]> git.proxmox.com Git - rustc.git/blob - src/librustc_mir/build/expr/as_rvalue.rs
Imported Upstream version 1.9.0+dfsg1
[rustc.git] / src / librustc_mir / build / expr / as_rvalue.rs
1 // Copyright 2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! See docs in build/expr/mod.rs
12
13 use rustc_data_structures::fnv::FnvHashMap;
14
15 use build::{BlockAnd, BlockAndExtension, Builder};
16 use build::expr::category::{Category, RvalueFunc};
17 use hair::*;
18 use rustc::mir::repr::*;
19
20 impl<'a,'tcx> Builder<'a,'tcx> {
21 /// Compile `expr`, yielding an rvalue.
22 pub fn as_rvalue<M>(&mut self, block: BasicBlock, expr: M) -> BlockAnd<Rvalue<'tcx>>
23 where M: Mirror<'tcx, Output = Expr<'tcx>>
24 {
25 let expr = self.hir.mirror(expr);
26 self.expr_as_rvalue(block, expr)
27 }
28
29 fn expr_as_rvalue(&mut self,
30 mut block: BasicBlock,
31 expr: Expr<'tcx>)
32 -> BlockAnd<Rvalue<'tcx>> {
33 debug!("expr_as_rvalue(block={:?}, expr={:?})", block, expr);
34
35 let this = self;
36 let scope_id = this.innermost_scope_id();
37 let expr_span = expr.span;
38
39 match expr.kind {
40 ExprKind::Scope { extent, value } => {
41 this.in_scope(extent, block, |this, _| this.as_rvalue(block, value))
42 }
43 ExprKind::InlineAsm { asm, outputs, inputs } => {
44 let outputs = outputs.into_iter().map(|output| {
45 unpack!(block = this.as_lvalue(block, output))
46 }).collect();
47
48 let inputs = inputs.into_iter().map(|input| {
49 unpack!(block = this.as_operand(block, input))
50 }).collect();
51
52 block.and(Rvalue::InlineAsm {
53 asm: asm.clone(),
54 outputs: outputs,
55 inputs: inputs
56 })
57 }
58 ExprKind::Repeat { value, count } => {
59 let value_operand = unpack!(block = this.as_operand(block, value));
60 block.and(Rvalue::Repeat(value_operand, count))
61 }
62 ExprKind::Borrow { region, borrow_kind, arg } => {
63 let arg_lvalue = unpack!(block = this.as_lvalue(block, arg));
64 block.and(Rvalue::Ref(region, borrow_kind, arg_lvalue))
65 }
66 ExprKind::Binary { op, lhs, rhs } => {
67 let lhs = unpack!(block = this.as_operand(block, lhs));
68 let rhs = unpack!(block = this.as_operand(block, rhs));
69 block.and(Rvalue::BinaryOp(op, lhs, rhs))
70 }
71 ExprKind::Unary { op, arg } => {
72 let arg = unpack!(block = this.as_operand(block, arg));
73 block.and(Rvalue::UnaryOp(op, arg))
74 }
75 ExprKind::Box { value, value_extents } => {
76 let value = this.hir.mirror(value);
77 let result = this.temp(expr.ty);
78 // to start, malloc some memory of suitable type (thus far, uninitialized):
79 this.cfg.push_assign(block, scope_id, expr_span, &result, Rvalue::Box(value.ty));
80 this.in_scope(value_extents, block, |this, _| {
81 // schedule a shallow free of that memory, lest we unwind:
82 this.schedule_box_free(expr_span, value_extents, &result, value.ty);
83 // initialize the box contents:
84 unpack!(block = this.into(&result.clone().deref(), block, value));
85 block.and(Rvalue::Use(Operand::Consume(result)))
86 })
87 }
88 ExprKind::Cast { source } => {
89 let source = this.hir.mirror(source);
90 if source.ty == expr.ty {
91 this.expr_as_rvalue(block, source)
92 } else {
93 let source = unpack!(block = this.as_operand(block, source));
94 block.and(Rvalue::Cast(CastKind::Misc, source, expr.ty))
95 }
96 }
97 ExprKind::ReifyFnPointer { source } => {
98 let source = unpack!(block = this.as_operand(block, source));
99 block.and(Rvalue::Cast(CastKind::ReifyFnPointer, source, expr.ty))
100 }
101 ExprKind::UnsafeFnPointer { source } => {
102 let source = unpack!(block = this.as_operand(block, source));
103 block.and(Rvalue::Cast(CastKind::UnsafeFnPointer, source, expr.ty))
104 }
105 ExprKind::Unsize { source } => {
106 let source = unpack!(block = this.as_operand(block, source));
107 block.and(Rvalue::Cast(CastKind::Unsize, source, expr.ty))
108 }
109 ExprKind::Vec { fields } => {
110 // (*) We would (maybe) be closer to trans if we
111 // handled this and other aggregate cases via
112 // `into()`, not `as_rvalue` -- in that case, instead
113 // of generating
114 //
115 // let tmp1 = ...1;
116 // let tmp2 = ...2;
117 // dest = Rvalue::Aggregate(Foo, [tmp1, tmp2])
118 //
119 // we could just generate
120 //
121 // dest.f = ...1;
122 // dest.g = ...2;
123 //
124 // The problem is that then we would need to:
125 //
126 // (a) have a more complex mechanism for handling
127 // partial cleanup;
128 // (b) distinguish the case where the type `Foo` has a
129 // destructor, in which case creating an instance
130 // as a whole "arms" the destructor, and you can't
131 // write individual fields; and,
132 // (c) handle the case where the type Foo has no
133 // fields. We don't want `let x: ();` to compile
134 // to the same MIR as `let x = ();`.
