]> git.proxmox.com Git - rustc.git/blob - src/librustc_mir/monomorphize/partitioning/default.rs
New upstream version 1.47.0+dfsg1
[rustc.git] / src / librustc_mir / monomorphize / partitioning / default.rs
1 use std::collections::hash_map::Entry;
2
3 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
4 use rustc_hir::def::DefKind;
5 use rustc_hir::def_id::{DefId, CRATE_DEF_INDEX, LOCAL_CRATE};
6 use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
7 use rustc_middle::middle::exported_symbols::SymbolExportLevel;
8 use rustc_middle::mir::mono::{CodegenUnit, CodegenUnitNameBuilder, Linkage, Visibility};
9 use rustc_middle::mir::mono::{InstantiationMode, MonoItem};
10 use rustc_middle::ty::print::characteristic_def_id_of_type;
11 use rustc_middle::ty::{self, DefIdTree, InstanceDef, TyCtxt};
12 use rustc_span::symbol::Symbol;
13
14 use crate::monomorphize::collector::InliningMap;
15 use crate::monomorphize::partitioning::merging;
16 use crate::monomorphize::partitioning::{
17 MonoItemPlacement, Partitioner, PostInliningPartitioning, PreInliningPartitioning,
18 };
19
20 pub struct DefaultPartitioning;
21
22 impl<'tcx> Partitioner<'tcx> for DefaultPartitioning {
23 fn place_root_mono_items(
24 &mut self,
25 tcx: TyCtxt<'tcx>,
26 mono_items: &mut dyn Iterator<Item = MonoItem<'tcx>>,
27 ) -> PreInliningPartitioning<'tcx> {
28 let mut roots = FxHashSet::default();
29 let mut codegen_units = FxHashMap::default();
30 let is_incremental_build = tcx.sess.opts.incremental.is_some();
31 let mut internalization_candidates = FxHashSet::default();
32
33 // Determine if monomorphizations instantiated in this crate will be made
34 // available to downstream crates. This depends on whether we are in
35 // share-generics mode and whether the current crate can even have
36 // downstream crates.
37 let export_generics = tcx.sess.opts.share_generics() && tcx.local_crate_exports_generics();
38
39 let cgu_name_builder = &mut CodegenUnitNameBuilder::new(tcx);
40 let cgu_name_cache = &mut FxHashMap::default();
41
42 for mono_item in mono_items {
43 match mono_item.instantiation_mode(tcx) {
44 InstantiationMode::GloballyShared { .. } => {}
45 InstantiationMode::LocalCopy => continue,
46 }
47
48 let characteristic_def_id = characteristic_def_id_of_mono_item(tcx, mono_item);
49 let is_volatile = is_incremental_build && mono_item.is_generic_fn();
50
51 let codegen_unit_name = match characteristic_def_id {
52 Some(def_id) => compute_codegen_unit_name(
53 tcx,
54 cgu_name_builder,
55 def_id,
56 is_volatile,
57 cgu_name_cache,
58 ),
59 None => fallback_cgu_name(cgu_name_builder),
60 };
61
62 let codegen_unit = codegen_units
63 .entry(codegen_unit_name)
64 .or_insert_with(|| CodegenUnit::new(codegen_unit_name));
65
66 let mut can_be_internalized = true;
67 let (linkage, visibility) = mono_item_linkage_and_visibility(
68 tcx,
69 &mono_item,
70 &mut can_be_internalized,
71 export_generics,
72 );
73 if visibility == Visibility::Hidden && can_be_internalized {
74 internalization_candidates.insert(mono_item);
75 }
76
77 codegen_unit.items_mut().insert(mono_item, (linkage, visibility));
78 roots.insert(mono_item);
79 }
80
81 // Always ensure we have at least one CGU; otherwise, if we have a
82 // crate with just types (for example), we could wind up with no CGU.
