// The anonymous type of a closure. Used to represent the type of
162 /// `|a| a`.
163 Closure(DefId, SubstsRef<'tcx>),
164
165 /// The anonymous type of a generator. Used to represent the type of
166 /// `|a| yield a`.
167 Generator(DefId, SubstsRef<'tcx>, hir::Movability),
168
169 /// A type representin the types stored inside a generator.
170 /// This should only appear in GeneratorInteriors.
171 GeneratorWitness(Binder<&'tcx List<Ty<'tcx>>>),
172
173 /// The never type `!`
174 Never,
175
176 /// A tuple type. For example, `(i32, bool)`.
177 /// Use `TyS::tuple_fields` to iterate over the field types.
178 Tuple(SubstsRef<'tcx>),
179
180 /// The projection of an associated type. For example,
181 /// `<T as Trait<..>>::N`.
182 Projection(ProjectionTy<'tcx>),
183
184 /// A placeholder type used when we do not have enough information
185 /// to normalize the projection of an associated type to an
186 /// existing concrete type. Currently only used with chalk-engine.
187 UnnormalizedProjection(ProjectionTy<'tcx>),
188
189 /// Opaque (`impl Trait`) type found in a return type.
190 /// The `DefId` comes either from
191 /// * the `impl Trait` ast::Ty node,
192 /// * or the `type Foo = impl Trait` declaration
193 /// The substitutions are for the generics of the function in question.
194 /// After typeck, the concrete type can be found in the `types` map.
195 Opaque(DefId, SubstsRef<'tcx>),
196
197 /// A type parameter; for example, `T` in `fn f<T>(x: T) {}
198 Param(ParamTy),
199
200 /// Bound type variable, used only when preparing a trait query.
201 Bound(ty::DebruijnIndex, BoundTy),
202
203 /// A placeholder type - universally quantified higher-ranked type.
204 Placeholder(ty::PlaceholderType),
205
206 /// A type variable used during type checking.
207 Infer(InferTy),
208
209 /// A placeholder for a type which could not be computed; this is
210 /// propagated to avoid useless error messages.
211 Error,
212 }
213
214 // `TyKind` is used a lot. Make sure it doesn't unintentionally get bigger.
215 #[cfg(target_arch = "x86_64")]
216 static_assert_size!(TyKind<'_>, 24);
217
218 /// A closure can be modeled as a struct that looks like:
219 ///
220 /// struct Closure<'l0...'li, T0...Tj, CK, CS, U>(...U);
221 ///
222 /// where:
223 ///
224 /// - 'l0...'li and T0...Tj are the generic parameters
225 /// in scope on the function that defined the closure,
226 /// - CK represents the *closure kind* (Fn vs FnMut vs FnOnce). This
227 /// is rather hackily encoded via a scalar type. See
228 /// `TyS::to_opt_closure_kind` for details.
229 /// - CS represents the *closure signature*, representing as a `fn()`
230 /// type. For example, `fn(u32, u32) -> u32` would mean that the closure
231 /// implements `CK<(u32, u32), Output = u32>`, where `CK` is the trait
232 /// specified above.
233 /// - U is a type parameter representing the types of its upvars, tupled up
234 /// (borrowed, if appropriate; that is, if an U field represents a by-ref upvar,
235 /// and the up-var has the type `Foo`, then that field of U will be `&Foo`).
236 ///
237 /// So, for example, given this function:
238 ///
239 /// fn foo<'a, T>(data: &'a mut T) {
240 /// do(|| data.count += 1)
241 /// }
242 ///
243 /// the type of the closure would be something like:
244 ///
245 /// struct Closure<'a, T, U>(...U);
246 ///
247 /// Note that the type of the upvar is not specified in the struct.
248 /// You may wonder how the impl would then be able to use the upvar,
249 /// if it doesn't know it's type? The answer is that the impl is
250 /// (conceptually) not fully generic over Closure but rather tied to
251 /// instances with the expected upvar types:
252 ///
253 /// impl<'b, 'a, T> FnMut() for Closure<'a, T, (&'b mut &'a mut T,)> {
254 /// ...
255 /// }
256 ///
257 /// You can see that the *impl* fully specified the type of the upvar
258 /// and thus knows full well that `data` has type `&'b mut &'a mut T`.
259 /// (Here, I am assuming that `data` is mut-borrowed.)
260 ///
261 /// Now, the last question you may ask is: Why include the upvar types
262 /// in an extra type parameter? The reason for this design is that the
263 /// upvar types can reference lifetimes that are internal to the
264 /// creating function. In my example above, for example, the lifetime
265 /// `'b` represents the scope of the closure itself; this is some
266 /// subset of `foo`, probably just the scope of the call to the to
267 /// `do()`. If we just had the lifetime/type parameters from the
268 /// enclosing function, we couldn't name this lifetime `'b`. Note that
269 /// there can also be lifetimes in the types of the upvars themselves,
270 /// if one of them happens to be a reference to something that the
271 /// creating fn owns.
272 ///
273 /// OK, you say, so why not create a more minimal set of parameters
274 /// that just includes the extra lifetime parameters? The answer is
275 /// primarily that it would be hard --- we don't know at the time when
276 /// we create the closure type what the full types of the upvars are,
277 /// nor do we know which are borrowed and which are not. In this
278 /// design, we can just supply a fresh type parameter and figure that
279 /// out later.
280 ///
281 /// All right, you say, but why include the type parameters from the
282 /// original function then? The answer is that codegen may need them
283 /// when monomorphizing, and they may not appear in the upvars. A
284 /// closure could capture no variables but still make use of some
285 /// in-scope type parameter with a bound (e.g., if our example above
286 /// had an extra `U: Default`, and the closure called `U::default()`).
287 ///
288 /// There is another reason. This design (implicitly) prohibits
289 /// closures from capturing themselves (except via a trait
290 /// object). This simplifies closure inference considerably, since it
291 /// means that when we infer the kind of a closure or its upvars, we
292 /// don't have to handle cycles where the decisions we make for
293 /// closure C wind up influencing the decisions we ought to make for
294 /// closure C (which would then require fixed point iteration to
295 /// handle). Plus it fixes an ICE. :P
296 ///
297 /// ## Generators
298 ///
299 /// Generators are handled similarly in `GeneratorSubsts`. The set of
300 /// type parameters is similar, but `CK` and `CS` are replaced by the
301 /// following type parameters:
302 ///
303 /// * `GS`: The generator's "resume type", which is the type of the
304 /// argument passed to `resume`, and the type of `yield` expressions
305 /// inside the generator.
306 /// * `GY`: The "yield type", which is the type of values passed to
307 /// `yield` inside the generator.
308 /// * `GR`: The "return type", which is the type of value returned upon
309 /// completion of the generator.
310 /// * `GW`: The "generator witness".
311 #[derive(Copy, Clone, Debug, TypeFoldable)]
312 pub struct ClosureSubsts<'tcx> {
313 /// Lifetime and type parameters from the enclosing function,
314 /// concatenated with a tuple containing the types of the upvars.
315 ///
316 /// These are separated out because codegen wants to pass them around
317 /// when monomorphizing.
318 pub substs: SubstsRef<'tcx>,
319 }
320
321 /// Struct returned by `split()`. Note that these are subslices of the
322 /// parent slice and not canonical substs themselves.
323 struct SplitClosureSubsts<'tcx> {
324 closure_kind_ty: GenericArg<'tcx>,
325 closure_sig_as_fn_ptr_ty: GenericArg<'tcx>,
326 tupled_upvars_ty: GenericArg<'tcx>,
327 }
328
329 impl<'tcx> ClosureSubsts<'tcx> {
330 /// Divides the closure substs into their respective
331 /// components. Single source of truth with respect to the
332 /// ordering.
333 fn split(self) -> SplitClosureSubsts<'tcx> {
334 match self.substs[..] {
335 [.., closure_kind_ty, closure_sig_as_fn_ptr_ty, tupled_upvars_ty] => {
336 SplitClosureSubsts { closure_kind_ty, closure_sig_as_fn_ptr_ty, tupled_upvars_ty }
337 }
338 _ => bug!("closure substs missing synthetics"),
339 }
340 }
341
342 /// Returns `true` only if enough of the synthetic types are known to
343 /// allow using all of the methods on `ClosureSubsts` without panicking.
344 ///
345 /// Used primarily by `ty::print::pretty` to be able to handle closure
346 /// types that haven't had their synthetic types substituted in.
347 pub fn is_valid(self) -> bool {
348 self.substs.len() >= 3 && matches!(self.split().tupled_upvars_ty.expect_ty().kind, Tuple(_))
349 }
350
351 #[inline]
352 pub fn upvar_tys(self) -> impl Iterator<Item = Ty<'tcx>> + 'tcx {
353 self.split().tupled_upvars_ty.expect_ty().tuple_fields()
354 }
355
356 /// Returns the closure kind for this closure; may return a type
357 /// variable during inference. To get the closure kind during
358 /// inference, use `infcx.closure_kind(substs)`.
359 pub fn kind_ty(self) -> Ty<'tcx> {
360 self.split().closure_kind_ty.expect_ty()
361 }
362
363 /// Returns the `fn` pointer type representing the closure signature for this
364 /// closure.
365 // FIXME(eddyb) this should be unnecessary, as the shallowly resolved
366 // type is known at the time of the creation of `ClosureSubsts`,
367 // see `rustc_typeck::check::closure`.
368 pub fn sig_as_fn_ptr_ty(self) -> Ty<'tcx> {
369 self.split().closure_sig_as_fn_ptr_ty.expect_ty()
370 }
371
372 /// Returns the closure kind for this closure; only usable outside
373 /// of an inference context, because in that context we know that
374 /// there are no type variables.
375 ///
376 /// If you have an inference context, use `infcx.closure_kind()`.
377 pub fn kind(self) -> ty::ClosureKind {
378 self.kind_ty().to_opt_closure_kind().unwrap()
379 }
380
381 /// Extracts the signature from the closure.
382 pub fn sig(self) -> ty::PolyFnSig<'tcx> {
383 let ty = self.sig_as_fn_ptr_ty();
384 match ty.kind {
385 ty::FnPtr(sig) => sig,
386 _ => bug!("closure_sig_as_fn_ptr_ty is not a fn-ptr: {:?}", ty.kind),
387 }
388 }
389 }
390
391 /// Similar to `ClosureSubsts`; see the above documentation for more.
392 #[derive(Copy, Clone, Debug, TypeFoldable)]
393 pub struct GeneratorSubsts<'tcx> {
394 pub substs: SubstsRef<'tcx>,
395 }
396
397 struct SplitGeneratorSubsts<'tcx> {
398 resume_ty: GenericArg<'tcx>,
399 yield_ty: GenericArg<'tcx>,
400 return_ty: GenericArg<'tcx>,
401 witness: GenericArg<'tcx>,
402 tupled_upvars_ty: GenericArg<'tcx>,
403 }
404
405 impl<'tcx> GeneratorSubsts<'tcx> {
406 fn split(self) -> SplitGeneratorSubsts<'tcx> {
407 match self.substs[..] {
408 [.., resume_ty, yield_ty, return_ty, witness, tupled_upvars_ty] => {
409 SplitGeneratorSubsts { resume_ty, yield_ty, return_ty, witness, tupled_upvars_ty }
410 }
411 _ => bug!("generator substs missing synthetics"),
412 }
413 }
414
415 /// Returns `true` only if enough of the synthetic types are known to
416 /// allow using all of the methods on `GeneratorSubsts` without panicking.
417 ///
418 /// Used primarily by `ty::print::pretty` to be able to handle generator
419 /// types that haven't had their synthetic types substituted in.
420 pub fn is_valid(self) -> bool {
421 self.substs.len() >= 5 && matches!(self.split().tupled_upvars_ty.expect_ty().kind, Tuple(_))
422 }
423
424 /// This describes the types that can be contained in a generator.
425 /// It will be a type variable initially and unified in the last stages of typeck of a body.
