]> git.proxmox.com Git - rustc.git/blob - src/librustc_mir_build/hair/pattern/_match.rs
New upstream version 1.44.1+dfsg1
[rustc.git] / src / librustc_mir_build / hair / pattern / _match.rs
1 /// Note: most tests relevant to this file can be found (at the time of writing)
2 /// in src/tests/ui/pattern/usefulness.
3 ///
4 /// This file includes the logic for exhaustiveness and usefulness checking for
5 /// pattern-matching. Specifically, given a list of patterns for a type, we can
6 /// tell whether:
7 /// (a) the patterns cover every possible constructor for the type [exhaustiveness]
8 /// (b) each pattern is necessary [usefulness]
9 ///
10 /// The algorithm implemented here is a modified version of the one described in:
11 /// http://moscova.inria.fr/~maranget/papers/warn/index.html
12 /// However, to save future implementors from reading the original paper, we
13 /// summarise the algorithm here to hopefully save time and be a little clearer
14 /// (without being so rigorous).
15 ///
16 /// The core of the algorithm revolves about a "usefulness" check. In particular, we
17 /// are trying to compute a predicate `U(P, p)` where `P` is a list of patterns (we refer to this as
18 /// a matrix). `U(P, p)` represents whether, given an existing list of patterns
19 /// `P_1 ..= P_m`, adding a new pattern `p` will be "useful" (that is, cover previously-
20 /// uncovered values of the type).
21 ///
22 /// If we have this predicate, then we can easily compute both exhaustiveness of an
23 /// entire set of patterns and the individual usefulness of each one.
24 /// (a) the set of patterns is exhaustive iff `U(P, _)` is false (i.e., adding a wildcard
25 /// match doesn't increase the number of values we're matching)
26 /// (b) a pattern `P_i` is not useful if `U(P[0..=(i-1), P_i)` is false (i.e., adding a
27 /// pattern to those that have come before it doesn't increase the number of values
28 /// we're matching).
29 ///
30 /// During the course of the algorithm, the rows of the matrix won't just be individual patterns,
31 /// but rather partially-deconstructed patterns in the form of a list of patterns. The paper
32 /// calls those pattern-vectors, and we will call them pattern-stacks. The same holds for the
33 /// new pattern `p`.
34 ///
35 /// For example, say we have the following:
36 /// ```
37 /// // x: (Option<bool>, Result<()>)
38 /// match x {
39 /// (Some(true), _) => {}
40 /// (None, Err(())) => {}
41 /// (None, Err(_)) => {}
42 /// }
43 /// ```
44 /// Here, the matrix `P` starts as:
45 /// [
46 /// [(Some(true), _)],
47 /// [(None, Err(()))],
48 /// [(None, Err(_))],
49 /// ]
50 /// We can tell it's not exhaustive, because `U(P, _)` is true (we're not covering
51 /// `[(Some(false), _)]`, for instance). In addition, row 3 is not useful, because
52 /// all the values it covers are already covered by row 2.
53 ///
54 /// A list of patterns can be thought of as a stack, because we are mainly interested in the top of
55 /// the stack at any given point, and we can pop or apply constructors to get new pattern-stacks.
56 /// To match the paper, the top of the stack is at the beginning / on the left.
57 ///
58 /// There are two important operations on pattern-stacks necessary to understand the algorithm:
59 /// 1. We can pop a given constructor off the top of a stack. This operation is called
60 /// `specialize`, and is denoted `S(c, p)` where `c` is a constructor (like `Some` or
61 /// `None`) and `p` a pattern-stack.
62 /// If the pattern on top of the stack can cover `c`, this removes the constructor and
63 /// pushes its arguments onto the stack. It also expands OR-patterns into distinct patterns.
64 /// Otherwise the pattern-stack is discarded.
65 /// This essentially filters those pattern-stacks whose top covers the constructor `c` and
66 /// discards the others.
67 ///
68 /// For example, the first pattern above initially gives a stack `[(Some(true), _)]`. If we
69 /// pop the tuple constructor, we are left with `[Some(true), _]`, and if we then pop the
70 /// `Some` constructor we get `[true, _]`. If we had popped `None` instead, we would get
71 /// nothing back.
72 ///
73 /// This returns zero or more new pattern-stacks, as follows. We look at the pattern `p_1`
74 /// on top of the stack, and we have four cases:
75 /// 1.1. `p_1 = c(r_1, .., r_a)`, i.e. the top of the stack has constructor `c`. We
76 /// push onto the stack the arguments of this constructor, and return the result:
77 /// r_1, .., r_a, p_2, .., p_n
78 /// 1.2. `p_1 = c'(r_1, .., r_a')` where `c ≠ c'`. We discard the current stack and
79 /// return nothing.
80 /// 1.3. `p_1 = _`. We push onto the stack as many wildcards as the constructor `c` has
81 /// arguments (its arity), and return the resulting stack:
82 /// _, .., _, p_2, .., p_n
83 /// 1.4. `p_1 = r_1 | r_2`. We expand the OR-pattern and then recurse on each resulting
84 /// stack:
85 /// S(c, (r_1, p_2, .., p_n))
86 /// S(c, (r_2, p_2, .., p_n))
87 ///
88 /// 2. We can pop a wildcard off the top of the stack. This is called `D(p)`, where `p` is
89 /// a pattern-stack.
90 /// This is used when we know there are missing constructor cases, but there might be
91 /// existing wildcard patterns, so to check the usefulness of the matrix, we have to check
92 /// all its *other* components.
93 ///
94 /// It is computed as follows. We look at the pattern `p_1` on top of the stack,
95 /// and we have three cases:
96 /// 1.1. `p_1 = c(r_1, .., r_a)`. We discard the current stack and return nothing.
97 /// 1.2. `p_1 = _`. We return the rest of the stack:
98 /// p_2, .., p_n
99 /// 1.3. `p_1 = r_1 | r_2`. We expand the OR-pattern and then recurse on each resulting
100 /// stack.
101 /// D((r_1, p_2, .., p_n))
102 /// D((r_2, p_2, .., p_n))
103 ///
104 /// Note that the OR-patterns are not always used directly in Rust, but are used to derive the
105 /// exhaustive integer matching rules, so they're written here for posterity.
106 ///
107 /// Both those operations extend straightforwardly to a list or pattern-stacks, i.e. a matrix, by
108 /// working row-by-row. Popping a constructor ends up keeping only the matrix rows that start with
109 /// the given constructor, and popping a wildcard keeps those rows that start with a wildcard.
110 ///
111 ///
112 /// The algorithm for computing `U`
113 /// -------------------------------
114 /// The algorithm is inductive (on the number of columns: i.e., components of tuple patterns).
115 /// That means we're going to check the components from left-to-right, so the algorithm
116 /// operates principally on the first component of the matrix and new pattern-stack `p`.
117 /// This algorithm is realised in the `is_useful` function.
118 ///
119 /// Base case. (`n = 0`, i.e., an empty tuple pattern)
120 /// - If `P` already contains an empty pattern (i.e., if the number of patterns `m > 0`),
121 /// then `U(P, p)` is false.
122 /// - Otherwise, `P` must be empty, so `U(P, p)` is true.
123 ///
124 /// Inductive step. (`n > 0`, i.e., whether there's at least one column
125 /// [which may then be expanded into further columns later])
126 /// We're going to match on the top of the new pattern-stack, `p_1`.
127 /// - If `p_1 == c(r_1, .., r_a)`, i.e. we have a constructor pattern.
128 /// Then, the usefulness of `p_1` can be reduced to whether it is useful when
129 /// we ignore all the patterns in the first column of `P` that involve other constructors.
130 /// This is where `S(c, P)` comes in:
131 /// `U(P, p) := U(S(c, P), S(c, p))`
132 /// This special case is handled in `is_useful_specialized`.
133 ///
134 /// For example, if `P` is:
135 /// [
136 /// [Some(true), _],
137 /// [None, 0],
138 /// ]
139 /// and `p` is [Some(false), 0], then we don't care about row 2 since we know `p` only
140 /// matches values that row 2 doesn't. For row 1 however, we need to dig into the
141 /// arguments of `Some` to know whether some new value is covered. So we compute
142 /// `U([[true, _]], [false, 0])`.
143 ///
144 /// - If `p_1 == _`, then we look at the list of constructors that appear in the first
145 /// component of the rows of `P`:
146 /// + If there are some constructors that aren't present, then we might think that the
147 /// wildcard `_` is useful, since it covers those constructors that weren't covered
148 /// before.
149 /// That's almost correct, but only works if there were no wildcards in those first
150 /// components. So we need to check that `p` is useful with respect to the rows that
151 /// start with a wildcard, if there are any. This is where `D` comes in:
152 /// `U(P, p) := U(D(P), D(p))`
153 ///
154 /// For example, if `P` is:
155 /// [
156 /// [_, true, _],
157 /// [None, false, 1],
158 /// ]
159 /// and `p` is [_, false, _], the `Some` constructor doesn't appear in `P`. So if we
160 /// only had row 2, we'd know that `p` is useful. However row 1 starts with a
161 /// wildcard, so we need to check whether `U([[true, _]], [false, 1])`.
162 ///
163 /// + Otherwise, all possible constructors (for the relevant type) are present. In this
164 /// case we must check whether the wildcard pattern covers any unmatched value. For
165 /// that, we can think of the `_` pattern as a big OR-pattern that covers all
166 /// possible constructors. For `Option`, that would mean `_ = None | Some(_)` for
167 /// example. The wildcard pattern is useful in this case if it is useful when
168 /// specialized to one of the possible constructors. So we compute:
169 /// `U(P, p) := ∃(k ϵ constructors) U(S(k, P), S(k, p))`
170 ///
171 /// For example, if `P` is:
172 /// [
173 /// [Some(true), _],
174 /// [None, false],
175 /// ]
176 /// and `p` is [_, false], both `None` and `Some` constructors appear in the first
177 /// components of `P`. We will therefore try popping both constructors in turn: we
178 /// compute U([[true, _]], [_, false]) for the `Some` constructor, and U([[false]],
179 /// [false]) for the `None` constructor. The first case returns true, so we know that
180 /// `p` is useful for `P`. Indeed, it matches `[Some(false), _]` that wasn't matched
181 /// before.