83 if codegen_units.is_empty() {
84 let codegen_unit_name = fallback_cgu_name(cgu_name_builder);
85 codegen_units.insert(codegen_unit_name, CodegenUnit::new(codegen_unit_name));
86 }
87
88 PreInliningPartitioning {
89 codegen_units: codegen_units
90 .into_iter()
91 .map(|(_, codegen_unit)| codegen_unit)
92 .collect(),
93 roots,
94 internalization_candidates,
95 }
96 }
97
98 fn merge_codegen_units(
99 &mut self,
100 tcx: TyCtxt<'tcx>,
101 initial_partitioning: &mut PreInliningPartitioning<'tcx>,
102 target_cgu_count: usize,
103 ) {
104 merging::merge_codegen_units(tcx, initial_partitioning, target_cgu_count);
105 }
106
107 fn place_inlined_mono_items(
108 &mut self,
109 initial_partitioning: PreInliningPartitioning<'tcx>,
110 inlining_map: &InliningMap<'tcx>,
111 ) -> PostInliningPartitioning<'tcx> {
112 let mut new_partitioning = Vec::new();
113 let mut mono_item_placements = FxHashMap::default();
114
115 let PreInliningPartitioning {
116 codegen_units: initial_cgus,
117 roots,
118 internalization_candidates,
119 } = initial_partitioning;
120
121 let single_codegen_unit = initial_cgus.len() == 1;
122
123 for old_codegen_unit in initial_cgus {
124 // Collect all items that need to be available in this codegen unit.
125 let mut reachable = FxHashSet::default();
126 for root in old_codegen_unit.items().keys() {
127 follow_inlining(*root, inlining_map, &mut reachable);
128 }
129
130 let mut new_codegen_unit = CodegenUnit::new(old_codegen_unit.name());
131
132 // Add all monomorphizations that are not already there.
133 for mono_item in reachable {
134 if let Some(linkage) = old_codegen_unit.items().get(&mono_item) {
135 // This is a root, just copy it over.
136 new_codegen_unit.items_mut().insert(mono_item, *linkage);
137 } else {
138 if roots.contains(&mono_item) {
139 bug!(
140 "GloballyShared mono-item inlined into other CGU: \
141 {:?}",
142 mono_item
143 );
144 }
145
146 // This is a CGU-private copy.
147 new_codegen_unit
148 .items_mut()
149 .insert(mono_item, (Linkage::Internal, Visibility::Default));
150 }
151
152 if !single_codegen_unit {
153 // If there is more than one codegen unit, we need to keep track
154 // in which codegen units each monomorphization is placed.
155 match mono_item_placements.entry(mono_item) {
156 Entry::Occupied(e) => {
157 let placement = e.into_mut();
158 debug_assert!(match *placement {
159 MonoItemPlacement::SingleCgu { cgu_name } => {
160 cgu_name != new_codegen_unit.name()
161 }
162 MonoItemPlacement::MultipleCgus => true,
163 });
164 *placement = MonoItemPlacement::MultipleCgus;
165 }
166 Entry::Vacant(e) => {
167 e.insert(MonoItemPlacement::SingleCgu {
168 cgu_name: new_codegen_unit.name(),
169 });
170 }
171 }
172 }
173 }
174
175 new_partitioning.push(new_codegen_unit);
176 }
177
178 return PostInliningPartitioning {
179 codegen_units: new_partitioning,
180 mono_item_placements,
181 internalization_candidates,
182 };
183
184 fn follow_inlining<'tcx>(
185 mono_item: MonoItem<'tcx>,
186 inlining_map: &InliningMap<'tcx>,
187 visited: &mut FxHashSet<MonoItem<'tcx>>,
188 ) {
189 if !visited.insert(mono_item) {
190 return;
191 }
192
193 inlining_map.with_inlining_candidates(mono_item, |target| {
194 follow_inlining(target, inlining_map, visited);
195 });
196 }
197 }
198
199 fn internalize_symbols(
200 &mut self,
201 _tcx: TyCtxt<'tcx>,
202 partitioning: &mut PostInliningPartitioning<'tcx>,
203 inlining_map: &InliningMap<'tcx>,
204 ) {
205 if partitioning.codegen_units.len() == 1 {
206 // Fast path for when there is only one codegen unit. In this case we
207 // can internalize all candidates, since there is nowhere else they
208 // could be accessed from.
209 for cgu in &mut partitioning.codegen_units {
210 for candidate in &partitioning.internalization_candidates {
211 cgu.items_mut().insert(*candidate, (Linkage::Internal, Visibility::Default));
212 }
213 }
214
215 return;
216 }
217
218 // Build a map from every monomorphization to all the monomorphizations that
219 // reference it.