426 /// It contains a tuple of all the types that could end up on a generator frame.
427 /// The state transformation MIR pass may only produce layouts which mention types
428 /// in this tuple. Upvars are not counted here.
429 pub fn witness(self) -> Ty<'tcx> {
430 self.split().witness.expect_ty()
431 }
432
433 #[inline]
434 pub fn upvar_tys(self) -> impl Iterator<Item = Ty<'tcx>> + 'tcx {
435 self.split().tupled_upvars_ty.expect_ty().tuple_fields()
436 }
437
438 /// Returns the type representing the resume type of the generator.
439 pub fn resume_ty(self) -> Ty<'tcx> {
440 self.split().resume_ty.expect_ty()
441 }
442
443 /// Returns the type representing the yield type of the generator.
444 pub fn yield_ty(self) -> Ty<'tcx> {
445 self.split().yield_ty.expect_ty()
446 }
447
448 /// Returns the type representing the return type of the generator.
449 pub fn return_ty(self) -> Ty<'tcx> {
450 self.split().return_ty.expect_ty()
451 }
452
453 /// Returns the "generator signature", which consists of its yield
454 /// and return types.
455 ///
456 /// N.B., some bits of the code prefers to see this wrapped in a
457 /// binder, but it never contains bound regions. Probably this
458 /// function should be removed.
459 pub fn poly_sig(self) -> PolyGenSig<'tcx> {
460 ty::Binder::dummy(self.sig())
461 }
462
463 /// Returns the "generator signature", which consists of its resume, yield
464 /// and return types.
465 pub fn sig(self) -> GenSig<'tcx> {
466 ty::GenSig {
467 resume_ty: self.resume_ty(),
468 yield_ty: self.yield_ty(),
469 return_ty: self.return_ty(),
470 }
471 }
472 }
473
474 impl<'tcx> GeneratorSubsts<'tcx> {
475 /// Generator has not been resumed yet.
476 pub const UNRESUMED: usize = 0;
477 /// Generator has returned or is completed.
478 pub const RETURNED: usize = 1;
479 /// Generator has been poisoned.
480 pub const POISONED: usize = 2;
481
482 const UNRESUMED_NAME: &'static str = "Unresumed";
483 const RETURNED_NAME: &'static str = "Returned";
484 const POISONED_NAME: &'static str = "Panicked";
485
486 /// The valid variant indices of this generator.
487 #[inline]
488 pub fn variant_range(&self, def_id: DefId, tcx: TyCtxt<'tcx>) -> Range<VariantIdx> {
489 // FIXME requires optimized MIR
490 let num_variants = tcx.generator_layout(def_id).variant_fields.len();
491 VariantIdx::new(0)..VariantIdx::new(num_variants)
492 }
493
494 /// The discriminant for the given variant. Panics if the `variant_index` is
495 /// out of range.
496 #[inline]
497 pub fn discriminant_for_variant(
498 &self,
499 def_id: DefId,
500 tcx: TyCtxt<'tcx>,
501 variant_index: VariantIdx,
502 ) -> Discr<'tcx> {
503 // Generators don't support explicit discriminant values, so they are
504 // the same as the variant index.
505 assert!(self.variant_range(def_id, tcx).contains(&variant_index));
506 Discr { val: variant_index.as_usize() as u128, ty: self.discr_ty(tcx) }
507 }
508
509 /// The set of all discriminants for the generator, enumerated with their
510 /// variant indices.
511 #[inline]
512 pub fn discriminants(
513 self,
514 def_id: DefId,
515 tcx: TyCtxt<'tcx>,
516 ) -> impl Iterator<Item = (VariantIdx, Discr<'tcx>)> + Captures<'tcx> {
517 self.variant_range(def_id, tcx).map(move |index| {
518 (index, Discr { val: index.as_usize() as u128, ty: self.discr_ty(tcx) })
519 })
520 }
521
522 /// Calls `f` with a reference to the name of the enumerator for the given
523 /// variant `v`.
524 #[inline]
525 pub fn variant_name(self, v: VariantIdx) -> Cow<'static, str> {
526 match v.as_usize() {
527 Self::UNRESUMED => Cow::from(Self::UNRESUMED_NAME),
528 Self::RETURNED => Cow::from(Self::RETURNED_NAME),
529 Self::POISONED => Cow::from(Self::POISONED_NAME),
530 _ => Cow::from(format!("Suspend{}", v.as_usize() - 3)),
531 }
532 }
533
534 /// The type of the state discriminant used in the generator type.
535 #[inline]
536 pub fn discr_ty(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
537 tcx.types.u32
538 }
539
540 /// This returns the types of the MIR locals which had to be stored across suspension points.
541 /// It is calculated in rustc_mir::transform::generator::StateTransform.
542 /// All the types here must be in the tuple in GeneratorInterior.
543 ///
544 /// The locals are grouped by their variant number. Note that some locals may
545 /// be repeated in multiple variants.
546 #[inline]
547 pub fn state_tys(
548 self,
549 def_id: DefId,
550 tcx: TyCtxt<'tcx>,
551 ) -> impl Iterator<Item = impl Iterator<Item = Ty<'tcx>> + Captures<'tcx>> {
552 let layout = tcx.generator_layout(def_id);
553 layout.variant_fields.iter().map(move |variant| {
554 variant.iter().map(move |field| layout.field_tys[*field].subst(tcx, self.substs))
555 })
556 }
557
558 /// This is the types of the fields of a generator which are not stored in a
559 /// variant.
560 #[inline]
561 pub fn prefix_tys(self) -> impl Iterator<Item = Ty<'tcx>> {
562 self.upvar_tys()
563 }
564 }
565
566 #[derive(Debug, Copy, Clone)]
567 pub enum UpvarSubsts<'tcx> {
568 Closure(SubstsRef<'tcx>),
569 Generator(SubstsRef<'tcx>),
570 }
571
572 impl<'tcx> UpvarSubsts<'tcx> {
573 #[inline]
574 pub fn upvar_tys(self) -> impl Iterator<Item = Ty<'tcx>> + 'tcx {
575 let tupled_upvars_ty = match self {
576 UpvarSubsts::Closure(substs) => substs.as_closure().split().tupled_upvars_ty,
577 UpvarSubsts::Generator(substs) => substs.as_generator().split().tupled_upvars_ty,
578 };
579 tupled_upvars_ty.expect_ty().tuple_fields()
580 }
581 }
582
583 #[derive(Debug, Copy, Clone, PartialEq, PartialOrd, Ord, Eq, Hash, RustcEncodable, RustcDecodable)]
584 #[derive(HashStable, TypeFoldable)]
585 pub enum ExistentialPredicate<'tcx> {
586 /// E.g., `Iterator`.
587 Trait(ExistentialTraitRef<'tcx>),
588 /// E.g., `Iterator::Item = T`.
589 Projection(ExistentialProjection<'tcx>),
590 /// E.g., `Send`.
591 AutoTrait(DefId),
592 }
593
594 impl<'tcx> ExistentialPredicate<'tcx> {
595 /// Compares via an ordering that will not change if modules are reordered or other changes are
596 /// made to the tree. In particular, this ordering is preserved across incremental compilations.
597 pub fn stable_cmp(&self, tcx: TyCtxt<'tcx>, other: &Self) -> Ordering {
598 use self::ExistentialPredicate::*;
599 match (*self, *other) {
600 (Trait(_), Trait(_)) => Ordering::Equal,
601 (Projection(ref a), Projection(ref b)) => {
602 tcx.def_path_hash(a.item_def_id).cmp(&tcx.def_path_hash(b.item_def_id))
603 }
604 (AutoTrait(ref a), AutoTrait(ref b)) => {
605 tcx.trait_def(*a).def_path_hash.cmp(&tcx.trait_def(*b).def_path_hash)
606 }
607 (Trait(_), _) => Ordering::Less,
608 (Projection(_), Trait(_)) => Ordering::Greater,
609 (Projection(_), _) => Ordering::Less,
610 (AutoTrait(_), _) => Ordering::Greater,
611 }
612 }
613 }
614
615 impl<'tcx> Binder<ExistentialPredicate<'tcx>> {
616 pub fn with_self_ty(&self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ty::Predicate<'tcx> {
617 use crate::ty::ToPredicate;
618 match *self.skip_binder() {
619 ExistentialPredicate::Trait(tr) => {
620 Binder(tr).with_self_ty(tcx, self_ty).without_const().to_predicate()
621 }
622 ExistentialPredicate::Projection(p) => {
623 ty::Predicate::Projection(Binder(p.with_self_ty(tcx, self_ty)))
624 }
625 ExistentialPredicate::AutoTrait(did) => {
626 let trait_ref =
627 Binder(ty::TraitRef { def_id: did, substs: tcx.mk_substs_trait(self_ty, &[]) });
628 trait_ref.without_const().to_predicate()
629 }
630 }
631 }
632 }
633
634 impl<'tcx> rustc_serialize::UseSpecializedDecodable for &'tcx List<ExistentialPredicate<'tcx>> {}
635
636 impl<'tcx> List<ExistentialPredicate<'tcx>> {
637 /// Returns the "principal `DefId`" of this set of existential predicates.
638 ///
639 /// A Rust trait object type consists (in addition to a lifetime bound)
640 /// of a set of trait bounds, which are separated into any number
641 /// of auto-trait bounds, and at most one non-auto-trait bound. The
642 /// non-auto-trait bound is called the "principal" of the trait
643 /// object.
644 ///
645 /// Only the principal can have methods or type parameters (because
646 /// auto traits can have neither of them). This is important, because
647 /// it means the auto traits can be treated as an unordered set (methods
648 /// would force an order for the vtable, while relating traits with
649 /// type parameters without knowing the order to relate them in is
650 /// a rather non-trivial task).
651 ///
652 /// For example, in the trait object `dyn fmt::Debug + Sync`, the
653 /// principal bound is `Some(fmt::Debug)`, while the auto-trait bounds
654 /// are the set `{Sync}`.
655 ///
656 /// It is also possible to have a "trivial" trait object that
657 /// consists only of auto traits, with no principal - for example,
658 /// `dyn Send + Sync`. In that case, the set of auto-trait bounds
659 /// is `{Send, Sync}`, while there is no principal. These trait objects
660 /// have a "trivial" vtable consisting of just the size, alignment,
661 /// and destructor.
662 pub fn principal(&self) -> Option<ExistentialTraitRef<'tcx>> {
663 match self[0] {
664 ExistentialPredicate::Trait(tr) => Some(tr),
665 _ => None,
666 }
667 }
668
669 pub fn principal_def_id(&self) -> Option<DefId> {
670 self.principal().map(|trait_ref| trait_ref.def_id)
671 }
672
673 #[inline]
674 pub fn projection_bounds<'a>(
675 &'a self,
676 ) -> impl Iterator<Item = ExistentialProjection<'tcx>> + 'a {
677 self.iter().filter_map(|predicate| match *predicate {
678 ExistentialPredicate::Projection(projection) => Some(projection),
679 _ => None,
680 })
681 }
682
683 #[inline]
684 pub fn auto_traits<'a>(&'a self) -> impl Iterator<Item = DefId> + 'a {
685 self.iter().filter_map(|predicate| match *predicate {
686 ExistentialPredicate::AutoTrait(did) => Some(did),
687 _ => None,
688 })
689 }
690 }
691
692 impl<'tcx> Binder<&'tcx List<ExistentialPredicate<'tcx>>> {
693 pub fn principal(&self) -> Option<ty::Binder<ExistentialTraitRef<'tcx>>> {
694 self.skip_binder().principal().map(Binder::bind)
695 }
696
697 pub fn principal_def_id(&self) -> Option<DefId> {
698 self.skip_binder().principal_def_id()
699 }
700
701 #[inline]
702 pub fn projection_bounds<'a>(
703 &'a self,
704 ) -> impl Iterator<Item = PolyExistentialProjection<'tcx>> + 'a {
705 self.skip_binder().projection_bounds().map(Binder::bind)
706 }
707
708 #[inline]
709 pub fn auto_traits<'a>(&'a self) -> impl Iterator<Item = DefId> + 'a {
710 self.skip_binder().auto_traits()
711 }
712
713 pub fn iter<'a>(
714 &'a self,
715 ) -> impl DoubleEndedIterator<Item = Binder<ExistentialPredicate<'tcx>>> + 'tcx {
716 self.skip_binder().iter().cloned().map(Binder::bind)
717 }
718 }
719
720 /// A complete reference to a trait. These take numerous guises in syntax,
721 /// but perhaps the most recognizable form is in a where-clause:
722 ///
723 /// T: Foo<U>
724 ///
725 /// This would be represented by a trait-reference where the `DefId` is the
726 /// `DefId` for the trait `Foo` and the substs define `T` as parameter 0,
727 /// and `U` as parameter 1.
