]> git.proxmox.com Git - rustc.git/blob - src/librustc_middle/ty/walk.rs
New upstream version 1.44.1+dfsg1
[rustc.git] / src / librustc_middle / ty / walk.rs
1 //! An iterator over the type substructure.
2 //! WARNING: this does not keep track of the region depth.
3
4 use crate::ty;
5 use crate::ty::subst::{GenericArg, GenericArgKind};
6 use smallvec::{self, SmallVec};
7
8 // The TypeWalker's stack is hot enough that it's worth going to some effort to
9 // avoid heap allocations.
10 type TypeWalkerStack<'tcx> = SmallVec<[GenericArg<'tcx>; 8]>;
11
12 pub struct TypeWalker<'tcx> {
13 stack: TypeWalkerStack<'tcx>,
14 last_subtree: usize,
15 }
16
17 impl<'tcx> TypeWalker<'tcx> {
18 pub fn new(root: GenericArg<'tcx>) -> TypeWalker<'tcx> {
19 TypeWalker { stack: smallvec![root], last_subtree: 1 }
20 }
21
22 /// Skips the subtree corresponding to the last type
23 /// returned by `next()`.
24 ///
25 /// Example: Imagine you are walking `Foo<Bar<int>, usize>`.
26 ///
27 /// ```
28 /// let mut iter: TypeWalker = ...;
29 /// iter.next(); // yields Foo
30 /// iter.next(); // yields Bar<int>
31 /// iter.skip_current_subtree(); // skips int
32 /// iter.next(); // yields usize
33 /// ```
34 pub fn skip_current_subtree(&mut self) {
35 self.stack.truncate(self.last_subtree);
36 }
37 }
38
39 impl<'tcx> Iterator for TypeWalker<'tcx> {
40 type Item = GenericArg<'tcx>;
41
42 fn next(&mut self) -> Option<GenericArg<'tcx>> {
43 debug!("next(): stack={:?}", self.stack);
44 let next = self.stack.pop()?;
45 self.last_subtree = self.stack.len();
46 push_inner(&mut self.stack, next);
47 debug!("next: stack={:?}", self.stack);
48 Some(next)
49 }
50 }
51
52 impl GenericArg<'tcx> {
53 /// Iterator that walks `self` and any types reachable from
54 /// `self`, in depth-first order. Note that just walks the types
55 /// that appear in `self`, it does not descend into the fields of
56 /// structs or variants. For example:
57 ///
58 /// ```notrust
59 /// isize => { isize }
60 /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
61 /// [isize] => { [isize], isize }
62 /// ```
63 pub fn walk(self) -> TypeWalker<'tcx> {
64 TypeWalker::new(self)
65 }
66
67 /// Iterator that walks the immediate children of `self`. Hence
68 /// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
69 /// (but not `i32`, like `walk`).
70 pub fn walk_shallow(self) -> impl Iterator<Item = GenericArg<'tcx>> {
71 let mut stack = SmallVec::new();
72 push_inner(&mut stack, self);
73 stack.into_iter()
74 }
75 }
76
77 impl<'tcx> super::TyS<'tcx> {
78 /// Iterator that walks `self` and any types reachable from
79 /// `self`, in depth-first order. Note that just walks the types
80 /// that appear in `self`, it does not descend into the fields of
81 /// structs or variants. For example:
82 ///
83 /// ```notrust
84 /// isize => { isize }
85 /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
86 /// [isize] => { [isize], isize }
87 /// ```
88 pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
89 TypeWalker::new(self.into())
90 }
91 }
92
93 // We push `GenericArg`s on the stack in reverse order so as to
94 // maintain a pre-order traversal. As of the time of this
95 // writing, the fact that the traversal is pre-order is not
96 // known to be significant to any code, but it seems like the
97 // natural order one would expect (basically, the order of the
98 // types as they are written).
99 fn push_inner<'tcx>(stack: &mut TypeWalkerStack<'tcx>, parent: GenericArg<'tcx>) {
100 match parent.unpack() {
101 GenericArgKind::Type(parent_ty) => match parent_ty.kind {
102 ty::Bool
103 | ty::Char
104 | ty::Int(_)
105 | ty::Uint(_)
106 | ty::Float(_)
107 | ty::Str
108 | ty::Infer(_)
109 | ty::Param(_)
110 | ty::Never
111 | ty::Error
112 | ty::Placeholder(..)
113 | ty::Bound(..)
114 | ty::Foreign(..) => {}
115
116 ty::Array(ty, len) => {
117 stack.push(len.into());
118 stack.push(ty.into());
119 }
120 ty::Slice(ty) => {
121 stack.push(ty.into());
122 }
123 ty::RawPtr(mt) => {
124 stack.push(mt.ty.into());
125 }
126 ty::Ref(lt, ty, _) => {
127 stack.push(ty.into());
128 stack.push(lt.into());
129 }
130 ty::Projection(data) | ty::UnnormalizedProjection(data) => {
131 stack.extend(data.substs.iter().copied().rev());
132 }
133 ty::Dynamic(obj, lt) => {
134 stack.push(lt.into());
135 stack.extend(obj.iter().rev().flat_map(|predicate| {
136 let (substs, opt_ty) = match *predicate.skip_binder() {
137 ty::ExistentialPredicate::Trait(tr) => (tr.substs, None),
138 ty::ExistentialPredicate::Projection(p) => (p.substs, Some(p.ty)),
139 ty::ExistentialPredicate::AutoTrait(_) =>
140 // Empty iterator
141 {
142 (ty::InternalSubsts::empty(), None)
143 }
144 };
145
146 substs.iter().copied().rev().chain(opt_ty.map(|ty| ty.into()))
147 }));
148 }
149 ty::Adt(_, substs)
150 | ty::Opaque(_, substs)
151 | ty::Closure(_, substs)
152 | ty::Generator(_, substs, _)
153 | ty::Tuple(substs)
154 | ty::FnDef(_, substs) => {
155 stack.extend(substs.iter().copied().rev());
156 }
157 ty::GeneratorWitness(ts) => {
158 stack.extend(ts.skip_binder().iter().cloned().rev().map(|ty| ty.into()));
159 }
160 ty::FnPtr(sig) => {
161 stack.push(sig.skip_binder().output().into());
162 stack.extend(sig.skip_binder().inputs().iter().cloned().rev().map(|ty| ty.into()));
163 }
164 },
165 GenericArgKind::Lifetime(_) => {}
166 GenericArgKind::Const(parent_ct) => {
167 stack.push(parent_ct.ty.into());
168 match parent_ct.val {
169 ty::ConstKind::Infer(_)
170 | ty::ConstKind::Param(_)
171 | ty::ConstKind::Placeholder(_)
172 | ty::ConstKind::Bound(..)
173 | ty::ConstKind::Value(_)
174 | ty::ConstKind::Error => {}
175
176 ty::ConstKind::Unevaluated(_, substs, _) => {
177 stack.extend(substs.iter().copied().rev());
178 }
179 }
180 }
181 }
182 }