182 ///
183 /// - If `p_1 == r_1 | r_2`, then the usefulness depends on each `r_i` separately:
184 /// `U(P, p) := U(P, (r_1, p_2, .., p_n))
185 /// || U(P, (r_2, p_2, .., p_n))`
186 ///
187 /// Modifications to the algorithm
188 /// ------------------------------
189 /// The algorithm in the paper doesn't cover some of the special cases that arise in Rust, for
190 /// example uninhabited types and variable-length slice patterns. These are drawn attention to
191 /// throughout the code below. I'll make a quick note here about how exhaustive integer matching is
192 /// accounted for, though.
193 ///
194 /// Exhaustive integer matching
195 /// ---------------------------
196 /// An integer type can be thought of as a (huge) sum type: 1 | 2 | 3 | ...
197 /// So to support exhaustive integer matching, we can make use of the logic in the paper for
198 /// OR-patterns. However, we obviously can't just treat ranges x..=y as individual sums, because
199 /// they are likely gigantic. So we instead treat ranges as constructors of the integers. This means
200 /// that we have a constructor *of* constructors (the integers themselves). We then need to work
201 /// through all the inductive step rules above, deriving how the ranges would be treated as
202 /// OR-patterns, and making sure that they're treated in the same way even when they're ranges.
203 /// There are really only four special cases here:
204 /// - When we match on a constructor that's actually a range, we have to treat it as if we would
205 /// an OR-pattern.
206 /// + It turns out that we can simply extend the case for single-value patterns in
207 /// `specialize` to either be *equal* to a value constructor, or *contained within* a range
208 /// constructor.
209 /// + When the pattern itself is a range, you just want to tell whether any of the values in
210 /// the pattern range coincide with values in the constructor range, which is precisely
211 /// intersection.
212 /// Since when encountering a range pattern for a value constructor, we also use inclusion, it
213 /// means that whenever the constructor is a value/range and the pattern is also a value/range,
214 /// we can simply use intersection to test usefulness.
215 /// - When we're testing for usefulness of a pattern and the pattern's first component is a
216 /// wildcard.
217 /// + If all the constructors appear in the matrix, we have a slight complication. By default,
218 /// the behaviour (i.e., a disjunction over specialised matrices for each constructor) is
219 /// invalid, because we want a disjunction over every *integer* in each range, not just a
220 /// disjunction over every range. This is a bit more tricky to deal with: essentially we need
221 /// to form equivalence classes of subranges of the constructor range for which the behaviour
222 /// of the matrix `P` and new pattern `p` are the same. This is described in more
223 /// detail in `split_grouped_constructors`.
224 /// + If some constructors are missing from the matrix, it turns out we don't need to do
225 /// anything special (because we know none of the integers are actually wildcards: i.e., we
226 /// can't span wildcards using ranges).
227 use self::Constructor::*;
228 use self::SliceKind::*;
229 use self::Usefulness::*;
230 use self::WitnessPreference::*;
231
232 use rustc_data_structures::captures::Captures;
233 use rustc_index::vec::Idx;
234
235 use super::{compare_const_vals, PatternFoldable, PatternFolder};
236 use super::{FieldPat, Pat, PatKind, PatRange};
237
238 use rustc_attr::{SignedInt, UnsignedInt};
239 use rustc_errors::ErrorReported;
240 use rustc_hir::def_id::DefId;
241 use rustc_hir::{HirId, RangeEnd};
242 use rustc_middle::mir::interpret::{truncate, AllocId, ConstValue, Pointer, Scalar};
243 use rustc_middle::mir::Field;
244 use rustc_middle::ty::layout::IntegerExt;
245 use rustc_middle::ty::{self, Const, Ty, TyCtxt, TypeFoldable, VariantDef};
246 use rustc_session::lint;
247 use rustc_span::{Span, DUMMY_SP};
248 use rustc_target::abi::{Integer, Size, VariantIdx};
249
250 use arena::TypedArena;
251
252 use smallvec::{smallvec, SmallVec};
253 use std::borrow::Cow;
254 use std::cmp::{self, max, min, Ordering};
255 use std::convert::TryInto;
256 use std::fmt;
257 use std::iter::{FromIterator, IntoIterator};
258 use std::ops::RangeInclusive;
259
260 crate fn expand_pattern<'a, 'tcx>(cx: &MatchCheckCtxt<'a, 'tcx>, pat: Pat<'tcx>) -> Pat<'tcx> {
261 LiteralExpander { tcx: cx.tcx, param_env: cx.param_env }.fold_pattern(&pat)
262 }
263
264 struct LiteralExpander<'tcx> {
265 tcx: TyCtxt<'tcx>,
266 param_env: ty::ParamEnv<'tcx>,
267 }
268
269 impl<'tcx> LiteralExpander<'tcx> {
270 /// Derefs `val` and potentially unsizes the value if `crty` is an array and `rty` a slice.
271 ///
272 /// `crty` and `rty` can differ because you can use array constants in the presence of slice
273 /// patterns. So the pattern may end up being a slice, but the constant is an array. We convert
274 /// the array to a slice in that case.
275 fn fold_const_value_deref(
276 &mut self,
277 val: ConstValue<'tcx>,
278 // the pattern's pointee type
279 rty: Ty<'tcx>,
280 // the constant's pointee type
281 crty: Ty<'tcx>,
282 ) -> ConstValue<'tcx> {
283 debug!("fold_const_value_deref {:?} {:?} {:?}", val, rty, crty);
284 match (val, &crty.kind, &rty.kind) {
285 // the easy case, deref a reference
286 (ConstValue::Scalar(p), x, y) if x == y => {
287 match p {
288 Scalar::Ptr(p) => {
289 let alloc = self.tcx.alloc_map.lock().unwrap_memory(p.alloc_id);
290 ConstValue::ByRef { alloc, offset: p.offset }
291 }
292 Scalar::Raw { .. } => {
293 let layout = self.tcx.layout_of(self.param_env.and(rty)).unwrap();
294 if layout.is_zst() {
295 // Deref of a reference to a ZST is a nop.
296 ConstValue::Scalar(Scalar::zst())
297 } else {
298 // FIXME(oli-obk): this is reachable for `const FOO: &&&u32 = &&&42;`
299 bug!("cannot deref {:#?}, {} -> {}", val, crty, rty);
300 }
301 }
302 }
303 }
304 // unsize array to slice if pattern is array but match value or other patterns are slice
305 (ConstValue::Scalar(Scalar::Ptr(p)), ty::Array(t, n), ty::Slice(u)) => {
306 assert_eq!(t, u);
307 ConstValue::Slice {
308 data: self.tcx.alloc_map.lock().unwrap_memory(p.alloc_id),
309 start: p.offset.bytes().try_into().unwrap(),
310 end: n.eval_usize(self.tcx, ty::ParamEnv::empty()).try_into().unwrap(),
311 }
312 }
313 // fat pointers stay the same
314 (ConstValue::Slice { .. }, _, _)
315 | (_, ty::Slice(_), ty::Slice(_))
316 | (_, ty::Str, ty::Str) => val,
317 // FIXME(oli-obk): this is reachable for `const FOO: &&&u32 = &&&42;` being used
318 _ => bug!("cannot deref {:#?}, {} -> {}", val, crty, rty),
319 }
320 }
321 }
322
323 impl<'tcx> PatternFolder<'tcx> for LiteralExpander<'tcx> {
324 fn fold_pattern(&mut self, pat: &Pat<'tcx>) -> Pat<'tcx> {
325 debug!("fold_pattern {:?} {:?} {:?}", pat, pat.ty.kind, pat.kind);
326 match (&pat.ty.kind, &*pat.kind) {
327 (
328 &ty::Ref(_, rty, _),
329 &PatKind::Constant {
330 value:
331 Const {
332 val: ty::ConstKind::Value(val),
333 ty: ty::TyS { kind: ty::Ref(_, crty, _), .. },
334 },
335 },
336 ) => Pat {
337 ty: pat.ty,
338 span: pat.span,
339 kind: box PatKind::Deref {
340 subpattern: Pat {
341 ty: rty,
342 span: pat.span,
343 kind: box PatKind::Constant {
344 value: Const::from_value(
345 self.tcx,
346 self.fold_const_value_deref(*val, rty, crty),
347 rty,
348 ),
349 },
350 },
351 },
352 },
353
354 (
355 &ty::Ref(_, rty, _),
356 &PatKind::Constant {
357 value: Const { val, ty: ty::TyS { kind: ty::Ref(_, crty, _), .. } },
358 },
359 ) => bug!("cannot deref {:#?}, {} -> {}", val, crty, rty),
360
361 (_, &PatKind::Binding { subpattern: Some(ref s), .. }) => s.fold_with(self),
362 (_, &PatKind::AscribeUserType { subpattern: ref s, .. }) => s.fold_with(self),
363 _ => pat.super_fold_with(self),
364 }
365 }
366 }
367
368 impl<'tcx> Pat<'tcx> {
369 pub(super) fn is_wildcard(&self) -> bool {
370 match *self.kind {
371 PatKind::Binding { subpattern: None, .. } | PatKind::Wild => true,
372 _ => false,
373 }
374 }
375 }
376
377 /// A row of a matrix. Rows of len 1 are very common, which is why `SmallVec[_; 2]`
378 /// works well.
379 #[derive(Debug, Clone)]
380 crate struct PatStack<'p, 'tcx>(SmallVec<[&'p Pat<'tcx>; 2]>);
381
382 impl<'p, 'tcx> PatStack<'p, 'tcx> {
383 crate fn from_pattern(pat: &'p Pat<'tcx>) -> Self {
384 PatStack(smallvec![pat])
385 }
386
387 fn from_vec(vec: SmallVec<[&'p Pat<'tcx>; 2]>) -> Self {
388 PatStack(vec)
389 }
390
391 fn from_slice(s: &[&'p Pat<'tcx>]) -> Self {
392 PatStack(SmallVec::from_slice(s))
393 }
394
395 fn is_empty(&self) -> bool {
396 self.0.is_empty()
397 }
398
399 fn len(&self) -> usize {
400 self.0.len()
401 }
402
403 fn head(&self) -> &'p Pat<'tcx> {
404 self.0[0]
405 }
406
407 fn to_tail(&self) -> Self {
408 PatStack::from_slice(&self.0[1..])
409 }
410
411 fn iter(&self) -> impl Iterator<Item = &Pat<'tcx>> {
412 self.0.iter().copied()
413 }
414
415 // If the first pattern is an or-pattern, expand this pattern. Otherwise, return `None`.