728 ///
729 /// Trait references also appear in object types like `Foo<U>`, but in
730 /// that case the `Self` parameter is absent from the substitutions.
731 ///
732 /// Note that a `TraitRef` introduces a level of region binding, to
733 /// account for higher-ranked trait bounds like `T: for<'a> Foo<&'a U>`
734 /// or higher-ranked object types.
735 #[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
736 #[derive(HashStable, TypeFoldable)]
737 pub struct TraitRef<'tcx> {
738 pub def_id: DefId,
739 pub substs: SubstsRef<'tcx>,
740 }
741
742 impl<'tcx> TraitRef<'tcx> {
743 pub fn new(def_id: DefId, substs: SubstsRef<'tcx>) -> TraitRef<'tcx> {
744 TraitRef { def_id, substs }
745 }
746
747 /// Returns a `TraitRef` of the form `P0: Foo<P1..Pn>` where `Pi`
748 /// are the parameters defined on trait.
749 pub fn identity(tcx: TyCtxt<'tcx>, def_id: DefId) -> TraitRef<'tcx> {
750 TraitRef { def_id, substs: InternalSubsts::identity_for_item(tcx, def_id) }
751 }
752
753 #[inline]
754 pub fn self_ty(&self) -> Ty<'tcx> {
755 self.substs.type_at(0)
756 }
757
758 pub fn from_method(
759 tcx: TyCtxt<'tcx>,
760 trait_id: DefId,
761 substs: SubstsRef<'tcx>,
762 ) -> ty::TraitRef<'tcx> {
763 let defs = tcx.generics_of(trait_id);
764
765 ty::TraitRef { def_id: trait_id, substs: tcx.intern_substs(&substs[..defs.params.len()]) }
766 }
767 }
768
769 pub type PolyTraitRef<'tcx> = Binder<TraitRef<'tcx>>;
770
771 impl<'tcx> PolyTraitRef<'tcx> {
772 pub fn self_ty(&self) -> Ty<'tcx> {
773 self.skip_binder().self_ty()
774 }
775
776 pub fn def_id(&self) -> DefId {
777 self.skip_binder().def_id
778 }
779
780 pub fn to_poly_trait_predicate(&self) -> ty::PolyTraitPredicate<'tcx> {
781 // Note that we preserve binding levels
782 Binder(ty::TraitPredicate { trait_ref: *self.skip_binder() })
783 }
784 }
785
786 /// An existential reference to a trait, where `Self` is erased.
787 /// For example, the trait object `Trait<'a, 'b, X, Y>` is:
788 ///
789 /// exists T. T: Trait<'a, 'b, X, Y>
790 ///
791 /// The substitutions don't include the erased `Self`, only trait
792 /// type and lifetime parameters (`[X, Y]` and `['a, 'b]` above).
793 #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
794 #[derive(HashStable, TypeFoldable)]
795 pub struct ExistentialTraitRef<'tcx> {
796 pub def_id: DefId,
797 pub substs: SubstsRef<'tcx>,
798 }
799
800 impl<'tcx> ExistentialTraitRef<'tcx> {
801 pub fn erase_self_ty(
802 tcx: TyCtxt<'tcx>,
803 trait_ref: ty::TraitRef<'tcx>,
804 ) -> ty::ExistentialTraitRef<'tcx> {
805 // Assert there is a Self.
806 trait_ref.substs.type_at(0);
807
808 ty::ExistentialTraitRef {
809 def_id: trait_ref.def_id,
810 substs: tcx.intern_substs(&trait_ref.substs[1..]),
811 }
812 }
813
814 /// Object types don't have a self type specified. Therefore, when
815 /// we convert the principal trait-ref into a normal trait-ref,
816 /// you must give *some* self type. A common choice is `mk_err()`
817 /// or some placeholder type.
818 pub fn with_self_ty(&self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ty::TraitRef<'tcx> {
819 // otherwise the escaping vars would be captured by the binder
820 // debug_assert!(!self_ty.has_escaping_bound_vars());
821
822 ty::TraitRef { def_id: self.def_id, substs: tcx.mk_substs_trait(self_ty, self.substs) }
823 }
824 }
825
826 pub type PolyExistentialTraitRef<'tcx> = Binder<ExistentialTraitRef<'tcx>>;
827
828 impl<'tcx> PolyExistentialTraitRef<'tcx> {
829 pub fn def_id(&self) -> DefId {
830 self.skip_binder().def_id
831 }
832
833 /// Object types don't have a self type specified. Therefore, when
834 /// we convert the principal trait-ref into a normal trait-ref,
835 /// you must give *some* self type. A common choice is `mk_err()`
836 /// or some placeholder type.
837 pub fn with_self_ty(&self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ty::PolyTraitRef<'tcx> {
838 self.map_bound(|trait_ref| trait_ref.with_self_ty(tcx, self_ty))
839 }
840 }
841
842 /// Binder is a binder for higher-ranked lifetimes or types. It is part of the
843 /// compiler's representation for things like `for<'a> Fn(&'a isize)`
844 /// (which would be represented by the type `PolyTraitRef ==
845 /// Binder<TraitRef>`). Note that when we instantiate,
846 /// erase, or otherwise "discharge" these bound vars, we change the
847 /// type from `Binder<T>` to just `T` (see
848 /// e.g., `liberate_late_bound_regions`).
849 #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, RustcEncodable, RustcDecodable)]
850 pub struct Binder<T>(T);
851
852 impl<T> Binder<T> {
853 /// Wraps `value` in a binder, asserting that `value` does not
854 /// contain any bound vars that would be bound by the
855 /// binder. This is commonly used to 'inject' a value T into a
856 /// different binding level.
857 pub fn dummy<'tcx>(value: T) -> Binder<T>
858 where
859 T: TypeFoldable<'tcx>,
860 {
861 debug_assert!(!value.has_escaping_bound_vars());
862 Binder(value)
863 }
864
865 /// Wraps `value` in a binder, binding higher-ranked vars (if any).
866 pub fn bind(value: T) -> Binder<T> {
867 Binder(value)
868 }
869
870 /// Skips the binder and returns the "bound" value. This is a
871 /// risky thing to do because it's easy to get confused about
872 /// De Bruijn indices and the like. It is usually better to
873 /// discharge the binder using `no_bound_vars` or
874 /// `replace_late_bound_regions` or something like
875 /// that. `skip_binder` is only valid when you are either
876 /// extracting data that has nothing to do with bound vars, you
877 /// are doing some sort of test that does not involve bound
878 /// regions, or you are being very careful about your depth
879 /// accounting.
880 ///
881 /// Some examples where `skip_binder` is reasonable:
882 ///
883 /// - extracting the `DefId` from a PolyTraitRef;
884 /// - comparing the self type of a PolyTraitRef to see if it is equal to
885 /// a type parameter `X`, since the type `X` does not reference any regions
886 pub fn skip_binder(&self) -> &T {
887 &self.0
888 }
889
890 pub fn as_ref(&self) -> Binder<&T> {
891 Binder(&self.0)
892 }
893
894 pub fn map_bound_ref<F, U>(&self, f: F) -> Binder<U>
895 where
896 F: FnOnce(&T) -> U,
897 {
898 self.as_ref().map_bound(f)
899 }
900
901 pub fn map_bound<F, U>(self, f: F) -> Binder<U>
902 where
903 F: FnOnce(T) -> U,
904 {
905 Binder(f(self.0))
906 }
907
908 /// Unwraps and returns the value within, but only if it contains
909 /// no bound vars at all. (In other words, if this binder --
910 /// and indeed any enclosing binder -- doesn't bind anything at
911 /// all.) Otherwise, returns `None`.
912 ///
913 /// (One could imagine having a method that just unwraps a single
914 /// binder, but permits late-bound vars bound by enclosing
915 /// binders, but that would require adjusting the debruijn
916 /// indices, and given the shallow binding structure we often use,
917 /// would not be that useful.)
918 pub fn no_bound_vars<'tcx>(self) -> Option<T>
919 where
920 T: TypeFoldable<'tcx>,
921 {
922 if self.skip_binder().has_escaping_bound_vars() {
923 None
924 } else {
925 Some(self.skip_binder().clone())
926 }
927 }
928
929 /// Given two things that have the same binder level,
930 /// and an operation that wraps on their contents, executes the operation
931 /// and then wraps its result.
932 ///
933 /// `f` should consider bound regions at depth 1 to be free, and
934 /// anything it produces with bound regions at depth 1 will be
935 /// bound in the resulting return value.
936 pub fn fuse<U, F, R>(self, u: Binder<U>, f: F) -> Binder<R>
937 where
938 F: FnOnce(T, U) -> R,
939 {
940 Binder(f(self.0, u.0))
941 }
942
943 /// Splits the contents into two things that share the same binder
944 /// level as the original, returning two distinct binders.
945 ///
946 /// `f` should consider bound regions at depth 1 to be free, and
947 /// anything it produces with bound regions at depth 1 will be
948 /// bound in the resulting return values.
949 pub fn split<U, V, F>(self, f: F) -> (Binder<U>, Binder<V>)
950 where
951 F: FnOnce(T) -> (U, V),
952 {
953 let (u, v) = f(self.0);
954 (Binder(u), Binder(v))
955 }
956 }
957
958 /// Represents the projection of an associated type. In explicit UFCS
959 /// form this would be written `<T as Trait<..>>::N`.
960 #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, RustcEncodable, RustcDecodable)]
961 #[derive(HashStable, TypeFoldable)]
962 pub struct ProjectionTy<'tcx> {
963 /// The parameters of the associated item.
964 pub substs: SubstsRef<'tcx>,
965
966 /// The `DefId` of the `TraitItem` for the associated type `N`.
967 ///
968 /// Note that this is not the `DefId` of the `TraitRef` containing this
969 /// associated type, which is in `tcx.associated_item(item_def_id).container`.
970 pub item_def_id: DefId,
971 }
972
973 impl<'tcx> ProjectionTy<'tcx> {
974 /// Construct a `ProjectionTy` by searching the trait from `trait_ref` for the
975 /// associated item named `item_name`.
976 pub fn from_ref_and_name(
977 tcx: TyCtxt<'_>,
978 trait_ref: ty::TraitRef<'tcx>,
979 item_name: Ident,
980 ) -> ProjectionTy<'tcx> {
981 let item_def_id = tcx
982 .associated_items(trait_ref.def_id)
983 .find_by_name_and_kind(tcx, item_name, ty::AssocKind::Type, trait_ref.def_id)
984 .unwrap()
985 .def_id;
986
987 ProjectionTy { substs: trait_ref.substs, item_def_id }
988 }
989
990 /// Extracts the underlying trait reference from this projection.
991 /// For example, if this is a projection of `<T as Iterator>::Item`,
992 /// then this function would return a `T: Iterator` trait reference.