220 let mut accessor_map: FxHashMap<MonoItem<'tcx>, Vec<MonoItem<'tcx>>> = Default::default();
221 inlining_map.iter_accesses(|accessor, accessees| {
222 for accessee in accessees {
223 accessor_map.entry(*accessee).or_default().push(accessor);
224 }
225 });
226
227 let mono_item_placements = &partitioning.mono_item_placements;
228
229 // For each internalization candidates in each codegen unit, check if it is
230 // accessed from outside its defining codegen unit.
231 for cgu in &mut partitioning.codegen_units {
232 let home_cgu = MonoItemPlacement::SingleCgu { cgu_name: cgu.name() };
233
234 for (accessee, linkage_and_visibility) in cgu.items_mut() {
235 if !partitioning.internalization_candidates.contains(accessee) {
236 // This item is no candidate for internalizing, so skip it.
237 continue;
238 }
239 debug_assert_eq!(mono_item_placements[accessee], home_cgu);
240
241 if let Some(accessors) = accessor_map.get(accessee) {
242 if accessors
243 .iter()
244 .filter_map(|accessor| {
245 // Some accessors might not have been
246 // instantiated. We can safely ignore those.
247 mono_item_placements.get(accessor)
248 })
249 .any(|placement| *placement != home_cgu)
250 {
251 // Found an accessor from another CGU, so skip to the next
252 // item without marking this one as internal.
253 continue;
254 }
255 }
256
257 // If we got here, we did not find any accesses from other CGUs,
258 // so it's fine to make this monomorphization internal.
259 *linkage_and_visibility = (Linkage::Internal, Visibility::Default);
260 }
261 }
262 }
263 }
264
265 fn characteristic_def_id_of_mono_item<'tcx>(
266 tcx: TyCtxt<'tcx>,
267 mono_item: MonoItem<'tcx>,
268 ) -> Option<DefId> {
269 match mono_item {
270 MonoItem::Fn(instance) => {
271 let def_id = match instance.def {
272 ty::InstanceDef::Item(def) => def.did,
273 ty::InstanceDef::VtableShim(..)
274 | ty::InstanceDef::ReifyShim(..)
275 | ty::InstanceDef::FnPtrShim(..)
276 | ty::InstanceDef::ClosureOnceShim { .. }
277 | ty::InstanceDef::Intrinsic(..)
278 | ty::InstanceDef::DropGlue(..)
279 | ty::InstanceDef::Virtual(..)
280 | ty::InstanceDef::CloneShim(..) => return None,
281 };
282
283 // If this is a method, we want to put it into the same module as
284 // its self-type. If the self-type does not provide a characteristic
285 // DefId, we use the location of the impl after all.
286
287 if tcx.trait_of_item(def_id).is_some() {
288 let self_ty = instance.substs.type_at(0);
289 // This is a default implementation of a trait method.
290 return characteristic_def_id_of_type(self_ty).or(Some(def_id));
291 }
292
293 if let Some(impl_def_id) = tcx.impl_of_method(def_id) {
294 if tcx.sess.opts.incremental.is_some()
295 && tcx.trait_id_of_impl(impl_def_id) == tcx.lang_items().drop_trait()
296 {
297 // Put `Drop::drop` into the same cgu as `drop_in_place`
298 // since `drop_in_place` is the only thing that can
299 // call it.
300 return None;
301 }
302 // This is a method within an impl, find out what the self-type is:
303 let impl_self_ty = tcx.subst_and_normalize_erasing_regions(
304 instance.substs,
305 ty::ParamEnv::reveal_all(),
306 &tcx.type_of(impl_def_id),
307 );
308 if let Some(def_id) = characteristic_def_id_of_type(impl_self_ty) {
309 return Some(def_id);
310 }
311 }
312
313 Some(def_id)
314 }
315 MonoItem::Static(def_id) => Some(def_id),
316 MonoItem::GlobalAsm(hir_id) => Some(tcx.hir().local_def_id(hir_id).to_def_id()),
317 }
318 }
319
320 fn compute_codegen_unit_name(
321 tcx: TyCtxt<'_>,
322 name_builder: &mut CodegenUnitNameBuilder<'_>,
323 def_id: DefId,
324 volatile: bool,
325 cache: &mut CguNameCache,
326 ) -> Symbol {
327 // Find the innermost module that is not nested within a function.
328 let mut current_def_id = def_id;
329 let mut cgu_def_id = None;
330 // Walk backwards from the item we want to find the module for.