416 fn expand_or_pat(&self) -> Option<Vec<Self>> {
417 if self.is_empty() {
418 None
419 } else if let PatKind::Or { pats } = &*self.head().kind {
420 Some(
421 pats.iter()
422 .map(|pat| {
423 let mut new_patstack = PatStack::from_pattern(pat);
424 new_patstack.0.extend_from_slice(&self.0[1..]);
425 new_patstack
426 })
427 .collect(),
428 )
429 } else {
430 None
431 }
432 }
433
434 /// This computes `D(self)`. See top of the file for explanations.
435 fn specialize_wildcard(&self) -> Option<Self> {
436 if self.head().is_wildcard() { Some(self.to_tail()) } else { None }
437 }
438
439 /// This computes `S(constructor, self)`. See top of the file for explanations.
440 fn specialize_constructor(
441 &self,
442 cx: &mut MatchCheckCtxt<'p, 'tcx>,
443 constructor: &Constructor<'tcx>,
444 ctor_wild_subpatterns: &'p [Pat<'tcx>],
445 ) -> Option<PatStack<'p, 'tcx>> {
446 let new_heads = specialize_one_pattern(cx, self.head(), constructor, ctor_wild_subpatterns);
447 new_heads.map(|mut new_head| {
448 new_head.0.extend_from_slice(&self.0[1..]);
449 new_head
450 })
451 }
452 }
453
454 impl<'p, 'tcx> Default for PatStack<'p, 'tcx> {
455 fn default() -> Self {
456 PatStack(smallvec![])
457 }
458 }
459
460 impl<'p, 'tcx> FromIterator<&'p Pat<'tcx>> for PatStack<'p, 'tcx> {
461 fn from_iter<T>(iter: T) -> Self
462 where
463 T: IntoIterator<Item = &'p Pat<'tcx>>,
464 {
465 PatStack(iter.into_iter().collect())
466 }
467 }
468
469 /// A 2D matrix.
470 #[derive(Clone)]
471 crate struct Matrix<'p, 'tcx>(Vec<PatStack<'p, 'tcx>>);
472
473 impl<'p, 'tcx> Matrix<'p, 'tcx> {
474 crate fn empty() -> Self {
475 Matrix(vec![])
476 }
477
478 /// Pushes a new row to the matrix. If the row starts with an or-pattern, this expands it.
479 crate fn push(&mut self, row: PatStack<'p, 'tcx>) {
480 if let Some(rows) = row.expand_or_pat() {
481 for row in rows {
482 // We recursively expand the or-patterns of the new rows.
483 // This is necessary as we might have `0 | (1 | 2)` or e.g., `x @ 0 | x @ (1 | 2)`.
484 self.push(row)
485 }
486 } else {
487 self.0.push(row);
488 }
489 }
490
491 /// Iterate over the first component of each row
492 fn heads<'a>(&'a self) -> impl Iterator<Item = &'a Pat<'tcx>> + Captures<'p> {
493 self.0.iter().map(|r| r.head())
494 }
495
496 /// This computes `D(self)`. See top of the file for explanations.
497 fn specialize_wildcard(&self) -> Self {
498 self.0.iter().filter_map(|r| r.specialize_wildcard()).collect()
499 }
500
501 /// This computes `S(constructor, self)`. See top of the file for explanations.
502 fn specialize_constructor(
503 &self,
504 cx: &mut MatchCheckCtxt<'p, 'tcx>,
505 constructor: &Constructor<'tcx>,
506 ctor_wild_subpatterns: &'p [Pat<'tcx>],
507 ) -> Matrix<'p, 'tcx> {
508 self.0
509 .iter()
510 .filter_map(|r| r.specialize_constructor(cx, constructor, ctor_wild_subpatterns))
511 .collect()
512 }
513 }
514
515 /// Pretty-printer for matrices of patterns, example:
516 /// +++++++++++++++++++++++++++++
517 /// + _ + [] +
518 /// +++++++++++++++++++++++++++++
519 /// + true + [First] +
520 /// +++++++++++++++++++++++++++++
521 /// + true + [Second(true)] +
522 /// +++++++++++++++++++++++++++++
523 /// + false + [_] +
524 /// +++++++++++++++++++++++++++++
525 /// + _ + [_, _, tail @ ..] +
526 /// +++++++++++++++++++++++++++++
527 impl<'p, 'tcx> fmt::Debug for Matrix<'p, 'tcx> {
528 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
529 write!(f, "\n")?;
530
531 let &Matrix(ref m) = self;
532 let pretty_printed_matrix: Vec<Vec<String>> =
533 m.iter().map(|row| row.iter().map(|pat| format!("{:?}", pat)).collect()).collect();
534
535 let column_count = m.iter().map(|row| row.len()).max().unwrap_or(0);
536 assert!(m.iter().all(|row| row.len() == column_count));
537 let column_widths: Vec<usize> = (0..column_count)
538 .map(|col| pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0))
539 .collect();
540
541 let total_width = column_widths.iter().cloned().sum::<usize>() + column_count * 3 + 1;
542 let br = "+".repeat(total_width);
543 write!(f, "{}\n", br)?;
544 for row in pretty_printed_matrix {
545 write!(f, "+")?;
546 for (column, pat_str) in row.into_iter().enumerate() {
547 write!(f, " ")?;
548 write!(f, "{:1$}", pat_str, column_widths[column])?;
549 write!(f, " +")?;
550 }
551 write!(f, "\n")?;
552 write!(f, "{}\n", br)?;
553 }
554 Ok(())
555 }
556 }
557
558 impl<'p, 'tcx> FromIterator<PatStack<'p, 'tcx>> for Matrix<'p, 'tcx> {
559 fn from_iter<T>(iter: T) -> Self
560 where
561 T: IntoIterator<Item = PatStack<'p, 'tcx>>,
562 {
563 let mut matrix = Matrix::empty();
564 for x in iter {
565 // Using `push` ensures we correctly expand or-patterns.
566 matrix.push(x);
567 }
568 matrix
569 }
570 }
571
572 crate struct MatchCheckCtxt<'a, 'tcx> {
573 crate tcx: TyCtxt<'tcx>,
574 /// The module in which the match occurs. This is necessary for
575 /// checking inhabited-ness of types because whether a type is (visibly)
576 /// inhabited can depend on whether it was defined in the current module or
577 /// not. E.g., `struct Foo { _private: ! }` cannot be seen to be empty
578 /// outside it's module and should not be matchable with an empty match
579 /// statement.
580 crate module: DefId,
581 param_env: ty::ParamEnv<'tcx>,
582 crate pattern_arena: &'a TypedArena<Pat<'tcx>>,
583 }
584
585 impl<'a, 'tcx> MatchCheckCtxt<'a, 'tcx> {
586 crate fn create_and_enter<R>(
587 tcx: TyCtxt<'tcx>,
588 param_env: ty::ParamEnv<'tcx>,
589 module: DefId,
590 f: impl FnOnce(MatchCheckCtxt<'_, 'tcx>) -> R,
591 ) -> R {
592 let pattern_arena = TypedArena::default();
593
594 f(MatchCheckCtxt { tcx, param_env, module, pattern_arena: &pattern_arena })
595 }
596
597 fn is_uninhabited(&self, ty: Ty<'tcx>) -> bool {
598 if self.tcx.features().exhaustive_patterns {
599 self.tcx.is_ty_uninhabited_from(self.module, ty, self.param_env)
600 } else {
601 false
602 }
603 }
604
605 // Returns whether the given type is an enum from another crate declared `#[non_exhaustive]`.
606 crate fn is_foreign_non_exhaustive_enum(&self, ty: Ty<'tcx>) -> bool {
607 match ty.kind {
608 ty::Adt(def, ..) => {
609 def.is_enum() && def.is_variant_list_non_exhaustive() && !def.did.is_local()
610 }
611 _ => false,
612 }
613 }
614
615 // Returns whether the given variant is from another crate and has its fields declared
616 // `#[non_exhaustive]`.
617 fn is_foreign_non_exhaustive_variant(&self, ty: Ty<'tcx>, variant: &VariantDef) -> bool {
618 match ty.kind {
619 ty::Adt(def, ..) => variant.is_field_list_non_exhaustive() && !def.did.is_local(),
620 _ => false,
621 }
622 }
623 }
624
625 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
626 enum SliceKind {
627 /// Patterns of length `n` (`[x, y]`).
628 FixedLen(u64),
629 /// Patterns using the `..` notation (`[x, .., y]`).
630 /// Captures any array constructor of `length >= i + j`.
631 /// In the case where `array_len` is `Some(_)`,
632 /// this indicates that we only care about the first `i` and the last `j` values of the array,
633 /// and everything in between is a wildcard `_`.
634 VarLen(u64, u64),
635 }
636
637 impl SliceKind {
638 fn arity(self) -> u64 {
639 match self {
640 FixedLen(length) => length,
641 VarLen(prefix, suffix) => prefix + suffix,
642 }
643 }
644
645 /// Whether this pattern includes patterns of length `other_len`.
646 fn covers_length(self, other_len: u64) -> bool {
647 match self {
648 FixedLen(len) => len == other_len,
649 VarLen(prefix, suffix) => prefix + suffix <= other_len,
650 }
651 }
652
653 /// Returns a collection of slices that spans the values covered by `self`, subtracted by the
654 /// values covered by `other`: i.e., `self \ other` (in set notation).
655 fn subtract(self, other: Self) -> SmallVec<[Self; 1]> {
656 // Remember, `VarLen(i, j)` covers the union of `FixedLen` from `i + j` to infinity.
657 // Naming: we remove the "neg" constructors from the "pos" ones.