993 pub fn trait_ref(&self, tcx: TyCtxt<'tcx>) -> ty::TraitRef<'tcx> {
994 let def_id = tcx.associated_item(self.item_def_id).container.id();
995 ty::TraitRef { def_id, substs: self.substs.truncate_to(tcx, tcx.generics_of(def_id)) }
996 }
997
998 pub fn self_ty(&self) -> Ty<'tcx> {
999 self.substs.type_at(0)
1000 }
1001 }
1002
1003 #[derive(Clone, Debug, TypeFoldable)]
1004 pub struct GenSig<'tcx> {
1005 pub resume_ty: Ty<'tcx>,
1006 pub yield_ty: Ty<'tcx>,
1007 pub return_ty: Ty<'tcx>,
1008 }
1009
1010 pub type PolyGenSig<'tcx> = Binder<GenSig<'tcx>>;
1011
1012 impl<'tcx> PolyGenSig<'tcx> {
1013 pub fn resume_ty(&self) -> ty::Binder<Ty<'tcx>> {
1014 self.map_bound_ref(|sig| sig.resume_ty)
1015 }
1016 pub fn yield_ty(&self) -> ty::Binder<Ty<'tcx>> {
1017 self.map_bound_ref(|sig| sig.yield_ty)
1018 }
1019 pub fn return_ty(&self) -> ty::Binder<Ty<'tcx>> {
1020 self.map_bound_ref(|sig| sig.return_ty)
1021 }
1022 }
1023
1024 /// Signature of a function type, which we have arbitrarily
1025 /// decided to use to refer to the input/output types.
1026 ///
1027 /// - `inputs`: is the list of arguments and their modes.
1028 /// - `output`: is the return type.
1029 /// - `c_variadic`: indicates whether this is a C-variadic function.
1030 #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
1031 #[derive(HashStable, TypeFoldable)]
1032 pub struct FnSig<'tcx> {
1033 pub inputs_and_output: &'tcx List<Ty<'tcx>>,
1034 pub c_variadic: bool,
1035 pub unsafety: hir::Unsafety,
1036 pub abi: abi::Abi,
1037 }
1038
1039 impl<'tcx> FnSig<'tcx> {
1040 pub fn inputs(&self) -> &'tcx [Ty<'tcx>] {
1041 &self.inputs_and_output[..self.inputs_and_output.len() - 1]
1042 }
1043
1044 pub fn output(&self) -> Ty<'tcx> {
1045 self.inputs_and_output[self.inputs_and_output.len() - 1]
1046 }
1047
1048 // Creates a minimal `FnSig` to be used when encountering a `TyKind::Error` in a fallible
1049 // method.
1050 fn fake() -> FnSig<'tcx> {
1051 FnSig {
1052 inputs_and_output: List::empty(),
1053 c_variadic: false,
1054 unsafety: hir::Unsafety::Normal,
1055 abi: abi::Abi::Rust,
1056 }
1057 }
1058 }
1059
1060 pub type PolyFnSig<'tcx> = Binder<FnSig<'tcx>>;
1061
1062 impl<'tcx> PolyFnSig<'tcx> {
1063 #[inline]
1064 pub fn inputs(&self) -> Binder<&'tcx [Ty<'tcx>]> {
1065 self.map_bound_ref(|fn_sig| fn_sig.inputs())
1066 }
1067 #[inline]
1068 pub fn input(&self, index: usize) -> ty::Binder<Ty<'tcx>> {
1069 self.map_bound_ref(|fn_sig| fn_sig.inputs()[index])
1070 }
1071 pub fn inputs_and_output(&self) -> ty::Binder<&'tcx List<Ty<'tcx>>> {
1072 self.map_bound_ref(|fn_sig| fn_sig.inputs_and_output)
1073 }
1074 #[inline]
1075 pub fn output(&self) -> ty::Binder<Ty<'tcx>> {
1076 self.map_bound_ref(|fn_sig| fn_sig.output())
1077 }
1078 pub fn c_variadic(&self) -> bool {
1079 self.skip_binder().c_variadic
1080 }
1081 pub fn unsafety(&self) -> hir::Unsafety {
1082 self.skip_binder().unsafety
1083 }
1084 pub fn abi(&self) -> abi::Abi {
1085 self.skip_binder().abi
1086 }
1087 }
1088
1089 pub type CanonicalPolyFnSig<'tcx> = Canonical<'tcx, Binder<FnSig<'tcx>>>;
1090
1091 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
1092 #[derive(HashStable)]
1093 pub struct ParamTy {
1094 pub index: u32,
1095 pub name: Symbol,
1096 }
1097
1098 impl<'tcx> ParamTy {
1099 pub fn new(index: u32, name: Symbol) -> ParamTy {
1100 ParamTy { index, name }
1101 }
1102
1103 pub fn for_self() -> ParamTy {
1104 ParamTy::new(0, kw::SelfUpper)
1105 }
1106
1107 pub fn for_def(def: &ty::GenericParamDef) -> ParamTy {
1108 ParamTy::new(def.index, def.name)
1109 }
1110
1111 pub fn to_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
1112 tcx.mk_ty_param(self.index, self.name)
1113 }
1114 }
1115
1116 #[derive(Copy, Clone, Hash, RustcEncodable, RustcDecodable, Eq, PartialEq, Ord, PartialOrd)]
1117 #[derive(HashStable)]
1118 pub struct ParamConst {
1119 pub index: u32,
1120 pub name: Symbol,
1121 }
1122
1123 impl<'tcx> ParamConst {
1124 pub fn new(index: u32, name: Symbol) -> ParamConst {
1125 ParamConst { index, name }
1126 }
1127
1128 pub fn for_def(def: &ty::GenericParamDef) -> ParamConst {
1129 ParamConst::new(def.index, def.name)
1130 }
1131
1132 pub fn to_const(self, tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> &'tcx Const<'tcx> {
1133 tcx.mk_const_param(self.index, self.name, ty)
1134 }
1135 }
1136
1137 rustc_index::newtype_index! {
1138 /// A [De Bruijn index][dbi] is a standard means of representing
1139 /// regions (and perhaps later types) in a higher-ranked setting. In
1140 /// particular, imagine a type like this:
1141 ///
1142 /// for<'a> fn(for<'b> fn(&'b isize, &'a isize), &'a char)
1143 /// ^ ^ | | |
1144 /// | | | | |
1145 /// | +------------+ 0 | |
1146 /// | | |
1147 /// +--------------------------------+ 1 |
1148 /// | |
1149 /// +------------------------------------------+ 0
1150 ///
1151 /// In this type, there are two binders (the outer fn and the inner
1152 /// fn). We need to be able to determine, for any given region, which
1153 /// fn type it is bound by, the inner or the outer one. There are
1154 /// various ways you can do this, but a De Bruijn index is one of the
1155 /// more convenient and has some nice properties. The basic idea is to
1156 /// count the number of binders, inside out. Some examples should help
1157 /// clarify what I mean.
1158 ///
1159 /// Let's start with the reference type `&'b isize` that is the first
1160 /// argument to the inner function. This region `'b` is assigned a De
1161 /// Bruijn index of 0, meaning "the innermost binder" (in this case, a
1162 /// fn). The region `'a` that appears in the second argument type (`&'a
1163 /// isize`) would then be assigned a De Bruijn index of 1, meaning "the
1164 /// second-innermost binder". (These indices are written on the arrays
1165 /// in the diagram).
1166 ///
1167 /// What is interesting is that De Bruijn index attached to a particular
1168 /// variable will vary depending on where it appears. For example,
1169 /// the final type `&'a char` also refers to the region `'a` declared on
1170 /// the outermost fn. But this time, this reference is not nested within
1171 /// any other binders (i.e., it is not an argument to the inner fn, but
1172 /// rather the outer one). Therefore, in this case, it is assigned a
1173 /// De Bruijn index of 0, because the innermost binder in that location
1174 /// is the outer fn.
1175 ///
1176 /// [dbi]: http://en.wikipedia.org/wiki/De_Bruijn_index
1177 #[derive(HashStable)]
1178 pub struct DebruijnIndex {
1179 DEBUG_FORMAT = "DebruijnIndex({})",
1180 const INNERMOST = 0,
1181 }
1182 }
1183
1184 pub type Region<'tcx> = &'tcx RegionKind;
1185
1186 /// Representation of (lexical) regions. Note that the NLL checker
1187 /// uses a distinct representation of regions. For this reason, it
1188 /// internally replaces all the regions with inference variables --
1189 /// the index of the variable is then used to index into internal NLL
1190 /// data structures. See `rustc_mir::borrow_check` module for more
1191 /// information.
1192 ///
1193 /// ## The Region lattice within a given function
1194 ///
1195 /// In general, the (lexical, and hence deprecated) region lattice
1196 /// looks like
1197 ///
1198 /// ```
1199 /// static ----------+-----...------+ (greatest)
1200 /// | | |
1201 /// early-bound and | |
1202 /// free regions | |
1203 /// | | |
1204 /// scope regions | |
1205 /// | | |
1206 /// empty(root) placeholder(U1) |
1207 /// | / |
1208 /// | / placeholder(Un)
1209 /// empty(U1) -- /
1210 /// | /
1211 /// ... /
1212 /// | /
1213 /// empty(Un) -------- (smallest)
1214 /// ```
1215 ///
1216 /// Early-bound/free regions are the named lifetimes in scope from the
1217 /// function declaration. They have relationships to one another
1218 /// determined based on the declared relationships from the
1219 /// function. They all collectively outlive the scope regions. (See
1220 /// `RegionRelations` type, and particularly
1221 /// `crate::infer::outlives::free_region_map::FreeRegionMap`.)
1222 ///
1223 /// The scope regions are related to one another based on the AST
1224 /// structure. (See `RegionRelations` type, and particularly the
1225 /// `rustc_middle::middle::region::ScopeTree`.)
1226 ///
1227 /// Note that inference variables and bound regions are not included
1228 /// in this diagram. In the case of inference variables, they should
1229 /// be inferred to some other region from the diagram. In the case of
1230 /// bound regions, they are excluded because they don't make sense to
1231 /// include -- the diagram indicates the relationship between free
1232 /// regions.
1233 ///
1234 /// ## Inference variables
1235 ///
1236 /// During region inference, we sometimes create inference variables,
1237 /// represented as `ReVar`. These will be inferred by the code in
1238 /// `infer::lexical_region_resolve` to some free region from the
1239 /// lattice above (the minimal region that meets the
1240 /// constraints).
1241 ///
1242 /// During NLL checking, where regions are defined differently, we
1243 /// also use `ReVar` -- in that case, the index is used to index into
1244 /// the NLL region checker's data structures. The variable may in fact
1245 /// represent either a free region or an inference variable, in that
1246 /// case.
1247 ///
1248 /// ## Bound Regions
1249 ///
1250 /// These are regions that are stored behind a binder and must be substituted
1251 /// with some concrete region before being used. There are two kind of
1252 /// bound regions: early-bound, which are bound in an item's `Generics`,
1253 /// and are substituted by a `InternalSubsts`, and late-bound, which are part of
1254 /// higher-ranked types (e.g., `for<'a> fn(&'a ())`), and are substituted by
1255 /// the likes of `liberate_late_bound_regions`. The distinction exists
1256 /// because higher-ranked lifetimes aren't supported in all places. See [1][2].
1257 ///
1258 /// Unlike `Param`s, bound regions are not supposed to exist "in the wild"
1259 /// outside their binder, e.g., in types passed to type inference, and
1260 /// should first be substituted (by placeholder regions, free regions,
1261 /// or region variables).
1262 ///
1263 /// ## Placeholder and Free Regions
1264 ///
1265 /// One often wants to work with bound regions without knowing their precise
1266 /// identity. For example, when checking a function, the lifetime of a borrow
1267 /// can end up being assigned to some region parameter. In these cases,
1268 /// it must be ensured that bounds on the region can't be accidentally
1269 /// assumed without being checked.
1270 ///
1271 /// To do this, we replace the bound regions with placeholder markers,
1272 /// which don't satisfy any relation not explicitly provided.