135
136 // first process the set of fields
137 let fields: Vec<_> =
138 fields.into_iter()
139 .map(|f| unpack!(block = this.as_operand(block, f)))
140 .collect();
141
142 block.and(Rvalue::Aggregate(AggregateKind::Vec, fields))
143 }
144 ExprKind::Tuple { fields } => { // see (*) above
145 // first process the set of fields
146 let fields: Vec<_> =
147 fields.into_iter()
148 .map(|f| unpack!(block = this.as_operand(block, f)))
149 .collect();
150
151 block.and(Rvalue::Aggregate(AggregateKind::Tuple, fields))
152 }
153 ExprKind::Closure { closure_id, substs, upvars } => { // see (*) above
154 let upvars =
155 upvars.into_iter()
156 .map(|upvar| unpack!(block = this.as_operand(block, upvar)))
157 .collect();
158 block.and(Rvalue::Aggregate(AggregateKind::Closure(closure_id, substs), upvars))
159 }
160 ExprKind::Adt {
161 adt_def, variant_index, substs, fields, base
162 } => { // see (*) above
163 // first process the set of fields that were provided
164 // (evaluating them in order given by user)
165 let fields_map: FnvHashMap<_, _> =
166 fields.into_iter()
167 .map(|f| (f.name, unpack!(block = this.as_operand(block, f.expr))))
168 .collect();
169
170 let field_names = this.hir.all_fields(adt_def, variant_index);
171
172 let fields = if let Some(FruInfo { base, field_types }) = base {
173 let base = unpack!(block = this.as_lvalue(block, base));
174
175 // MIR does not natively support FRU, so for each
176 // base-supplied field, generate an operand that
177 // reads it from the base.
178 field_names.into_iter()
179 .zip(field_types.into_iter())
180 .map(|(n, ty)| match fields_map.get(&n) {
181 Some(v) => v.clone(),
182 None => Operand::Consume(base.clone().field(n, ty))
183 })
184 .collect()
185 } else {
186 field_names.iter().map(|n| fields_map[n].clone()).collect()
187 };
188
189 block.and(Rvalue::Aggregate(AggregateKind::Adt(adt_def, variant_index, substs),
190 fields))
191 }
192 ExprKind::Literal { .. } |
193 ExprKind::Block { .. } |
194 ExprKind::Match { .. } |
195 ExprKind::If { .. } |
196 ExprKind::Loop { .. } |
197 ExprKind::LogicalOp { .. } |
198 ExprKind::Call { .. } |
199 ExprKind::Field { .. } |
200 ExprKind::Deref { .. } |
201 ExprKind::Index { .. } |
202 ExprKind::VarRef { .. } |
203 ExprKind::SelfRef |
204 ExprKind::Assign { .. } |
205 ExprKind::AssignOp { .. } |
206 ExprKind::Break { .. } |
207 ExprKind::Continue { .. } |
208 ExprKind::Return { .. } |
209 ExprKind::StaticRef { .. } => {
210 // these do not have corresponding `Rvalue` variants,
211 // so make an operand and then return that
212 debug_assert!(match Category::of(&expr.kind) {
213 Some(Category::Rvalue(RvalueFunc::AsRvalue)) => false,
214 _ => true,
215 });
216 let operand = unpack!(block = this.as_operand(block, expr));
217 block.and(Rvalue::Use(operand))
218 }
219 }
220 }
221 }