658 match self {
659 FixedLen(pos_len) => {
660 if other.covers_length(pos_len) {
661 smallvec![]
662 } else {
663 smallvec![self]
664 }
665 }
666 VarLen(pos_prefix, pos_suffix) => {
667 let pos_len = pos_prefix + pos_suffix;
668 match other {
669 FixedLen(neg_len) => {
670 if neg_len < pos_len {
671 smallvec![self]
672 } else {
673 (pos_len..neg_len)
674 .map(FixedLen)
675 // We know that `neg_len + 1 >= pos_len >= pos_suffix`.
676 .chain(Some(VarLen(neg_len + 1 - pos_suffix, pos_suffix)))
677 .collect()
678 }
679 }
680 VarLen(neg_prefix, neg_suffix) => {
681 let neg_len = neg_prefix + neg_suffix;
682 if neg_len <= pos_len {
683 smallvec![]
684 } else {
685 (pos_len..neg_len).map(FixedLen).collect()
686 }
687 }
688 }
689 }
690 }
691 }
692 }
693
694 /// A constructor for array and slice patterns.
695 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
696 struct Slice {
697 /// `None` if the matched value is a slice, `Some(n)` if it is an array of size `n`.
698 array_len: Option<u64>,
699 /// The kind of pattern it is: fixed-length `[x, y]` or variable length `[x, .., y]`.
700 kind: SliceKind,
701 }
702
703 impl Slice {
704 /// Returns what patterns this constructor covers: either fixed-length patterns or
705 /// variable-length patterns.
706 fn pattern_kind(self) -> SliceKind {
707 match self {
708 Slice { array_len: Some(len), kind: VarLen(prefix, suffix) }
709 if prefix + suffix == len =>
710 {
711 FixedLen(len)
712 }
713 _ => self.kind,
714 }
715 }
716
717 /// Returns what values this constructor covers: either values of only one given length, or
718 /// values of length above a given length.
719 /// This is different from `pattern_kind()` because in some cases the pattern only takes into
720 /// account a subset of the entries of the array, but still only captures values of a given
721 /// length.
722 fn value_kind(self) -> SliceKind {
723 match self {
724 Slice { array_len: Some(len), kind: VarLen(_, _) } => FixedLen(len),
725 _ => self.kind,
726 }
727 }
728
729 fn arity(self) -> u64 {
730 self.pattern_kind().arity()
731 }
732 }
733
734 #[derive(Clone, Debug, PartialEq)]
735 enum Constructor<'tcx> {
736 /// The constructor of all patterns that don't vary by constructor,
737 /// e.g., struct patterns and fixed-length arrays.
738 Single,
739 /// Enum variants.
740 Variant(DefId),
741 /// Literal values.
742 ConstantValue(&'tcx ty::Const<'tcx>),
743 /// Ranges of integer literal values (`2`, `2..=5` or `2..5`).
744 IntRange(IntRange<'tcx>),
745 /// Ranges of floating-point literal values (`2.0..=5.2`).
746 FloatRange(&'tcx ty::Const<'tcx>, &'tcx ty::Const<'tcx>, RangeEnd),
747 /// Array and slice patterns.
748 Slice(Slice),
749 /// Fake extra constructor for enums that aren't allowed to be matched exhaustively.
750 NonExhaustive,
751 }
752
753 impl<'tcx> Constructor<'tcx> {
754 fn is_slice(&self) -> bool {
755 match self {
756 Slice(_) => true,
757 _ => false,
758 }
759 }
760
761 fn variant_index_for_adt<'a>(
762 &self,
763 cx: &MatchCheckCtxt<'a, 'tcx>,
764 adt: &'tcx ty::AdtDef,
765 ) -> VariantIdx {
766 match *self {
767 Variant(id) => adt.variant_index_with_id(id),
768 Single => {
769 assert!(!adt.is_enum());
770 VariantIdx::new(0)
771 }
772 ConstantValue(c) => cx.tcx.destructure_const(cx.param_env.and(c)).variant,
773 _ => bug!("bad constructor {:?} for adt {:?}", self, adt),
774 }
775 }
776
777 // Returns the set of constructors covered by `self` but not by
778 // anything in `other_ctors`.
779 fn subtract_ctors(&self, other_ctors: &Vec<Constructor<'tcx>>) -> Vec<Constructor<'tcx>> {
780 if other_ctors.is_empty() {
781 return vec![self.clone()];
782 }
783
784 match self {
785 // Those constructors can only match themselves.
786 Single | Variant(_) | ConstantValue(..) | FloatRange(..) => {
787 if other_ctors.iter().any(|c| c == self) { vec![] } else { vec![self.clone()] }
788 }
789 &Slice(slice) => {
790 let mut other_slices = other_ctors
791 .iter()
792 .filter_map(|c: &Constructor<'_>| match c {
793 Slice(slice) => Some(*slice),
794 // FIXME(oli-obk): implement `deref` for `ConstValue`
795 ConstantValue(..) => None,
796 _ => bug!("bad slice pattern constructor {:?}", c),
797 })
798 .map(Slice::value_kind);
799
800 match slice.value_kind() {
801 FixedLen(self_len) => {
802 if other_slices.any(|other_slice| other_slice.covers_length(self_len)) {
803 vec![]
804 } else {
805 vec![Slice(slice)]
806 }
807 }
808 kind @ VarLen(..) => {
809 let mut remaining_slices = vec![kind];
810
811 // For each used slice, subtract from the current set of slices.
812 for other_slice in other_slices {
813 remaining_slices = remaining_slices
814 .into_iter()
815 .flat_map(|remaining_slice| remaining_slice.subtract(other_slice))
816 .collect();
817
818 // If the constructors that have been considered so far already cover
819 // the entire range of `self`, no need to look at more constructors.
820 if remaining_slices.is_empty() {
821 break;
822 }
823 }
824
825 remaining_slices
826 .into_iter()
827 .map(|kind| Slice { array_len: slice.array_len, kind })
828 .map(Slice)
829 .collect()
830 }
831 }
832 }
833 IntRange(self_range) => {
834 let mut remaining_ranges = vec![self_range.clone()];
835 for other_ctor in other_ctors {
836 if let IntRange(other_range) = other_ctor {
837 if other_range == self_range {
838 // If the `self` range appears directly in a `match` arm, we can
839 // eliminate it straight away.
840 remaining_ranges = vec![];
841 } else {
842 // Otherwise explicitly compute the remaining ranges.
843 remaining_ranges = other_range.subtract_from(remaining_ranges);
844 }
845
846 // If the ranges that have been considered so far already cover the entire
847 // range of values, we can return early.
848 if remaining_ranges.is_empty() {
849 break;
850 }
851 }
852 }
853
854 // Convert the ranges back into constructors.
855 remaining_ranges.into_iter().map(IntRange).collect()
856 }
857 // This constructor is never covered by anything else
858 NonExhaustive => vec![NonExhaustive],
859 }
860 }
861
862 /// This returns one wildcard pattern for each argument to this constructor.
863 ///
864 /// This must be consistent with `apply`, `specialize_one_pattern`, and `arity`.
865 fn wildcard_subpatterns<'a>(
866 &self,
867 cx: &MatchCheckCtxt<'a, 'tcx>,
868 ty: Ty<'tcx>,
869 ) -> Vec<Pat<'tcx>> {
870 debug!("wildcard_subpatterns({:#?}, {:?})", self, ty);
871
872 match self {
873 Single | Variant(_) => match ty.kind {
874 ty::Tuple(ref fs) => {
875 fs.into_iter().map(|t| t.expect_ty()).map(Pat::wildcard_from_ty).collect()
876 }
877 ty::Ref(_, rty, _) => vec![Pat::wildcard_from_ty(rty)],
878 ty::Adt(adt, substs) => {
879 if adt.is_box() {
880 // Use T as the sub pattern type of Box<T>.
881 vec![Pat::wildcard_from_ty(substs.type_at(0))]
882 } else {
883 let variant = &adt.variants[self.variant_index_for_adt(cx, adt)];
884 let is_non_exhaustive = cx.is_foreign_non_exhaustive_variant(ty, variant);
885 variant
886 .fields
887 .iter()
888 .map(|field| {
889 let is_visible = adt.is_enum()
890 || field.vis.is_accessible_from(cx.module, cx.tcx);
891 let is_uninhabited = cx.is_uninhabited(field.ty(cx.tcx, substs));
892 match (is_visible, is_non_exhaustive, is_uninhabited) {
893 // Treat all uninhabited types in non-exhaustive variants as
894 // `TyErr`.
895 (_, true, true) => cx.tcx.types.err,
896 // Treat all non-visible fields as `TyErr`. They can't appear
897 // in any other pattern from this match (because they are
898 // private), so their type does not matter - but we don't want
899 // to know they are uninhabited.
900 (false, ..) => cx.tcx.types.err,
901 (true, ..) => {
902 let ty = field.ty(cx.tcx, substs);
903 match ty.kind {
904 // If the field type returned is an array of an unknown
905 // size return an TyErr.
906 ty::Array(_, len)
907 if len
908 .try_eval_usize(cx.tcx, cx.param_env)
909 .is_none() =>
910 {
911 cx.tcx.types.err
912 }
913 _ => ty,
914 }
915 }
916 }
917 })
918 .map(Pat::wildcard_from_ty)
919 .collect()
920 }
921 }
922 _ => vec![],
923 },
924 Slice(_) => match ty.kind {
925 ty::Slice(ty) | ty::Array(ty, _) => {
926 let arity = self.arity(cx, ty);
927 (0..arity).map(|_| Pat::wildcard_from_ty(ty)).collect()
928 }
929 _ => bug!("bad slice pattern {:?} {:?}", self, ty),
930 },
931 ConstantValue(..) | FloatRange(..) | IntRange(..) | NonExhaustive => vec![],
932 }
933 }
934
935 /// This computes the arity of a constructor. The arity of a constructor
936 /// is how many subpattern patterns of that constructor should be expanded to.
937 ///
938 /// For instance, a tuple pattern `(_, 42, Some([]))` has the arity of 3.
939 /// A struct pattern's arity is the number of fields it contains, etc.
940 ///
941 /// This must be consistent with `wildcard_subpatterns`, `specialize_one_pattern`, and `apply`.