331 loop {
332 if current_def_id.index == CRATE_DEF_INDEX {
333 if cgu_def_id.is_none() {
334 // If we have not found a module yet, take the crate root.
335 cgu_def_id = Some(DefId { krate: def_id.krate, index: CRATE_DEF_INDEX });
336 }
337 break;
338 } else if tcx.def_kind(current_def_id) == DefKind::Mod {
339 if cgu_def_id.is_none() {
340 cgu_def_id = Some(current_def_id);
341 }
342 } else {
343 // If we encounter something that is not a module, throw away
344 // any module that we've found so far because we now know that
345 // it is nested within something else.
346 cgu_def_id = None;
347 }
348
349 current_def_id = tcx.parent(current_def_id).unwrap();
350 }
351
352 let cgu_def_id = cgu_def_id.unwrap();
353
354 *cache.entry((cgu_def_id, volatile)).or_insert_with(|| {
355 let def_path = tcx.def_path(cgu_def_id);
356
357 let components = def_path.data.iter().map(|part| part.data.as_symbol());
358
359 let volatile_suffix = volatile.then_some("volatile");
360
361 name_builder.build_cgu_name(def_path.krate, components, volatile_suffix)
362 })
363 }
364
365 // Anything we can't find a proper codegen unit for goes into this.
366 fn fallback_cgu_name(name_builder: &mut CodegenUnitNameBuilder<'_>) -> Symbol {
367 name_builder.build_cgu_name(LOCAL_CRATE, &["fallback"], Some("cgu"))
368 }
369
370 fn mono_item_linkage_and_visibility(
371 tcx: TyCtxt<'tcx>,
372 mono_item: &MonoItem<'tcx>,
373 can_be_internalized: &mut bool,
374 export_generics: bool,
375 ) -> (Linkage, Visibility) {
376 if let Some(explicit_linkage) = mono_item.explicit_linkage(tcx) {
377 return (explicit_linkage, Visibility::Default);
378 }
379 let vis = mono_item_visibility(tcx, mono_item, can_be_internalized, export_generics);
380 (Linkage::External, vis)
381 }
382
383 type CguNameCache = FxHashMap<(DefId, bool), Symbol>;
384
385 fn mono_item_visibility(
386 tcx: TyCtxt<'tcx>,
387 mono_item: &MonoItem<'tcx>,
388 can_be_internalized: &mut bool,
389 export_generics: bool,
390 ) -> Visibility {
391 let instance = match mono_item {
392 // This is pretty complicated; see below.
393 MonoItem::Fn(instance) => instance,
394
395 // Misc handling for generics and such, but otherwise:
396 MonoItem::Static(def_id) => {
397 return if tcx.is_reachable_non_generic(*def_id) {
398 *can_be_internalized = false;
399 default_visibility(tcx, *def_id, false)
400 } else {
401 Visibility::Hidden
402 };
403 }
404 MonoItem::GlobalAsm(hir_id) => {
405 let def_id = tcx.hir().local_def_id(*hir_id);
406 return if tcx.is_reachable_non_generic(def_id) {
407 *can_be_internalized = false;
408 default_visibility(tcx, def_id.to_def_id(), false)
409 } else {
410 Visibility::Hidden
411 };
412 }
413 };
414
415 let def_id = match instance.def {
416 InstanceDef::Item(def) => def.did,
417 InstanceDef::DropGlue(def_id, Some(_)) => def_id,
418
419 // These are all compiler glue and such, never exported, always hidden.
420 InstanceDef::VtableShim(..)
421 | InstanceDef::ReifyShim(..)
422 | InstanceDef::FnPtrShim(..)
423 | InstanceDef::Virtual(..)
424 | InstanceDef::Intrinsic(..)
425 | InstanceDef::ClosureOnceShim { .. }
426 | InstanceDef::DropGlue(..)
427 | InstanceDef::CloneShim(..) => return Visibility::Hidden,
428 };
429
430 // The `start_fn` lang item is actually a monomorphized instance of a
431 // function in the standard library, used for the `main` function. We don't
432 // want to export it so we tag it with `Hidden` visibility but this symbol
433 // is only referenced from the actual `main` symbol which we unfortunately
434 // don't know anything about during partitioning/collection. As a result we
435 // forcibly keep this symbol out of the `internalization_candidates` set.