1273 ///
1274 /// There are two kinds of placeholder regions in rustc: `ReFree` and
1275 /// `RePlaceholder`. When checking an item's body, `ReFree` is supposed
1276 /// to be used. These also support explicit bounds: both the internally-stored
1277 /// *scope*, which the region is assumed to outlive, as well as other
1278 /// relations stored in the `FreeRegionMap`. Note that these relations
1279 /// aren't checked when you `make_subregion` (or `eq_types`), only by
1280 /// `resolve_regions_and_report_errors`.
1281 ///
1282 /// When working with higher-ranked types, some region relations aren't
1283 /// yet known, so you can't just call `resolve_regions_and_report_errors`.
1284 /// `RePlaceholder` is designed for this purpose. In these contexts,
1285 /// there's also the risk that some inference variable laying around will
1286 /// get unified with your placeholder region: if you want to check whether
1287 /// `for<'a> Foo<'_>: 'a`, and you substitute your bound region `'a`
1288 /// with a placeholder region `'%a`, the variable `'_` would just be
1289 /// instantiated to the placeholder region `'%a`, which is wrong because
1290 /// the inference variable is supposed to satisfy the relation
1291 /// *for every value of the placeholder region*. To ensure that doesn't
1292 /// happen, you can use `leak_check`. This is more clearly explained
1293 /// by the [rustc dev guide].
1294 ///
1295 /// [1]: http://smallcultfollowing.com/babysteps/blog/2013/10/29/intermingled-parameter-lists/
1296 /// [2]: http://smallcultfollowing.com/babysteps/blog/2013/11/04/intermingled-parameter-lists/
1297 /// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/hrtb.html
1298 #[derive(Clone, PartialEq, Eq, Hash, Copy, RustcEncodable, RustcDecodable, PartialOrd, Ord)]
1299 pub enum RegionKind {
1300 /// Region bound in a type or fn declaration which will be
1301 /// substituted 'early' -- that is, at the same time when type
1302 /// parameters are substituted.
1303 ReEarlyBound(EarlyBoundRegion),
1304
1305 /// Region bound in a function scope, which will be substituted when the
1306 /// function is called.
1307 ReLateBound(DebruijnIndex, BoundRegion),
1308
1309 /// When checking a function body, the types of all arguments and so forth
1310 /// that refer to bound region parameters are modified to refer to free
1311 /// region parameters.
1312 ReFree(FreeRegion),
1313
1314 /// A concrete region naming some statically determined scope
1315 /// (e.g., an expression or sequence of statements) within the
1316 /// current function.
1317 ReScope(region::Scope),
1318
1319 /// Static data that has an "infinite" lifetime. Top in the region lattice.
1320 ReStatic,
1321
1322 /// A region variable. Should not exist after typeck.
1323 ReVar(RegionVid),
1324
1325 /// A placeholder region -- basically, the higher-ranked version of `ReFree`.
1326 /// Should not exist after typeck.
1327 RePlaceholder(ty::PlaceholderRegion),
1328
1329 /// Empty lifetime is for data that is never accessed. We tag the
1330 /// empty lifetime with a universe -- the idea is that we don't
1331 /// want `exists<'a> { forall<'b> { 'b: 'a } }` to be satisfiable.
1332 /// Therefore, the `'empty` in a universe `U` is less than all
1333 /// regions visible from `U`, but not less than regions not visible
1334 /// from `U`.
1335 ReEmpty(ty::UniverseIndex),
1336
1337 /// Erased region, used by trait selection, in MIR and during codegen.
1338 ReErased,
1339 }
1340
1341 impl<'tcx> rustc_serialize::UseSpecializedDecodable for Region<'tcx> {}
1342
1343 #[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, Debug, PartialOrd, Ord)]
1344 pub struct EarlyBoundRegion {
1345 pub def_id: DefId,
1346 pub index: u32,
1347 pub name: Symbol,
1348 }
1349
1350 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
1351 pub struct TyVid {
1352 pub index: u32,
1353 }
1354
1355 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
1356 pub struct ConstVid<'tcx> {
1357 pub index: u32,
1358 pub phantom: PhantomData<&'tcx ()>,
1359 }
1360
1361 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
1362 pub struct IntVid {
1363 pub index: u32,
1364 }
1365
1366 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
1367 pub struct FloatVid {
1368 pub index: u32,
1369 }
1370
1371 rustc_index::newtype_index! {
1372 pub struct RegionVid {
1373 DEBUG_FORMAT = custom,
1374 }
1375 }
1376
1377 impl Atom for RegionVid {
1378 fn index(self) -> usize {
1379 Idx::index(self)
1380 }
1381 }
1382
1383 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
1384 #[derive(HashStable)]
1385 pub enum InferTy {
1386 TyVar(TyVid),
1387 IntVar(IntVid),
1388 FloatVar(FloatVid),
1389
1390 /// A `FreshTy` is one that is generated as a replacement for an
1391 /// unbound type variable. This is convenient for caching etc. See
1392 /// `infer::freshen` for more details.
1393 FreshTy(u32),
1394 FreshIntTy(u32),
1395 FreshFloatTy(u32),
1396 }
1397
1398 rustc_index::newtype_index! {
1399 pub struct BoundVar { .. }
1400 }
1401
1402 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, RustcEncodable, RustcDecodable)]
1403 #[derive(HashStable)]
1404 pub struct BoundTy {
1405 pub var: BoundVar,
1406 pub kind: BoundTyKind,
1407 }
1408
1409 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, RustcEncodable, RustcDecodable)]
1410 #[derive(HashStable)]
1411 pub enum BoundTyKind {
1412 Anon,
1413 Param(Symbol),
1414 }
1415
1416 impl From<BoundVar> for BoundTy {
1417 fn from(var: BoundVar) -> Self {
1418 BoundTy { var, kind: BoundTyKind::Anon }
1419 }
1420 }
1421
1422 /// A `ProjectionPredicate` for an `ExistentialTraitRef`.
1423 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, RustcEncodable, RustcDecodable)]
1424 #[derive(HashStable, TypeFoldable)]
1425 pub struct ExistentialProjection<'tcx> {
1426 pub item_def_id: DefId,
1427 pub substs: SubstsRef<'tcx>,
1428 pub ty: Ty<'tcx>,
1429 }
1430
1431 pub type PolyExistentialProjection<'tcx> = Binder<ExistentialProjection<'tcx>>;
1432
1433 impl<'tcx> ExistentialProjection<'tcx> {
1434 /// Extracts the underlying existential trait reference from this projection.
1435 /// For example, if this is a projection of `exists T. <T as Iterator>::Item == X`,
1436 /// then this function would return a `exists T. T: Iterator` existential trait
1437 /// reference.
1438 pub fn trait_ref(&self, tcx: TyCtxt<'_>) -> ty::ExistentialTraitRef<'tcx> {
1439 let def_id = tcx.associated_item(self.item_def_id).container.id();
1440 ty::ExistentialTraitRef { def_id, substs: self.substs }
1441 }
1442
1443 pub fn with_self_ty(
1444 &self,
1445 tcx: TyCtxt<'tcx>,
1446 self_ty: Ty<'tcx>,
1447 ) -> ty::ProjectionPredicate<'tcx> {
1448 // otherwise the escaping regions would be captured by the binders
1449 debug_assert!(!self_ty.has_escaping_bound_vars());
1450
1451 ty::ProjectionPredicate {
1452 projection_ty: ty::ProjectionTy {
1453 item_def_id: self.item_def_id,
1454 substs: tcx.mk_substs_trait(self_ty, self.substs),
1455 },
1456 ty: self.ty,
1457 }
1458 }
1459 }
1460
1461 impl<'tcx> PolyExistentialProjection<'tcx> {
1462 pub fn with_self_ty(
1463 &self,
1464 tcx: TyCtxt<'tcx>,
1465 self_ty: Ty<'tcx>,
1466 ) -> ty::PolyProjectionPredicate<'tcx> {
1467 self.map_bound(|p| p.with_self_ty(tcx, self_ty))
1468 }
1469
1470 pub fn item_def_id(&self) -> DefId {
1471 self.skip_binder().item_def_id
1472 }
1473 }
1474
1475 impl DebruijnIndex {
1476 /// Returns the resulting index when this value is moved into
1477 /// `amount` number of new binders. So, e.g., if you had
1478 ///
1479 /// for<'a> fn(&'a x)
1480 ///
1481 /// and you wanted to change it to
1482 ///
1483 /// for<'a> fn(for<'b> fn(&'a x))
1484 ///
1485 /// you would need to shift the index for `'a` into a new binder.
1486 #[must_use]
1487 pub fn shifted_in(self, amount: u32) -> DebruijnIndex {
1488 DebruijnIndex::from_u32(self.as_u32() + amount)
1489 }
1490
1491 /// Update this index in place by shifting it "in" through
1492 /// `amount` number of binders.
1493 pub fn shift_in(&mut self, amount: u32) {
1494 *self = self.shifted_in(amount);
1495 }
1496
1497 /// Returns the resulting index when this value is moved out from
1498 /// `amount` number of new binders.
1499 #[must_use]
1500 pub fn shifted_out(self, amount: u32) -> DebruijnIndex {
1501 DebruijnIndex::from_u32(self.as_u32() - amount)
1502 }
1503
1504 /// Update in place by shifting out from `amount` binders.
1505 pub fn shift_out(&mut self, amount: u32) {
1506 *self = self.shifted_out(amount);
1507 }
1508
1509 /// Adjusts any De Bruijn indices so as to make `to_binder` the
1510 /// innermost binder. That is, if we have something bound at `to_binder`,
1511 /// it will now be bound at INNERMOST. This is an appropriate thing to do
1512 /// when moving a region out from inside binders:
1513 ///
1514 /// ```
1515 /// for<'a> fn(for<'b> for<'c> fn(&'a u32), _)
1516 /// // Binder: D3 D2 D1 ^^
1517 /// ```
1518 ///
1519 /// Here, the region `'a` would have the De Bruijn index D3,
1520 /// because it is the bound 3 binders out. However, if we wanted
1521 /// to refer to that region `'a` in the second argument (the `_`),
1522 /// those two binders would not be in scope. In that case, we
1523 /// might invoke `shift_out_to_binder(D3)`. This would adjust the
1524 /// De Bruijn index of `'a` to D1 (the innermost binder).
1525 ///
1526 /// If we invoke `shift_out_to_binder` and the region is in fact
1527 /// bound by one of the binders we are shifting out of, that is an
1528 /// error (and should fail an assertion failure).
1529 pub fn shifted_out_to_binder(self, to_binder: DebruijnIndex) -> Self {
1530 self.shifted_out(to_binder.as_u32() - INNERMOST.as_u32())
1531 }
1532 }
1533
1534 /// Region utilities
1535 impl RegionKind {
1536 /// Is this region named by the user?
1537 pub fn has_name(&self) -> bool {
1538 match *self {
1539 RegionKind::ReEarlyBound(ebr) => ebr.has_name(),
1540 RegionKind::ReLateBound(_, br) => br.is_named(),
1541 RegionKind::ReFree(fr) => fr.bound_region.is_named(),
1542 RegionKind::ReScope(..) => false,
1543 RegionKind::ReStatic => true,
1544 RegionKind::ReVar(..) => false,
1545 RegionKind::RePlaceholder(placeholder) => placeholder.name.is_named(),
1546 RegionKind::ReEmpty(_) => false,
1547 RegionKind::ReErased => false,
1548 }
1549 }
1550
1551 pub fn is_late_bound(&self) -> bool {
1552 match *self {
1553 ty::ReLateBound(..) => true,
1554 _ => false,
1555 }
1556 }
1557
1558 pub fn is_placeholder(&self) -> bool {
1559 match *self {
1560 ty::RePlaceholder(..) => true,
1561 _ => false,
1562 }
1563 }
1564
1565 pub fn bound_at_or_above_binder(&self, index: DebruijnIndex) -> bool {
1566 match *self {
1567 ty::ReLateBound(debruijn, _) => debruijn >= index,
1568 _ => false,
1569 }
1570 }
1571
1572 /// Adjusts any De Bruijn indices so as to make `to_binder` the
1573 /// innermost binder. That is, if we have something bound at `to_binder`,
1574 /// it will now be bound at INNERMOST. This is an appropriate thing to do
1575 /// when moving a region out from inside binders:
1576 ///
1577 /// ```
1578 /// for<'a> fn(for<'b> for<'c> fn(&'a u32), _)
1579 /// // Binder: D3 D2 D1 ^^
1580 /// ```
1581 ///
1582 /// Here, the region `'a` would have the De Bruijn index D3,
1583 /// because it is the bound 3 binders out. However, if we wanted
1584 /// to refer to that region `'a` in the second argument (the `_`),
1585 /// those two binders would not be in scope. In that case, we
1586 /// might invoke `shift_out_to_binder(D3)`. This would adjust the
1587 /// De Bruijn index of `'a` to D1 (the innermost binder).