942 fn arity<'a>(&self, cx: &MatchCheckCtxt<'a, 'tcx>, ty: Ty<'tcx>) -> u64 {
943 debug!("Constructor::arity({:#?}, {:?})", self, ty);
944 match self {
945 Single | Variant(_) => match ty.kind {
946 ty::Tuple(ref fs) => fs.len() as u64,
947 ty::Slice(..) | ty::Array(..) => bug!("bad slice pattern {:?} {:?}", self, ty),
948 ty::Ref(..) => 1,
949 ty::Adt(adt, _) => {
950 adt.variants[self.variant_index_for_adt(cx, adt)].fields.len() as u64
951 }
952 _ => 0,
953 },
954 Slice(slice) => slice.arity(),
955 ConstantValue(..) | FloatRange(..) | IntRange(..) | NonExhaustive => 0,
956 }
957 }
958
959 /// Apply a constructor to a list of patterns, yielding a new pattern. `pats`
960 /// must have as many elements as this constructor's arity.
961 ///
962 /// This must be consistent with `wildcard_subpatterns`, `specialize_one_pattern`, and `arity`.
963 ///
964 /// Examples:
965 /// `self`: `Constructor::Single`
966 /// `ty`: `(u32, u32, u32)`
967 /// `pats`: `[10, 20, _]`
968 /// returns `(10, 20, _)`
969 ///
970 /// `self`: `Constructor::Variant(Option::Some)`
971 /// `ty`: `Option<bool>`
972 /// `pats`: `[false]`
973 /// returns `Some(false)`
974 fn apply<'a>(
975 &self,
976 cx: &MatchCheckCtxt<'a, 'tcx>,
977 ty: Ty<'tcx>,
978 pats: impl IntoIterator<Item = Pat<'tcx>>,
979 ) -> Pat<'tcx> {
980 let mut subpatterns = pats.into_iter();
981
982 let pat = match self {
983 Single | Variant(_) => match ty.kind {
984 ty::Adt(..) | ty::Tuple(..) => {
985 let subpatterns = subpatterns
986 .enumerate()
987 .map(|(i, p)| FieldPat { field: Field::new(i), pattern: p })
988 .collect();
989
990 if let ty::Adt(adt, substs) = ty.kind {
991 if adt.is_enum() {
992 PatKind::Variant {
993 adt_def: adt,
994 substs,
995 variant_index: self.variant_index_for_adt(cx, adt),
996 subpatterns,
997 }
998 } else {
999 PatKind::Leaf { subpatterns }
1000 }
1001 } else {
1002 PatKind::Leaf { subpatterns }
1003 }
1004 }
1005 ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.next().unwrap() },
1006 ty::Slice(_) | ty::Array(..) => bug!("bad slice pattern {:?} {:?}", self, ty),
1007 _ => PatKind::Wild,
1008 },
1009 Slice(slice) => match slice.pattern_kind() {
1010 FixedLen(_) => {
1011 PatKind::Slice { prefix: subpatterns.collect(), slice: None, suffix: vec![] }
1012 }
1013 VarLen(prefix, _) => {
1014 let mut prefix: Vec<_> = subpatterns.by_ref().take(prefix as usize).collect();
1015 if slice.array_len.is_some() {
1016 // Improves diagnostics a bit: if the type is a known-size array, instead
1017 // of reporting `[x, _, .., _, y]`, we prefer to report `[x, .., y]`.
1018 // This is incorrect if the size is not known, since `[_, ..]` captures
1019 // arrays of lengths `>= 1` whereas `[..]` captures any length.
1020 while !prefix.is_empty() && prefix.last().unwrap().is_wildcard() {
1021 prefix.pop();
1022 }
1023 }
1024 let suffix: Vec<_> = if slice.array_len.is_some() {
1025 // Same as above.
1026 subpatterns.skip_while(Pat::is_wildcard).collect()
1027 } else {
1028 subpatterns.collect()
1029 };
1030 let wild = Pat::wildcard_from_ty(ty);
1031 PatKind::Slice { prefix, slice: Some(wild), suffix }
1032 }
1033 },
1034 &ConstantValue(value) => PatKind::Constant { value },
1035 &FloatRange(lo, hi, end) => PatKind::Range(PatRange { lo, hi, end }),
1036 IntRange(range) => return range.to_pat(cx.tcx),
1037 NonExhaustive => PatKind::Wild,
1038 };
1039
1040 Pat { ty, span: DUMMY_SP, kind: Box::new(pat) }
1041 }
1042
1043 /// Like `apply`, but where all the subpatterns are wildcards `_`.
1044 fn apply_wildcards<'a>(&self, cx: &MatchCheckCtxt<'a, 'tcx>, ty: Ty<'tcx>) -> Pat<'tcx> {
1045 let subpatterns = self.wildcard_subpatterns(cx, ty).into_iter().rev();
1046 self.apply(cx, ty, subpatterns)
1047 }
1048 }
1049
1050 #[derive(Clone, Debug)]
1051 crate enum Usefulness<'tcx, 'p> {
1052 /// Carries a list of unreachable subpatterns. Used only in the presence of or-patterns.
1053 Useful(Vec<&'p Pat<'tcx>>),
1054 /// Carries a list of witnesses of non-exhaustiveness.
1055 UsefulWithWitness(Vec<Witness<'tcx>>),
1056 NotUseful,
1057 }
1058
1059 impl<'tcx, 'p> Usefulness<'tcx, 'p> {
1060 fn new_useful(preference: WitnessPreference) -> Self {
1061 match preference {
1062 ConstructWitness => UsefulWithWitness(vec![Witness(vec![])]),
1063 LeaveOutWitness => Useful(vec![]),
1064 }
1065 }
1066
1067 fn is_useful(&self) -> bool {
1068 match *self {
1069 NotUseful => false,
1070 _ => true,
1071 }
1072 }
1073
1074 fn apply_constructor(
1075 self,
1076 cx: &MatchCheckCtxt<'_, 'tcx>,
1077 ctor: &Constructor<'tcx>,
1078 ty: Ty<'tcx>,
1079 ) -> Self {
1080 match self {
1081 UsefulWithWitness(witnesses) => UsefulWithWitness(
1082 witnesses
1083 .into_iter()
1084 .map(|witness| witness.apply_constructor(cx, &ctor, ty))
1085 .collect(),
1086 ),
1087 x => x,
1088 }
1089 }
1090
1091 fn apply_wildcard(self, ty: Ty<'tcx>) -> Self {
1092 match self {
1093 UsefulWithWitness(witnesses) => {
1094 let wild = Pat::wildcard_from_ty(ty);
1095 UsefulWithWitness(
1096 witnesses
1097 .into_iter()
1098 .map(|mut witness| {
1099 witness.0.push(wild.clone());
1100 witness
1101 })
1102 .collect(),
1103 )
1104 }
1105 x => x,
1106 }
1107 }
1108
1109 fn apply_missing_ctors(
1110 self,
1111 cx: &MatchCheckCtxt<'_, 'tcx>,
1112 ty: Ty<'tcx>,
1113 missing_ctors: &MissingConstructors<'tcx>,
1114 ) -> Self {
1115 match self {
1116 UsefulWithWitness(witnesses) => {
1117 let new_patterns: Vec<_> =
1118 missing_ctors.iter().map(|ctor| ctor.apply_wildcards(cx, ty)).collect();
1119 // Add the new patterns to each witness
1120 UsefulWithWitness(
1121 witnesses
1122 .into_iter()
1123 .flat_map(|witness| {
1124 new_patterns.iter().map(move |pat| {
1125 let mut witness = witness.clone();
1126 witness.0.push(pat.clone());
1127 witness
1128 })
1129 })
1130 .collect(),
1131 )
1132 }
1133 x => x,
1134 }
1135 }
1136 }
1137
1138 #[derive(Copy, Clone, Debug)]
1139 crate enum WitnessPreference {
1140 ConstructWitness,
1141 LeaveOutWitness,
1142 }
1143
1144 #[derive(Copy, Clone, Debug)]
1145 struct PatCtxt<'tcx> {
1146 ty: Ty<'tcx>,
1147 span: Span,
1148 }
1149
1150 /// A witness of non-exhaustiveness for error reporting, represented
1151 /// as a list of patterns (in reverse order of construction) with
1152 /// wildcards inside to represent elements that can take any inhabitant
1153 /// of the type as a value.
1154 ///
1155 /// A witness against a list of patterns should have the same types
1156 /// and length as the pattern matched against. Because Rust `match`
1157 /// is always against a single pattern, at the end the witness will
1158 /// have length 1, but in the middle of the algorithm, it can contain
1159 /// multiple patterns.
1160 ///
1161 /// For example, if we are constructing a witness for the match against
1162 /// ```
1163 /// struct Pair(Option<(u32, u32)>, bool);
1164 ///
1165 /// match (p: Pair) {
1166 /// Pair(None, _) => {}
1167 /// Pair(_, false) => {}
1168 /// }
1169 /// ```
1170 ///
1171 /// We'll perform the following steps:
1172 /// 1. Start with an empty witness
1173 /// `Witness(vec![])`
1174 /// 2. Push a witness `Some(_)` against the `None`
1175 /// `Witness(vec![Some(_)])`
1176 /// 3. Push a witness `true` against the `false`
1177 /// `Witness(vec![Some(_), true])`
1178 /// 4. Apply the `Pair` constructor to the witnesses
1179 /// `Witness(vec![Pair(Some(_), true)])`
1180 ///
1181 /// The final `Pair(Some(_), true)` is then the resulting witness.
1182 #[derive(Clone, Debug)]
1183 crate struct Witness<'tcx>(Vec<Pat<'tcx>>);
1184
1185 impl<'tcx> Witness<'tcx> {
1186 crate fn single_pattern(self) -> Pat<'tcx> {
1187 assert_eq!(self.0.len(), 1);
1188 self.0.into_iter().next().unwrap()
1189 }
1190
1191 /// Constructs a partial witness for a pattern given a list of
1192 /// patterns expanded by the specialization step.