436 //
437 // FIXME: eventually we don't want to always force this symbol to have
438 // hidden visibility, it should indeed be a candidate for
439 // internalization, but we have to understand that it's referenced
440 // from the `main` symbol we'll generate later.
441 //
442 // This may be fixable with a new `InstanceDef` perhaps? Unsure!
443 if tcx.lang_items().start_fn() == Some(def_id) {
444 *can_be_internalized = false;
445 return Visibility::Hidden;
446 }
447
448 let is_generic = instance.substs.non_erasable_generics().next().is_some();
449
450 // Upstream `DefId` instances get different handling than local ones.
451 if !def_id.is_local() {
452 return if export_generics && is_generic {
453 // If it is a upstream monomorphization and we export generics, we must make
454 // it available to downstream crates.
455 *can_be_internalized = false;
456 default_visibility(tcx, def_id, true)
457 } else {
458 Visibility::Hidden
459 };
460 }
461
462 if is_generic {
463 if export_generics {
464 if tcx.is_unreachable_local_definition(def_id) {
465 // This instance cannot be used from another crate.
466 Visibility::Hidden
467 } else {
468 // This instance might be useful in a downstream crate.
469 *can_be_internalized = false;
470 default_visibility(tcx, def_id, true)
471 }
472 } else {
473 // We are not exporting generics or the definition is not reachable
474 // for downstream crates, we can internalize its instantiations.
475 Visibility::Hidden
476 }
477 } else {
478 // If this isn't a generic function then we mark this a `Default` if
479 // this is a reachable item, meaning that it's a symbol other crates may
480 // access when they link to us.
481 if tcx.is_reachable_non_generic(def_id) {
482 *can_be_internalized = false;
483 debug_assert!(!is_generic);
484 return default_visibility(tcx, def_id, false);
485 }
486
487 // If this isn't reachable then we're gonna tag this with `Hidden`
488 // visibility. In some situations though we'll want to prevent this
489 // symbol from being internalized.
490 //
491 // There's two categories of items here:
492 //
493 // * First is weak lang items. These are basically mechanisms for
494 // libcore to forward-reference symbols defined later in crates like
495 // the standard library or `#[panic_handler]` definitions. The
496 // definition of these weak lang items needs to be referenceable by
497 // libcore, so we're no longer a candidate for internalization.
498 // Removal of these functions can't be done by LLVM but rather must be
499 // done by the linker as it's a non-local decision.
500 //
501 // * Second is "std internal symbols". Currently this is primarily used
502 // for allocator symbols. Allocators are a little weird in their
503 // implementation, but the idea is that the compiler, at the last
504 // minute, defines an allocator with an injected object file. The
505 // `alloc` crate references these symbols (`__rust_alloc`) and the
506 // definition doesn't get hooked up until a linked crate artifact is
507 // generated.
508 //
509 // The symbols synthesized by the compiler (`__rust_alloc`) are thin
510 // veneers around the actual implementation, some other symbol which
511 // implements the same ABI. These symbols (things like `__rg_alloc`,
512 // `__rdl_alloc`, `__rde_alloc`, etc), are all tagged with "std
513 // internal symbols".
514 //
515 // The std-internal symbols here **should not show up in a dll as an
516 // exported interface**, so they return `false` from
517 // `is_reachable_non_generic` above and we'll give them `Hidden`
518 // visibility below. Like the weak lang items, though, we can't let
519 // LLVM internalize them as this decision is left up to the linker to
520 // omit them, so prevent them from being internalized.
521 let attrs = tcx.codegen_fn_attrs(def_id);
522 if attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
523 *can_be_internalized = false;
524 }
525
526 Visibility::Hidden
527 }
528 }
529
530 fn default_visibility(tcx: TyCtxt<'_>, id: DefId, is_generic: bool) -> Visibility {
531 if !tcx.sess.target.target.options.default_hidden_visibility {
532 return Visibility::Default;
533 }
534
535 // Generic functions never have export-level C.
536 if is_generic {
537 return Visibility::Hidden;
538 }
539
540 // Things with export level C don't get instantiated in
541 // downstream crates.
542 if !id.is_local() {
543 return Visibility::Hidden;
544 }
545
546 // C-export level items remain at `Default`, all other internal
547 // items become `Hidden`.
548 match tcx.reachable_non_generics(id.krate).get(&id) {
549 Some(SymbolExportLevel::C) => Visibility::Default,
550 _ => Visibility::Hidden,
551 }
552 }