1588 ///
1589 /// If we invoke `shift_out_to_binder` and the region is in fact
1590 /// bound by one of the binders we are shifting out of, that is an
1591 /// error (and should fail an assertion failure).
1592 pub fn shifted_out_to_binder(&self, to_binder: ty::DebruijnIndex) -> RegionKind {
1593 match *self {
1594 ty::ReLateBound(debruijn, r) => {
1595 ty::ReLateBound(debruijn.shifted_out_to_binder(to_binder), r)
1596 }
1597 r => r,
1598 }
1599 }
1600
1601 pub fn type_flags(&self) -> TypeFlags {
1602 let mut flags = TypeFlags::empty();
1603
1604 match *self {
1605 ty::ReVar(..) => {
1606 flags = flags | TypeFlags::HAS_FREE_REGIONS;
1607 flags = flags | TypeFlags::HAS_FREE_LOCAL_REGIONS;
1608 flags = flags | TypeFlags::HAS_RE_INFER;
1609 flags = flags | TypeFlags::STILL_FURTHER_SPECIALIZABLE;
1610 }
1611 ty::RePlaceholder(..) => {
1612 flags = flags | TypeFlags::HAS_FREE_REGIONS;
1613 flags = flags | TypeFlags::HAS_FREE_LOCAL_REGIONS;
1614 flags = flags | TypeFlags::HAS_RE_PLACEHOLDER;
1615 flags = flags | TypeFlags::STILL_FURTHER_SPECIALIZABLE;
1616 }
1617 ty::ReEarlyBound(..) => {
1618 flags = flags | TypeFlags::HAS_FREE_REGIONS;
1619 flags = flags | TypeFlags::HAS_FREE_LOCAL_REGIONS;
1620 flags = flags | TypeFlags::HAS_RE_PARAM;
1621 flags = flags | TypeFlags::STILL_FURTHER_SPECIALIZABLE;
1622 }
1623 ty::ReFree { .. } | ty::ReScope { .. } => {
1624 flags = flags | TypeFlags::HAS_FREE_REGIONS;
1625 flags = flags | TypeFlags::HAS_FREE_LOCAL_REGIONS;
1626 }
1627 ty::ReEmpty(_) | ty::ReStatic => {
1628 flags = flags | TypeFlags::HAS_FREE_REGIONS;
1629 }
1630 ty::ReLateBound(..) => {
1631 flags = flags | TypeFlags::HAS_RE_LATE_BOUND;
1632 }
1633 ty::ReErased => {
1634 flags = flags | TypeFlags::HAS_RE_ERASED;
1635 }
1636 }
1637
1638 debug!("type_flags({:?}) = {:?}", self, flags);
1639
1640 flags
1641 }
1642
1643 /// Given an early-bound or free region, returns the `DefId` where it was bound.
1644 /// For example, consider the regions in this snippet of code:
1645 ///
1646 /// ```
1647 /// impl<'a> Foo {
1648 /// ^^ -- early bound, declared on an impl
1649 ///
1650 /// fn bar<'b, 'c>(x: &self, y: &'b u32, z: &'c u64) where 'static: 'c
1651 /// ^^ ^^ ^ anonymous, late-bound
1652 /// | early-bound, appears in where-clauses
1653 /// late-bound, appears only in fn args
1654 /// {..}
1655 /// }
1656 /// ```
1657 ///
1658 /// Here, `free_region_binding_scope('a)` would return the `DefId`
1659 /// of the impl, and for all the other highlighted regions, it
1660 /// would return the `DefId` of the function. In other cases (not shown), this
1661 /// function might return the `DefId` of a closure.
1662 pub fn free_region_binding_scope(&self, tcx: TyCtxt<'_>) -> DefId {
1663 match self {
1664 ty::ReEarlyBound(br) => tcx.parent(br.def_id).unwrap(),
1665 ty::ReFree(fr) => fr.scope,
1666 _ => bug!("free_region_binding_scope invoked on inappropriate region: {:?}", self),
1667 }
1668 }
1669 }
1670
1671 /// Type utilities
1672 impl<'tcx> TyS<'tcx> {
1673 #[inline]
1674 pub fn is_unit(&self) -> bool {
1675 match self.kind {
1676 Tuple(ref tys) => tys.is_empty(),
1677 _ => false,
1678 }
1679 }
1680
1681 #[inline]
1682 pub fn is_never(&self) -> bool {
1683 match self.kind {
1684 Never => true,
1685 _ => false,
1686 }
1687 }
1688
1689 /// Checks whether a type is definitely uninhabited. This is
1690 /// conservative: for some types that are uninhabited we return `false`,
1691 /// but we only return `true` for types that are definitely uninhabited.
1692 /// `ty.conservative_is_privately_uninhabited` implies that any value of type `ty`
1693 /// will be `Abi::Uninhabited`. (Note that uninhabited types may have nonzero
1694 /// size, to account for partial initialisation. See #49298 for details.)
1695 pub fn conservative_is_privately_uninhabited(&self, tcx: TyCtxt<'tcx>) -> bool {
1696 // FIXME(varkor): we can make this less conversative by substituting concrete
1697 // type arguments.
1698 match self.kind {
1699 ty::Never => true,
1700 ty::Adt(def, _) if def.is_union() => {
1701 // For now, `union`s are never considered uninhabited.
1702 false
1703 }
1704 ty::Adt(def, _) => {
1705 // Any ADT is uninhabited if either:
1706 // (a) It has no variants (i.e. an empty `enum`);
1707 // (b) Each of its variants (a single one in the case of a `struct`) has at least
1708 // one uninhabited field.
1709 def.variants.iter().all(|var| {
1710 var.fields.iter().any(|field| {
1711 tcx.type_of(field.did).conservative_is_privately_uninhabited(tcx)
1712 })
1713 })
1714 }
1715 ty::Tuple(..) => {
1716 self.tuple_fields().any(|ty| ty.conservative_is_privately_uninhabited(tcx))
1717 }
1718 ty::Array(ty, len) => {
1719 match len.try_eval_usize(tcx, ParamEnv::empty()) {
1720 // If the array is definitely non-empty, it's uninhabited if
1721 // the type of its elements is uninhabited.
1722 Some(n) if n != 0 => ty.conservative_is_privately_uninhabited(tcx),
1723 _ => false,
1724 }
1725 }
1726 ty::Ref(..) => {
1727 // References to uninitialised memory is valid for any type, including
1728 // uninhabited types, in unsafe code, so we treat all references as
1729 // inhabited.
1730 false
1731 }
1732 _ => false,
1733 }
1734 }
1735
1736 #[inline]
1737 pub fn is_primitive(&self) -> bool {
1738 match self.kind {
1739 Bool | Char | Int(_) | Uint(_) | Float(_) => true,
1740 _ => false,
1741 }
1742 }
1743
1744 #[inline]
1745 pub fn is_ty_var(&self) -> bool {
1746 match self.kind {
1747 Infer(TyVar(_)) => true,
1748 _ => false,
1749 }
1750 }
1751
1752 #[inline]
1753 pub fn is_ty_infer(&self) -> bool {
1754 match self.kind {
1755 Infer(_) => true,
1756 _ => false,
1757 }
1758 }
1759
1760 #[inline]
1761 pub fn is_phantom_data(&self) -> bool {
1762 if let Adt(def, _) = self.kind { def.is_phantom_data() } else { false }
1763 }
1764
1765 #[inline]
1766 pub fn is_bool(&self) -> bool {
1767 self.kind == Bool
1768 }
1769
1770 /// Returns `true` if this type is a `str`.
1771 #[inline]
1772 pub fn is_str(&self) -> bool {
1773 self.kind == Str
1774 }
1775
1776 #[inline]
1777 pub fn is_param(&self, index: u32) -> bool {
1778 match self.kind {
1779 ty::Param(ref data) => data.index == index,
1780 _ => false,
1781 }
1782 }
1783
1784 #[inline]
1785 pub fn is_slice(&self) -> bool {
1786 match self.kind {
1787 RawPtr(TypeAndMut { ty, .. }) | Ref(_, ty, _) => match ty.kind {
1788 Slice(_) | Str => true,
1789 _ => false,
1790 },
1791 _ => false,
1792 }
1793 }
1794
1795 #[inline]
1796 pub fn is_simd(&self) -> bool {
1797 match self.kind {
1798 Adt(def, _) => def.repr.simd(),
1799 _ => false,
1800 }
1801 }
1802
1803 pub fn sequence_element_type(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
1804 match self.kind {
1805 Array(ty, _) | Slice(ty) => ty,
1806 Str => tcx.mk_mach_uint(ast::UintTy::U8),
1807 _ => bug!("`sequence_element_type` called on non-sequence value: {}", self),
1808 }
1809 }
1810
1811 pub fn simd_type(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
1812 match self.kind {
1813 Adt(def, substs) => def.non_enum_variant().fields[0].ty(tcx, substs),
1814 _ => bug!("`simd_type` called on invalid type"),
1815 }
1816 }
1817
1818 pub fn simd_size(&self, _tcx: TyCtxt<'tcx>) -> u64 {
1819 // Parameter currently unused, but probably needed in the future to
1820 // allow `#[repr(simd)] struct Simd<T, const N: usize>([T; N]);`.
1821 match self.kind {
1822 Adt(def, _) => def.non_enum_variant().fields.len() as u64,
1823 _ => bug!("`simd_size` called on invalid type"),
1824 }
1825 }
1826
1827 pub fn simd_size_and_type(&self, tcx: TyCtxt<'tcx>) -> (u64, Ty<'tcx>) {
1828 match self.kind {
1829 Adt(def, substs) => {
1830 let variant = def.non_enum_variant();
1831 (variant.fields.len() as u64, variant.fields[0].ty(tcx, substs))
1832 }
1833 _ => bug!("`simd_size_and_type` called on invalid type"),
1834 }
1835 }
1836
1837 #[inline]
1838 pub fn is_region_ptr(&self) -> bool {
1839 match self.kind {
1840 Ref(..) => true,
1841 _ => false,
1842 }
1843 }
1844
1845 #[inline]
1846 pub fn is_mutable_ptr(&self) -> bool {
1847 match self.kind {
1848 RawPtr(TypeAndMut { mutbl: hir::Mutability::Mut, .. })
1849 | Ref(_, _, hir::Mutability::Mut) => true,
1850 _ => false,
1851 }
1852 }
1853
1854 #[inline]
1855 pub fn is_unsafe_ptr(&self) -> bool {
1856 match self.kind {
1857 RawPtr(_) => true,
1858 _ => false,
1859 }
1860 }
1861
1862 /// Tests if this is any kind of primitive pointer type (reference, raw pointer, fn pointer).
1863 #[inline]
1864 pub fn is_any_ptr(&self) -> bool {
1865 self.is_region_ptr() || self.is_unsafe_ptr() || self.is_fn_ptr()
1866 }
1867
1868 #[inline]
1869 pub fn is_box(&self) -> bool {
1870 match self.kind {
1871 Adt(def, _) => def.is_box(),
1872 _ => false,
1873 }
1874 }
1875
1876 /// Panics if called on any type other than `Box<T>`.