1193 ///
1194 /// When a pattern P is discovered to be useful, this function is used bottom-up
1195 /// to reconstruct a complete witness, e.g., a pattern P' that covers a subset
1196 /// of values, V, where each value in that set is not covered by any previously
1197 /// used patterns and is covered by the pattern P'. Examples:
1198 ///
1199 /// left_ty: tuple of 3 elements
1200 /// pats: [10, 20, _] => (10, 20, _)
1201 ///
1202 /// left_ty: struct X { a: (bool, &'static str), b: usize}
1203 /// pats: [(false, "foo"), 42] => X { a: (false, "foo"), b: 42 }
1204 fn apply_constructor<'a>(
1205 mut self,
1206 cx: &MatchCheckCtxt<'a, 'tcx>,
1207 ctor: &Constructor<'tcx>,
1208 ty: Ty<'tcx>,
1209 ) -> Self {
1210 let arity = ctor.arity(cx, ty);
1211 let pat = {
1212 let len = self.0.len() as u64;
1213 let pats = self.0.drain((len - arity) as usize..).rev();
1214 ctor.apply(cx, ty, pats)
1215 };
1216
1217 self.0.push(pat);
1218
1219 self
1220 }
1221 }
1222
1223 /// This determines the set of all possible constructors of a pattern matching
1224 /// values of type `left_ty`. For vectors, this would normally be an infinite set
1225 /// but is instead bounded by the maximum fixed length of slice patterns in
1226 /// the column of patterns being analyzed.
1227 ///
1228 /// We make sure to omit constructors that are statically impossible. E.g., for
1229 /// `Option<!>`, we do not include `Some(_)` in the returned list of constructors.
1230 /// Invariant: this returns an empty `Vec` if and only if the type is uninhabited (as determined by
1231 /// `cx.is_uninhabited()`).
1232 fn all_constructors<'a, 'tcx>(
1233 cx: &mut MatchCheckCtxt<'a, 'tcx>,
1234 pcx: PatCtxt<'tcx>,
1235 ) -> Vec<Constructor<'tcx>> {
1236 debug!("all_constructors({:?})", pcx.ty);
1237 let make_range = |start, end| {
1238 IntRange(
1239 // `unwrap()` is ok because we know the type is an integer.
1240 IntRange::from_range(cx.tcx, start, end, pcx.ty, &RangeEnd::Included, pcx.span)
1241 .unwrap(),
1242 )
1243 };
1244 match pcx.ty.kind {
1245 ty::Bool => {
1246 [true, false].iter().map(|&b| ConstantValue(ty::Const::from_bool(cx.tcx, b))).collect()
1247 }
1248 ty::Array(ref sub_ty, len) if len.try_eval_usize(cx.tcx, cx.param_env).is_some() => {
1249 let len = len.eval_usize(cx.tcx, cx.param_env);
1250 if len != 0 && cx.is_uninhabited(sub_ty) {
1251 vec![]
1252 } else {
1253 vec![Slice(Slice { array_len: Some(len), kind: VarLen(0, 0) })]
1254 }
1255 }
1256 // Treat arrays of a constant but unknown length like slices.
1257 ty::Array(ref sub_ty, _) | ty::Slice(ref sub_ty) => {
1258 let kind = if cx.is_uninhabited(sub_ty) { FixedLen(0) } else { VarLen(0, 0) };
1259 vec![Slice(Slice { array_len: None, kind })]
1260 }
1261 ty::Adt(def, substs) if def.is_enum() => {
1262 let ctors: Vec<_> = if cx.tcx.features().exhaustive_patterns {
1263 // If `exhaustive_patterns` is enabled, we exclude variants known to be
1264 // uninhabited.
1265 def.variants
1266 .iter()
1267 .filter(|v| {
1268 !v.uninhabited_from(cx.tcx, substs, def.adt_kind(), cx.param_env)
1269 .contains(cx.tcx, cx.module)
1270 })
1271 .map(|v| Variant(v.def_id))
1272 .collect()
1273 } else {
1274 def.variants.iter().map(|v| Variant(v.def_id)).collect()
1275 };
1276
1277 // If the enum is declared as `#[non_exhaustive]`, we treat it as if it had an
1278 // additional "unknown" constructor.
1279 // There is no point in enumerating all possible variants, because the user can't
1280 // actually match against them all themselves. So we always return only the fictitious
1281 // constructor.
1282 // E.g., in an example like:
1283 // ```
1284 // let err: io::ErrorKind = ...;
1285 // match err {
1286 // io::ErrorKind::NotFound => {},
1287 // }
1288 // ```
1289 // we don't want to show every possible IO error, but instead have only `_` as the
1290 // witness.
1291 let is_declared_nonexhaustive = cx.is_foreign_non_exhaustive_enum(pcx.ty);
1292
1293 // If `exhaustive_patterns` is disabled and our scrutinee is an empty enum, we treat it
1294 // as though it had an "unknown" constructor to avoid exposing its emptyness. Note that
1295 // an empty match will still be considered exhaustive because that case is handled
1296 // separately in `check_match`.
1297 let is_secretly_empty =
1298 def.variants.is_empty() && !cx.tcx.features().exhaustive_patterns;
1299
1300 if is_secretly_empty || is_declared_nonexhaustive { vec![NonExhaustive] } else { ctors }
1301 }
1302 ty::Char => {
1303 vec![
1304 // The valid Unicode Scalar Value ranges.
1305 make_range('\u{0000}' as u128, '\u{D7FF}' as u128),
1306 make_range('\u{E000}' as u128, '\u{10FFFF}' as u128),
1307 ]
1308 }
1309 ty::Int(_) | ty::Uint(_)
1310 if pcx.ty.is_ptr_sized_integral()
1311 && !cx.tcx.features().precise_pointer_size_matching =>
1312 {
1313 // `usize`/`isize` are not allowed to be matched exhaustively unless the
1314 // `precise_pointer_size_matching` feature is enabled. So we treat those types like
1315 // `#[non_exhaustive]` enums by returning a special unmatcheable constructor.
1316 vec![NonExhaustive]
1317 }
1318 ty::Int(ity) => {
1319 let bits = Integer::from_attr(&cx.tcx, SignedInt(ity)).size().bits() as u128;
1320 let min = 1u128 << (bits - 1);
1321 let max = min - 1;
1322 vec![make_range(min, max)]
1323 }
1324 ty::Uint(uty) => {
1325 let size = Integer::from_attr(&cx.tcx, UnsignedInt(uty)).size();
1326 let max = truncate(u128::max_value(), size);
1327 vec![make_range(0, max)]
1328 }
1329 _ => {
1330 if cx.is_uninhabited(pcx.ty) {
1331 vec![]
1332 } else {
1333 vec![Single]
1334 }
1335 }
1336 }
1337 }
1338
1339 /// An inclusive interval, used for precise integer exhaustiveness checking.
1340 /// `IntRange`s always store a contiguous range. This means that values are
1341 /// encoded such that `0` encodes the minimum value for the integer,
1342 /// regardless of the signedness.
1343 /// For example, the pattern `-128..=127i8` is encoded as `0..=255`.
1344 /// This makes comparisons and arithmetic on interval endpoints much more
1345 /// straightforward. See `signed_bias` for details.
1346 ///
1347 /// `IntRange` is never used to encode an empty range or a "range" that wraps
1348 /// around the (offset) space: i.e., `range.lo <= range.hi`.
1349 #[derive(Clone, Debug)]
1350 struct IntRange<'tcx> {
1351 range: RangeInclusive<u128>,
1352 ty: Ty<'tcx>,
1353 span: Span,
1354 }
1355
1356 impl<'tcx> IntRange<'tcx> {
1357 #[inline]
1358 fn is_integral(ty: Ty<'_>) -> bool {
1359 match ty.kind {
1360 ty::Char | ty::Int(_) | ty::Uint(_) => true,
1361 _ => false,
1362 }
1363 }
1364
1365 fn is_singleton(&self) -> bool {
1366 self.range.start() == self.range.end()
1367 }
1368
1369 fn boundaries(&self) -> (u128, u128) {
1370 (*self.range.start(), *self.range.end())
1371 }
1372
1373 /// Don't treat `usize`/`isize` exhaustively unless the `precise_pointer_size_matching` feature
1374 /// is enabled.
1375 fn treat_exhaustively(&self, tcx: TyCtxt<'tcx>) -> bool {
1376 !self.ty.is_ptr_sized_integral() || tcx.features().precise_pointer_size_matching
1377 }
1378
1379 #[inline]
1380 fn integral_size_and_signed_bias(tcx: TyCtxt<'tcx>, ty: Ty<'_>) -> Option<(Size, u128)> {
1381 match ty.kind {
1382 ty::Char => Some((Size::from_bytes(4), 0)),
1383 ty::Int(ity) => {
1384 let size = Integer::from_attr(&tcx, SignedInt(ity)).size();
1385 Some((size, 1u128 << (size.bits() as u128 - 1)))
1386 }
1387 ty::Uint(uty) => Some((Integer::from_attr(&tcx, UnsignedInt(uty)).size(), 0)),
1388 _ => None,
1389 }
1390 }
1391
1392 #[inline]
1393 fn from_const(
1394 tcx: TyCtxt<'tcx>,
1395 param_env: ty::ParamEnv<'tcx>,
1396 value: &Const<'tcx>,
1397 span: Span,
1398 ) -> Option<IntRange<'tcx>> {
1399 if let Some((target_size, bias)) = Self::integral_size_and_signed_bias(tcx, value.ty) {
1400 let ty = value.ty;
1401 let val = (|| {
1402 if let ty::ConstKind::Value(ConstValue::Scalar(scalar)) = value.val {
1403 // For this specific pattern we can skip a lot of effort and go
1404 // straight to the result, after doing a bit of checking. (We
1405 // could remove this branch and just fall through, which
1406 // is more general but much slower.)
1407 if let Ok(bits) = scalar.to_bits_or_ptr(target_size, &tcx) {
1408 return Some(bits);
1409 }
1410 }
1411 // This is a more general form of the previous case.
1412 value.try_eval_bits(tcx, param_env, ty)
1413 })()?;
1414 let val = val ^ bias;
1415 Some(IntRange { range: val..=val, ty, span })
1416 } else {
1417 None
1418 }
1419 }
1420
1421 #[inline]
1422 fn from_range(
1423 tcx: TyCtxt<'tcx>,
1424 lo: u128,
1425 hi: u128,
1426 ty: Ty<'tcx>,
1427 end: &RangeEnd,
1428 span: Span,
1429 ) -> Option<IntRange<'tcx>> {
1430 if Self::is_integral(ty) {
1431 // Perform a shift if the underlying types are signed,
1432 // which makes the interval arithmetic simpler.
1433 let bias = IntRange::signed_bias(tcx, ty);
1434 let (lo, hi) = (lo ^ bias, hi ^ bias);
1435 let offset = (*end == RangeEnd::Excluded) as u128;
1436 if lo > hi || (lo == hi && *end == RangeEnd::Excluded) {
1437 // This should have been caught earlier by E0030.
1438 bug!("malformed range pattern: {}..={}", lo, (hi - offset));
1439 }
1440 Some(IntRange { range: lo..=(hi - offset), ty, span })
1441 } else {
1442 None
1443 }
1444 }
1445
1446 fn from_pat(
1447 tcx: TyCtxt<'tcx>,
1448 param_env: ty::ParamEnv<'tcx>,
1449 pat: &Pat<'tcx>,
1450 ) -> Option<IntRange<'tcx>> {
1451 match pat_constructor(tcx, param_env, pat)? {
1452 IntRange(range) => Some(range),
1453 _ => None,
1454 }
1455 }
1456
1457 // The return value of `signed_bias` should be XORed with an endpoint to encode/decode it.
1458 fn signed_bias(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> u128 {
1459 match ty.kind {
1460 ty::Int(ity) => {
1461 let bits = Integer::from_attr(&tcx, SignedInt(ity)).size().bits() as u128;
1462 1u128 << (bits - 1)
1463 }
1464 _ => 0,
1465 }
1466 }
1467
1468 /// Returns a collection of ranges that spans the values covered by `ranges`, subtracted
1469 /// by the values covered by `self`: i.e., `ranges \ self` (in set notation).
1470 fn subtract_from(&self, ranges: Vec<IntRange<'tcx>>) -> Vec<IntRange<'tcx>> {
1471 let mut remaining_ranges = vec![];
1472 let ty = self.ty;
1473 let span = self.span;
1474 let (lo, hi) = self.boundaries();
1475 for subrange in ranges {
1476 let (subrange_lo, subrange_hi) = subrange.range.into_inner();
1477 if lo > subrange_hi || subrange_lo > hi {
1478 // The pattern doesn't intersect with the subrange at all,
1479 // so the subrange remains untouched.
1480 remaining_ranges.push(IntRange { range: subrange_lo..=subrange_hi, ty, span });
1481 } else {
1482 if lo > subrange_lo {
1483 // The pattern intersects an upper section of the
1484 // subrange, so a lower section will remain.
1485 remaining_ranges.push(IntRange { range: subrange_lo..=(lo - 1), ty, span });
1486 }
1487 if hi < subrange_hi {
1488 // The pattern intersects a lower section of the
1489 // subrange, so an upper section will remain.
1490 remaining_ranges.push(IntRange { range: (hi + 1)..=subrange_hi, ty, span });
1491 }
1492 }
1493 }
1494 remaining_ranges
1495 }
1496
1497 fn is_subrange(&self, other: &Self) -> bool {
1498 other.range.start() <= self.range.start() && self.range.end() <= other.range.end()
1499 }
1500
1501 fn intersection(&self, tcx: TyCtxt<'tcx>, other: &Self) -> Option<Self> {
1502 let ty = self.ty;
1503 let (lo, hi) = self.boundaries();
1504 let (other_lo, other_hi) = other.boundaries();
1505 if self.treat_exhaustively(tcx) {
1506 if lo <= other_hi && other_lo <= hi {
1507 let span = other.span;
1508 Some(IntRange { range: max(lo, other_lo)..=min(hi, other_hi), ty, span })
1509 } else {
1510 None
1511 }
1512 } else {
1513 // If the range should not be treated exhaustively, fallback to checking for inclusion.
1514 if self.is_subrange(other) { Some(self.clone()) } else { None }
1515 }
1516 }
1517
1518 fn suspicious_intersection(&self, other: &Self) -> bool {
1519 // `false` in the following cases:
1520 // 1 ---- // 1 ---------- // 1 ---- // 1 ----
1521 // 2 ---------- // 2 ---- // 2 ---- // 2 ----
1522 //
1523 // The following are currently `false`, but could be `true` in the future (#64007):
1524 // 1 --------- // 1 ---------
1525 // 2 ---------- // 2 ----------
1526 //
1527 // `true` in the following cases:
1528 // 1 ------- // 1 -------
1529 // 2 -------- // 2 -------
1530 let (lo, hi) = self.boundaries();
1531 let (other_lo, other_hi) = other.boundaries();
1532 lo == other_hi || hi == other_lo
1533 }
1534
1535 fn to_pat(&self, tcx: TyCtxt<'tcx>) -> Pat<'tcx> {
1536 let (lo, hi) = self.boundaries();
1537
1538 let bias = IntRange::signed_bias(tcx, self.ty);
1539 let (lo, hi) = (lo ^ bias, hi ^ bias);
1540
1541 let ty = ty::ParamEnv::empty().and(self.ty);
1542 let lo_const = ty::Const::from_bits(tcx, lo, ty);
1543 let hi_const = ty::Const::from_bits(tcx, hi, ty);
1544
1545 let kind = if lo == hi {
1546 PatKind::Constant { value: lo_const }
1547 } else {
1548 PatKind::Range(PatRange { lo: lo_const, hi: hi_const, end: RangeEnd::Included })
1549 };
1550
1551 // This is a brand new pattern, so we don't reuse `self.span`.
1552 Pat { ty: self.ty, span: DUMMY_SP, kind: Box::new(kind) }
1553 }
1554 }
1555
1556 /// Ignore spans when comparing, they don't carry semantic information as they are only for lints.
1557 impl<'tcx> std::cmp::PartialEq for IntRange<'tcx> {
1558 fn eq(&self, other: &Self) -> bool {
1559 self.range == other.range && self.ty == other.ty
1560 }
1561 }
1562
1563 // A struct to compute a set of constructors equivalent to `all_ctors \ used_ctors`.
1564 struct MissingConstructors<'tcx> {
1565 all_ctors: Vec<Constructor<'tcx>>,
1566 used_ctors: Vec<Constructor<'tcx>>,
1567 }
1568
1569 impl<'tcx> MissingConstructors<'tcx> {
1570 fn new(all_ctors: Vec<Constructor<'tcx>>, used_ctors: Vec<Constructor<'tcx>>) -> Self {
1571 MissingConstructors { all_ctors, used_ctors }
1572 }
1573
1574 fn into_inner(self) -> (Vec<Constructor<'tcx>>, Vec<Constructor<'tcx>>) {
1575 (self.all_ctors, self.used_ctors)
1576 }
1577
1578 fn is_empty(&self) -> bool {
1579 self.iter().next().is_none()
1580 }
1581 /// Whether this contains all the constructors for the given type or only a
1582 /// subset.
1583 fn all_ctors_are_missing(&self) -> bool {
1584 self.used_ctors.is_empty()
1585 }
1586
1587 /// Iterate over all_ctors \ used_ctors
1588 fn iter<'a>(&'a self) -> impl Iterator<Item = Constructor<'tcx>> + Captures<'a> {
1589 self.all_ctors.iter().flat_map(move |req_ctor| req_ctor.subtract_ctors(&self.used_ctors))
1590 }
1591 }
1592
1593 impl<'tcx> fmt::Debug for MissingConstructors<'tcx> {
1594 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1595 let ctors: Vec<_> = self.iter().collect();
1596 write!(f, "{:?}", ctors)
1597 }
1598 }
1599
1600 /// Algorithm from http://moscova.inria.fr/~maranget/papers/warn/index.html.
1601 /// The algorithm from the paper has been modified to correctly handle empty
1602 /// types. The changes are:
1603 /// (0) We don't exit early if the pattern matrix has zero rows. We just
1604 /// continue to recurse over columns.
1605 /// (1) all_constructors will only return constructors that are statically
1606 /// possible. E.g., it will only return `Ok` for `Result<T, !>`.
1607 ///
1608 /// This finds whether a (row) vector `v` of patterns is 'useful' in relation
1609 /// to a set of such vectors `m` - this is defined as there being a set of
1610 /// inputs that will match `v` but not any of the sets in `m`.
1611 ///
1612 /// All the patterns at each column of the `matrix ++ v` matrix must
1613 /// have the same type, except that wildcard (PatKind::Wild) patterns
1614 /// with type `TyErr` are also allowed, even if the "type of the column"
1615 /// is not `TyErr`. That is used to represent private fields, as using their
1616 /// real type would assert that they are inhabited.
1617 ///
1618 /// This is used both for reachability checking (if a pattern isn't useful in
1619 /// relation to preceding patterns, it is not reachable) and exhaustiveness
1620 /// checking (if a wildcard pattern is useful in relation to a matrix, the
1621 /// matrix isn't exhaustive).
1622 ///
1623 /// `is_under_guard` is used to inform if the pattern has a guard. If it
1624 /// has one it must not be inserted into the matrix. This shouldn't be
1625 /// relied on for soundness.
1626 crate fn is_useful<'p, 'tcx>(
1627 cx: &mut MatchCheckCtxt<'p, 'tcx>,
1628 matrix: &Matrix<'p, 'tcx>,
1629 v: &PatStack<'p, 'tcx>,
1630 witness_preference: WitnessPreference,
1631 hir_id: HirId,
1632 is_under_guard: bool,
1633 is_top_level: bool,
1634 ) -> Usefulness<'tcx, 'p> {
1635 let &Matrix(ref rows) = matrix;
1636 debug!("is_useful({:#?}, {:#?})", matrix, v);
1637
1638 // The base case. We are pattern-matching on () and the return value is
1639 // based on whether our matrix has a row or not.
1640 // NOTE: This could potentially be optimized by checking rows.is_empty()
1641 // first and then, if v is non-empty, the return value is based on whether
1642 // the type of the tuple we're checking is inhabited or not.