1877 pub fn boxed_ty(&self) -> Ty<'tcx> {
1878 match self.kind {
1879 Adt(def, substs) if def.is_box() => substs.type_at(0),
1880 _ => bug!("`boxed_ty` is called on non-box type {:?}", self),
1881 }
1882 }
1883
1884 /// A scalar type is one that denotes an atomic datum, with no sub-components.
1885 /// (A RawPtr is scalar because it represents a non-managed pointer, so its
1886 /// contents are abstract to rustc.)
1887 #[inline]
1888 pub fn is_scalar(&self) -> bool {
1889 match self.kind {
1890 Bool
1891 | Char
1892 | Int(_)
1893 | Float(_)
1894 | Uint(_)
1895 | Infer(IntVar(_) | FloatVar(_))
1896 | FnDef(..)
1897 | FnPtr(_)
1898 | RawPtr(_) => true,
1899 _ => false,
1900 }
1901 }
1902
1903 /// Returns `true` if this type is a floating point type.
1904 #[inline]
1905 pub fn is_floating_point(&self) -> bool {
1906 match self.kind {
1907 Float(_) | Infer(FloatVar(_)) => true,
1908 _ => false,
1909 }
1910 }
1911
1912 #[inline]
1913 pub fn is_trait(&self) -> bool {
1914 match self.kind {
1915 Dynamic(..) => true,
1916 _ => false,
1917 }
1918 }
1919
1920 #[inline]
1921 pub fn is_enum(&self) -> bool {
1922 match self.kind {
1923 Adt(adt_def, _) => adt_def.is_enum(),
1924 _ => false,
1925 }
1926 }
1927
1928 #[inline]
1929 pub fn is_closure(&self) -> bool {
1930 match self.kind {
1931 Closure(..) => true,
1932 _ => false,
1933 }
1934 }
1935
1936 #[inline]
1937 pub fn is_generator(&self) -> bool {
1938 match self.kind {
1939 Generator(..) => true,
1940 _ => false,
1941 }
1942 }
1943
1944 #[inline]
1945 pub fn is_integral(&self) -> bool {
1946 match self.kind {
1947 Infer(IntVar(_)) | Int(_) | Uint(_) => true,
1948 _ => false,
1949 }
1950 }
1951
1952 #[inline]
1953 pub fn is_fresh_ty(&self) -> bool {
1954 match self.kind {
1955 Infer(FreshTy(_)) => true,
1956 _ => false,
1957 }
1958 }
1959
1960 #[inline]
1961 pub fn is_fresh(&self) -> bool {
1962 match self.kind {
1963 Infer(FreshTy(_)) => true,
1964 Infer(FreshIntTy(_)) => true,
1965 Infer(FreshFloatTy(_)) => true,
1966 _ => false,
1967 }
1968 }
1969
1970 #[inline]
1971 pub fn is_char(&self) -> bool {
1972 match self.kind {
1973 Char => true,
1974 _ => false,
1975 }
1976 }
1977
1978 #[inline]
1979 pub fn is_numeric(&self) -> bool {
1980 self.is_integral() || self.is_floating_point()
1981 }
1982
1983 #[inline]
1984 pub fn is_signed(&self) -> bool {
1985 match self.kind {
1986 Int(_) => true,
1987 _ => false,
1988 }
1989 }
1990
1991 #[inline]
1992 pub fn is_ptr_sized_integral(&self) -> bool {
1993 match self.kind {
1994 Int(ast::IntTy::Isize) | Uint(ast::UintTy::Usize) => true,
1995 _ => false,
1996 }
1997 }
1998
1999 #[inline]
2000 pub fn is_machine(&self) -> bool {
2001 match self.kind {
2002 Int(..) | Uint(..) | Float(..) => true,
2003 _ => false,
2004 }
2005 }
2006
2007 #[inline]
2008 pub fn has_concrete_skeleton(&self) -> bool {
2009 match self.kind {
2010 Param(_) | Infer(_) | Error => false,
2011 _ => true,
2012 }
2013 }
2014
2015 /// Returns the type and mutability of `*ty`.
2016 ///
2017 /// The parameter `explicit` indicates if this is an *explicit* dereference.
2018 /// Some types -- notably unsafe ptrs -- can only be dereferenced explicitly.
2019 pub fn builtin_deref(&self, explicit: bool) -> Option<TypeAndMut<'tcx>> {
2020 match self.kind {
2021 Adt(def, _) if def.is_box() => {
2022 Some(TypeAndMut { ty: self.boxed_ty(), mutbl: hir::Mutability::Not })
2023 }
2024 Ref(_, ty, mutbl) => Some(TypeAndMut { ty, mutbl }),
2025 RawPtr(mt) if explicit => Some(mt),
2026 _ => None,
2027 }
2028 }
2029
2030 /// Returns the type of `ty[i]`.
2031 pub fn builtin_index(&self) -> Option<Ty<'tcx>> {
2032 match self.kind {
2033 Array(ty, _) | Slice(ty) => Some(ty),
2034 _ => None,
2035 }
2036 }
2037
2038 pub fn fn_sig(&self, tcx: TyCtxt<'tcx>) -> PolyFnSig<'tcx> {
2039 match self.kind {
2040 FnDef(def_id, substs) => tcx.fn_sig(def_id).subst(tcx, substs),
2041 FnPtr(f) => f,
2042 Error => {
2043 // ignore errors (#54954)
2044 ty::Binder::dummy(FnSig::fake())
2045 }
2046 Closure(..) => bug!(
2047 "to get the signature of a closure, use `substs.as_closure().sig()` not `fn_sig()`",
2048 ),
2049 _ => bug!("Ty::fn_sig() called on non-fn type: {:?}", self),
2050 }
2051 }
2052
2053 #[inline]
2054 pub fn is_fn(&self) -> bool {
2055 match self.kind {
2056 FnDef(..) | FnPtr(_) => true,
2057 _ => false,
2058 }
2059 }
2060
2061 #[inline]
2062 pub fn is_fn_ptr(&self) -> bool {
2063 match self.kind {
2064 FnPtr(_) => true,
2065 _ => false,
2066 }
2067 }
2068
2069 #[inline]
2070 pub fn is_impl_trait(&self) -> bool {
2071 match self.kind {
2072 Opaque(..) => true,
2073 _ => false,
2074 }
2075 }
2076
2077 #[inline]
2078 pub fn ty_adt_def(&self) -> Option<&'tcx AdtDef> {
2079 match self.kind {
2080 Adt(adt, _) => Some(adt),
2081 _ => None,
2082 }
2083 }
2084
2085 /// Iterates over tuple fields.
2086 /// Panics when called on anything but a tuple.
2087 pub fn tuple_fields(&self) -> impl DoubleEndedIterator<Item = Ty<'tcx>> {
2088 match self.kind {
2089 Tuple(substs) => substs.iter().map(|field| field.expect_ty()),
2090 _ => bug!("tuple_fields called on non-tuple"),
2091 }
2092 }
2093
2094 /// If the type contains variants, returns the valid range of variant indices.
2095 //
2096 // FIXME: This requires the optimized MIR in the case of generators.
2097 #[inline]
2098 pub fn variant_range(&self, tcx: TyCtxt<'tcx>) -> Option<Range<VariantIdx>> {
2099 match self.kind {
2100 TyKind::Adt(adt, _) => Some(adt.variant_range()),
2101 TyKind::Generator(def_id, substs, _) => {
2102 Some(substs.as_generator().variant_range(def_id, tcx))
2103 }
2104 _ => None,
2105 }
2106 }
2107
2108 /// If the type contains variants, returns the variant for `variant_index`.
2109 /// Panics if `variant_index` is out of range.
2110 //
2111 // FIXME: This requires the optimized MIR in the case of generators.
2112 #[inline]
2113 pub fn discriminant_for_variant(
2114 &self,
2115 tcx: TyCtxt<'tcx>,
2116 variant_index: VariantIdx,
2117 ) -> Option<Discr<'tcx>> {
2118 match self.kind {
2119 TyKind::Adt(adt, _) => Some(adt.discriminant_for_variant(tcx, variant_index)),
2120 TyKind::Generator(def_id, substs, _) => {
2121 Some(substs.as_generator().discriminant_for_variant(def_id, tcx, variant_index))
2122 }
2123 _ => None,
2124 }
2125 }
2126
2127 /// When we create a closure, we record its kind (i.e., what trait
2128 /// it implements) into its `ClosureSubsts` using a type
2129 /// parameter. This is kind of a phantom type, except that the
2130 /// most convenient thing for us to are the integral types. This
2131 /// function converts such a special type into the closure
2132 /// kind. To go the other way, use
2133 /// `tcx.closure_kind_ty(closure_kind)`.
2134 ///
2135 /// Note that during type checking, we use an inference variable
2136 /// to represent the closure kind, because it has not yet been
2137 /// inferred. Once upvar inference (in `src/librustc_typeck/check/upvar.rs`)
2138 /// is complete, that type variable will be unified.
2139 pub fn to_opt_closure_kind(&self) -> Option<ty::ClosureKind> {
2140 match self.kind {
2141 Int(int_ty) => match int_ty {
2142 ast::IntTy::I8 => Some(ty::ClosureKind::Fn),
2143 ast::IntTy::I16 => Some(ty::ClosureKind::FnMut),
2144 ast::IntTy::I32 => Some(ty::ClosureKind::FnOnce),
2145 _ => bug!("cannot convert type `{:?}` to a closure kind", self),
2146 },
2147
2148 // "Bound" types appear in canonical queries when the
2149 // closure type is not yet known
2150 Bound(..) | Infer(_) => None,
2151
2152 Error => Some(ty::ClosureKind::Fn),
2153
2154 _ => bug!("cannot convert type `{:?}` to a closure kind", self),
2155 }
2156 }
2157
2158 /// Fast path helper for testing if a type is `Sized`.
2159 ///
2160 /// Returning true means the type is known to be sized. Returning
2161 /// `false` means nothing -- could be sized, might not be.
2162 pub fn is_trivially_sized(&self, tcx: TyCtxt<'tcx>) -> bool {
2163 match self.kind {
2164 ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
2165 | ty::Uint(_)
2166 | ty::Int(_)
2167 | ty::Bool
2168 | ty::Float(_)
2169 | ty::FnDef(..)
2170 | ty::FnPtr(_)
2171 | ty::RawPtr(..)
2172 | ty::Char
2173 | ty::Ref(..)
2174 | ty::Generator(..)
2175 | ty::GeneratorWitness(..)
2176 | ty::Array(..)
2177 | ty::Closure(..)
2178 | ty::Never
2179 | ty::Error => true,
2180
2181 ty::Str | ty::Slice(_) | ty::Dynamic(..) | ty::Foreign(..) => false,
2182
2183 ty::Tuple(tys) => tys.iter().all(|ty| ty.expect_ty().is_trivially_sized(tcx)),
2184
2185 ty::Adt(def, _substs) => def.sized_constraint(tcx).is_empty(),
2186
2187 ty::Projection(_) | ty::Param(_) | ty::Opaque(..) => false,
2188
2189 ty::UnnormalizedProjection(..) => bug!("only used with chalk-engine"),
2190
2191 ty::Infer(ty::TyVar(_)) => false,
2192
2193 ty::Bound(..)
2194 | ty::Placeholder(..)
2195 | ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
2196 bug!("`is_trivially_sized` applied to unexpected type: {:?}", self)
2197 }
2198 }
2199 }
2200 }
2201
2202 /// Typed constant value.
2203 #[derive(Copy, Clone, Debug, Hash, RustcEncodable, RustcDecodable, Eq, PartialEq, Ord, PartialOrd)]
2204 #[derive(HashStable)]
2205 pub struct Const<'tcx> {
2206 pub ty: Ty<'tcx>,
2207
2208 pub val: ConstKind<'tcx>,
2209 }
2210
2211 #[cfg(target_arch = "x86_64")]
2212 static_assert_size!(Const<'_>, 48);
2213
2214 impl<'tcx> Const<'tcx> {
2215 /// Literals and const generic parameters are eagerly converted to a constant, everything else
2216 /// becomes `Unevaluated`.
2217 pub fn from_anon_const(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> &'tcx Self {
2218 debug!("Const::from_anon_const(id={:?})", def_id);
2219
2220 let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
2221
2222 let body_id = match tcx.hir().get(hir_id) {
2223 hir::Node::AnonConst(ac) => ac.body,
2224 _ => span_bug!(
2225 tcx.def_span(def_id.to_def_id()),
2226 "from_anon_const can only process anonymous constants"
2227 ),
2228 };
2229
2230 let expr = &tcx.hir().body(body_id).value;
2231
2232 let ty = tcx.type_of(def_id.to_def_id());
2233
2234 let lit_input = match expr.kind {
2235 hir::ExprKind::Lit(ref lit) => Some(LitToConstInput { lit: &lit.node, ty, neg: false }),
2236 hir::ExprKind::Unary(hir::UnOp::UnNeg, ref expr) => match expr.kind {
2237 hir::ExprKind::Lit(ref lit) => {
2238 Some(LitToConstInput { lit: &lit.node, ty, neg: true })
2239 }
2240 _ => None,
2241 },
2242 _ => None,
2243 };
2244
2245 if let Some(lit_input) = lit_input {
2246 // If an error occurred, ignore that it's a literal and leave reporting the error up to
2247 // mir.
2248 if let Ok(c) = tcx.at(expr.span).lit_to_const(lit_input) {
2249 return c;
2250 } else {
2251 tcx.sess.delay_span_bug(expr.span, "Const::from_anon_const: couldn't lit_to_const");
2252 }
2253 }
2254
2255 // Unwrap a block, so that e.g. `{ P }` is recognised as a parameter. Const arguments
2256 // currently have to be wrapped in curly brackets, so it's necessary to special-case.
2257 let expr = match &expr.kind {
2258 hir::ExprKind::Block(block, _) if block.stmts.is_empty() && block.expr.is_some() => {
2259 block.expr.as_ref().unwrap()
2260 }
2261 _ => expr,
2262 };
2263
2264 use hir::{def::DefKind::ConstParam, def::Res, ExprKind, Path, QPath};
2265 let val = match expr.kind {
2266 ExprKind::Path(QPath::Resolved(_, &Path { res: Res::Def(ConstParam, def_id), .. })) => {
2267 // Find the name and index of the const parameter by indexing the generics of
2268 // the parent item and construct a `ParamConst`.
2269 let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
2270 let item_id = tcx.hir().get_parent_node(hir_id);
2271 let item_def_id = tcx.hir().local_def_id(item_id);
2272 let generics = tcx.generics_of(item_def_id);
2273 let index = generics.param_def_id_to_index[&tcx.hir().local_def_id(hir_id)];
2274 let name = tcx.hir().name(hir_id);
2275 ty::ConstKind::Param(ty::ParamConst::new(index, name))
2276 }
2277 _ => ty::ConstKind::Unevaluated(
2278 def_id.to_def_id(),
2279 InternalSubsts::identity_for_item(tcx, def_id.to_def_id()),
2280 None,
2281 ),
2282 };
2283
2284 tcx.mk_const(ty::Const { val, ty })
2285 }
2286
2287 #[inline]
2288 /// Interns the given value as a constant.
2289 pub fn from_value(tcx: TyCtxt<'tcx>, val: ConstValue<'tcx>, ty: Ty<'tcx>) -> &'tcx Self {
2290 tcx.mk_const(Self { val: ConstKind::Value(val), ty })
2291 }
2292
2293 #[inline]
2294 /// Interns the given scalar as a constant.
2295 pub fn from_scalar(tcx: TyCtxt<'tcx>, val: Scalar, ty: Ty<'tcx>) -> &'tcx Self {
2296 Self::from_value(tcx, ConstValue::Scalar(val), ty)
2297 }
2298
2299 #[inline]
2300 /// Creates a constant with the given integer value and interns it.
2301 pub fn from_bits(tcx: TyCtxt<'tcx>, bits: u128, ty: ParamEnvAnd<'tcx, Ty<'tcx>>) -> &'tcx Self {
2302 let size = tcx
2303 .layout_of(ty)
2304 .unwrap_or_else(|e| panic!("could not compute layout for {:?}: {:?}", ty, e))
2305 .size;
2306 Self::from_scalar(tcx, Scalar::from_uint(bits, size), ty.value)
2307 }
2308
2309 #[inline]
2310 /// Creates an interned zst constant.
2311 pub fn zero_sized(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> &'tcx Self {
2312 Self::from_scalar(tcx, Scalar::zst(), ty)
2313 }
2314
2315 #[inline]
2316 /// Creates an interned bool constant.
2317 pub fn from_bool(tcx: TyCtxt<'tcx>, v: bool) -> &'tcx Self {
2318 Self::from_bits(tcx, v as u128, ParamEnv::empty().and(tcx.types.bool))
2319 }
2320
2321 #[inline]
2322 /// Creates an interned usize constant.
2323 pub fn from_usize(tcx: TyCtxt<'tcx>, n: u64) -> &'tcx Self {
2324 Self::from_bits(tcx, n as u128, ParamEnv::empty().and(tcx.types.usize))
2325 }
2326
2327 #[inline]
2328 /// Attempts to evaluate the given constant to bits. Can fail to evaluate in the presence of
2329 /// generics (or erroneous code) or if the value can't be represented as bits (e.g. because it
2330 /// contains const generic parameters or pointers).
2331 pub fn try_eval_bits(
2332 &self,
2333 tcx: TyCtxt<'tcx>,
2334 param_env: ParamEnv<'tcx>,
2335 ty: Ty<'tcx>,
2336 ) -> Option<u128> {
2337 assert_eq!(self.ty, ty);
2338 let size = tcx.layout_of(param_env.with_reveal_all().and(ty)).ok()?.size;
2339 // if `ty` does not depend on generic parameters, use an empty param_env
2340 self.eval(tcx, param_env).val.try_to_bits(size)
2341 }
2342
2343 #[inline]
2344 /// Tries to evaluate the constant if it is `Unevaluated`. If that doesn't succeed, return the
2345 /// unevaluated constant.
2346 pub fn eval(&self, tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>) -> &Const<'tcx> {
2347 if let ConstKind::Unevaluated(did, substs, promoted) = self.val {
2348 use crate::mir::interpret::ErrorHandled;
2349
2350 let param_env_and_substs = param_env.with_reveal_all().and(substs);
2351
2352 // HACK(eddyb) this erases lifetimes even though `const_eval_resolve`
2353 // also does later, but we want to do it before checking for
2354 // inference variables.
2355 let param_env_and_substs = tcx.erase_regions(&param_env_and_substs);
2356
2357 // HACK(eddyb) when the query key would contain inference variables,
2358 // attempt using identity substs and `ParamEnv` instead, that will succeed
2359 // when the expression doesn't depend on any parameters.
2360 // FIXME(eddyb, skinny121) pass `InferCtxt` into here when it's available, so that
2361 // we can call `infcx.const_eval_resolve` which handles inference variables.
2362 let param_env_and_substs = if param_env_and_substs.needs_infer() {
2363 tcx.param_env(did).and(InternalSubsts::identity_for_item(tcx, did))
2364 } else {
2365 param_env_and_substs
2366 };
2367
2368 // FIXME(eddyb) maybe the `const_eval_*` methods should take
2369 // `ty::ParamEnvAnd<SubstsRef>` instead of having them separate.
2370 let (param_env, substs) = param_env_and_substs.into_parts();
2371 // try to resolve e.g. associated constants to their definition on an impl, and then
2372 // evaluate the const.
2373 match tcx.const_eval_resolve(param_env, did, substs, promoted, None) {
2374 // NOTE(eddyb) `val` contains no lifetimes/types/consts,
2375 // and we use the original type, so nothing from `substs`
2376 // (which may be identity substs, see above),
2377 // can leak through `val` into the const we return.
2378 Ok(val) => Const::from_value(tcx, val, self.ty),
2379 Err(ErrorHandled::TooGeneric | ErrorHandled::Linted) => self,
2380 Err(ErrorHandled::Reported(ErrorReported)) => {
2381 tcx.mk_const(ty::Const { val: ty::ConstKind::Error, ty: self.ty })
2382 }
2383 }
2384 } else {
2385 self
2386 }
2387 }
2388
2389 #[inline]
2390 pub fn try_eval_bool(&self, tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>) -> Option<bool> {
2391 self.try_eval_bits(tcx, param_env, tcx.types.bool).and_then(|v| match v {
2392 0 => Some(false),
2393 1 => Some(true),
2394 _ => None,
2395 })
2396 }
2397
2398 #[inline]
2399 pub fn try_eval_usize(&self, tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>) -> Option<u64> {
2400 self.try_eval_bits(tcx, param_env, tcx.types.usize).map(|v| v as u64)
2401 }
2402
2403 #[inline]
2404 /// Panics if the value cannot be evaluated or doesn't contain a valid integer of the given type.
2405 pub fn eval_bits(&self, tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>, ty: Ty<'tcx>) -> u128 {
2406 self.try_eval_bits(tcx, param_env, ty)
2407 .unwrap_or_else(|| bug!("expected bits of {:#?}, got {:#?}", ty, self))
2408 }
2409
2410 #[inline]
2411 /// Panics if the value cannot be evaluated or doesn't contain a valid `usize`.
2412 pub fn eval_usize(&self, tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>) -> u64 {
2413 self.eval_bits(tcx, param_env, tcx.types.usize) as u64
2414 }
2415 }
2416
2417 impl<'tcx> rustc_serialize::UseSpecializedDecodable for &'tcx Const<'tcx> {}
2418
2419 /// Represents a constant in Rust.
2420 #[derive(Copy, Clone, Debug, Eq, PartialEq, PartialOrd, Ord, RustcEncodable, RustcDecodable, Hash)]
2421 #[derive(HashStable)]
2422 pub enum ConstKind<'tcx> {
2423 /// A const generic parameter.
2424 Param(ParamConst),
2425
2426 /// Infer the value of the const.
2427 Infer(InferConst<'tcx>),
2428
2429 /// Bound const variable, used only when preparing a trait query.
2430 Bound(DebruijnIndex, BoundVar),
2431
2432 /// A placeholder const - universally quantified higher-ranked const.
2433 Placeholder(ty::PlaceholderConst),
2434
2435 /// Used in the HIR by using `Unevaluated` everywhere and later normalizing to one of the other
2436 /// variants when the code is monomorphic enough for that.
2437 Unevaluated(DefId, SubstsRef<'tcx>, Option<Promoted>),
2438
2439 /// Used to hold computed value.
2440 Value(ConstValue<'tcx>),
2441
2442 /// A placeholder for a const which could not be computed; this is
2443 /// propagated to avoid useless error messages.
2444 Error,
2445 }
2446
2447 #[cfg(target_arch = "x86_64")]
2448 static_assert_size!(ConstKind<'_>, 40);
2449
2450 impl<'tcx> ConstKind<'tcx> {
2451 #[inline]
2452 pub fn try_to_scalar(&self) -> Option<Scalar> {
2453 if let ConstKind::Value(val) = self { val.try_to_scalar() } else { None }
2454 }
2455
2456 #[inline]
2457 pub fn try_to_bits(&self, size: Size) -> Option<u128> {
2458 if let ConstKind::Value(val) = self { val.try_to_bits(size) } else { None }
2459 }
2460 }
2461
2462 /// An inference variable for a const, for use in const generics.
2463 #[derive(Copy, Clone, Debug, Eq, PartialEq, PartialOrd, Ord, RustcEncodable, RustcDecodable, Hash)]
2464 #[derive(HashStable)]
2465 pub enum InferConst<'tcx> {
2466 /// Infer the value of the const.
2467 Var(ConstVid<'tcx>),
2468 /// A fresh const variable. See `infer::freshen` for more details.
2469 Fresh(u32),
2470 }