1643 if v.is_empty() {
1644 return if rows.is_empty() {
1645 Usefulness::new_useful(witness_preference)
1646 } else {
1647 NotUseful
1648 };
1649 };
1650
1651 assert!(rows.iter().all(|r| r.len() == v.len()));
1652
1653 // If the first pattern is an or-pattern, expand it.
1654 if let Some(vs) = v.expand_or_pat() {
1655 // We need to push the already-seen patterns into the matrix in order to detect redundant
1656 // branches like `Some(_) | Some(0)`. We also keep track of the unreachable subpatterns.
1657 let mut matrix = matrix.clone();
1658 let mut unreachable_pats = Vec::new();
1659 let mut any_is_useful = false;
1660 for v in vs {
1661 let res = is_useful(cx, &matrix, &v, witness_preference, hir_id, is_under_guard, false);
1662 match res {
1663 Useful(pats) => {
1664 any_is_useful = true;
1665 unreachable_pats.extend(pats);
1666 }
1667 NotUseful => unreachable_pats.push(v.head()),
1668 UsefulWithWitness(_) => {
1669 bug!("Encountered or-pat in `v` during exhaustiveness checking")
1670 }
1671 }
1672 // If pattern has a guard don't add it to the matrix
1673 if !is_under_guard {
1674 matrix.push(v);
1675 }
1676 }
1677 return if any_is_useful { Useful(unreachable_pats) } else { NotUseful };
1678 }
1679
1680 let (ty, span) = matrix
1681 .heads()
1682 .map(|r| (r.ty, r.span))
1683 .find(|(ty, _)| !ty.references_error())
1684 .unwrap_or((v.head().ty, v.head().span));
1685 let pcx = PatCtxt {
1686 // TyErr is used to represent the type of wildcard patterns matching
1687 // against inaccessible (private) fields of structs, so that we won't
1688 // be able to observe whether the types of the struct's fields are
1689 // inhabited.
1690 //
1691 // If the field is truly inaccessible, then all the patterns
1692 // matching against it must be wildcard patterns, so its type
1693 // does not matter.
1694 //
1695 // However, if we are matching against non-wildcard patterns, we
1696 // need to know the real type of the field so we can specialize
1697 // against it. This primarily occurs through constants - they
1698 // can include contents for fields that are inaccessible at the
1699 // location of the match. In that case, the field's type is
1700 // inhabited - by the constant - so we can just use it.
1701 //
1702 // FIXME: this might lead to "unstable" behavior with macro hygiene
1703 // introducing uninhabited patterns for inaccessible fields. We
1704 // need to figure out how to model that.
1705 ty,
1706 span,
1707 };
1708
1709 debug!("is_useful_expand_first_col: pcx={:#?}, expanding {:#?}", pcx, v.head());
1710
1711 if let Some(constructor) = pat_constructor(cx.tcx, cx.param_env, v.head()) {
1712 debug!("is_useful - expanding constructor: {:#?}", constructor);
1713 split_grouped_constructors(
1714 cx.tcx,
1715 cx.param_env,
1716 pcx,
1717 vec![constructor],
1718 matrix,
1719 pcx.span,
1720 Some(hir_id),
1721 )
1722 .into_iter()
1723 .map(|c| {
1724 is_useful_specialized(
1725 cx,
1726 matrix,
1727 v,
1728 c,
1729 pcx.ty,
1730 witness_preference,
1731 hir_id,
1732 is_under_guard,
1733 )
1734 })
1735 .find(|result| result.is_useful())
1736 .unwrap_or(NotUseful)
1737 } else {
1738 debug!("is_useful - expanding wildcard");
1739
1740 let used_ctors: Vec<Constructor<'_>> =
1741 matrix.heads().filter_map(|p| pat_constructor(cx.tcx, cx.param_env, p)).collect();
1742 debug!("used_ctors = {:#?}", used_ctors);
1743 // `all_ctors` are all the constructors for the given type, which
1744 // should all be represented (or caught with the wild pattern `_`).
1745 let all_ctors = all_constructors(cx, pcx);
1746 debug!("all_ctors = {:#?}", all_ctors);
1747
1748 // `missing_ctors` is the set of constructors from the same type as the
1749 // first column of `matrix` that are matched only by wildcard patterns
1750 // from the first column.
1751 //
1752 // Therefore, if there is some pattern that is unmatched by `matrix`,
1753 // it will still be unmatched if the first constructor is replaced by
1754 // any of the constructors in `missing_ctors`
1755
1756 // Missing constructors are those that are not matched by any non-wildcard patterns in the
1757 // current column. We only fully construct them on-demand, because they're rarely used and
1758 // can be big.
1759 let missing_ctors = MissingConstructors::new(all_ctors, used_ctors);
1760
1761 debug!("missing_ctors.empty()={:#?}", missing_ctors.is_empty(),);
1762
1763 if missing_ctors.is_empty() {
1764 let (all_ctors, _) = missing_ctors.into_inner();
1765 split_grouped_constructors(cx.tcx, cx.param_env, pcx, all_ctors, matrix, DUMMY_SP, None)
1766 .into_iter()
1767 .map(|c| {
1768 is_useful_specialized(
1769 cx,
1770 matrix,
1771 v,
1772 c,
1773 pcx.ty,
1774 witness_preference,
1775 hir_id,
1776 is_under_guard,
1777 )
1778 })
1779 .find(|result| result.is_useful())
1780 .unwrap_or(NotUseful)
1781 } else {
1782 let matrix = matrix.specialize_wildcard();
1783 let v = v.to_tail();
1784 let usefulness =
1785 is_useful(cx, &matrix, &v, witness_preference, hir_id, is_under_guard, false);
1786
1787 // In this case, there's at least one "free"
1788 // constructor that is only matched against by
1789 // wildcard patterns.
1790 //
1791 // There are 2 ways we can report a witness here.
1792 // Commonly, we can report all the "free"
1793 // constructors as witnesses, e.g., if we have:
1794 //
1795 // ```
1796 // enum Direction { N, S, E, W }
1797 // let Direction::N = ...;
1798 // ```
1799 //
1800 // we can report 3 witnesses: `S`, `E`, and `W`.
1801 //
1802 // However, there is a case where we don't want
1803 // to do this and instead report a single `_` witness:
1804 // if the user didn't actually specify a constructor
1805 // in this arm, e.g., in
1806 // ```
1807 // let x: (Direction, Direction, bool) = ...;
1808 // let (_, _, false) = x;
1809 // ```
1810 // we don't want to show all 16 possible witnesses
1811 // `(<direction-1>, <direction-2>, true)` - we are
1812 // satisfied with `(_, _, true)`. In this case,
1813 // `used_ctors` is empty.
1814 // The exception is: if we are at the top-level, for example in an empty match, we
1815 // sometimes prefer reporting the list of constructors instead of just `_`.
1816 let report_ctors_rather_than_wildcard = is_top_level && !IntRange::is_integral(pcx.ty);
1817 if missing_ctors.all_ctors_are_missing() && !report_ctors_rather_than_wildcard {
1818 // All constructors are unused. Add a wild pattern
1819 // rather than each individual constructor.
1820 usefulness.apply_wildcard(pcx.ty)
1821 } else {
1822 // Construct for each missing constructor a "wild" version of this
1823 // constructor, that matches everything that can be built with
1824 // it. For example, if `ctor` is a `Constructor::Variant` for
1825 // `Option::Some`, we get the pattern `Some(_)`.
1826 usefulness.apply_missing_ctors(cx, pcx.ty, &missing_ctors)
1827 }
1828 }
1829 }
1830 }
1831
1832 /// A shorthand for the `U(S(c, P), S(c, q))` operation from the paper. I.e., `is_useful` applied
1833 /// to the specialised version of both the pattern matrix `P` and the new pattern `q`.
1834 fn is_useful_specialized<'p, 'tcx>(
1835 cx: &mut MatchCheckCtxt<'p, 'tcx>,
1836 matrix: &Matrix<'p, 'tcx>,
1837 v: &PatStack<'p, 'tcx>,
1838 ctor: Constructor<'tcx>,
1839 lty: Ty<'tcx>,
1840 witness_preference: WitnessPreference,
1841 hir_id: HirId,
1842 is_under_guard: bool,
1843 ) -> Usefulness<'tcx, 'p> {
1844 debug!("is_useful_specialized({:#?}, {:#?}, {:?})", v, ctor, lty);
1845
1846 let ctor_wild_subpatterns =
1847 cx.pattern_arena.alloc_from_iter(ctor.wildcard_subpatterns(cx, lty));
1848 let matrix = matrix.specialize_constructor(cx, &ctor, ctor_wild_subpatterns);
1849 v.specialize_constructor(cx, &ctor, ctor_wild_subpatterns)
1850 .map(|v| is_useful(cx, &matrix, &v, witness_preference, hir_id, is_under_guard, false))
1851 .map(|u| u.apply_constructor(cx, &ctor, lty))
1852 .unwrap_or(NotUseful)
1853 }
1854
1855 /// Determines the constructor that the given pattern can be specialized to.
1856 /// Returns `None` in case of a catch-all, which can't be specialized.
1857 fn pat_constructor<'tcx>(
1858 tcx: TyCtxt<'tcx>,
1859 param_env: ty::ParamEnv<'tcx>,
1860 pat: &Pat<'tcx>,
1861 ) -> Option<Constructor<'tcx>> {
1862 match *pat.kind {
1863 PatKind::AscribeUserType { .. } => bug!(), // Handled by `expand_pattern`
1864 PatKind::Binding { .. } | PatKind::Wild => None,
1865 PatKind::Leaf { .. } | PatKind::Deref { .. } => Some(Single),
1866 PatKind::Variant { adt_def, variant_index, .. } => {
1867 Some(Variant(adt_def.variants[variant_index].def_id))
1868 }
1869 PatKind::Constant { value } => {
1870 if let Some(int_range) = IntRange::from_const(tcx, param_env, value, pat.span) {
1871 Some(IntRange(int_range))
1872 } else {
1873 match (value.val, &value.ty.kind) {
1874 (_, ty::Array(_, n)) => {
1875 let len = n.eval_usize(tcx, param_env);
1876 Some(Slice(Slice { array_len: Some(len), kind: FixedLen(len) }))
1877 }
1878 (ty::ConstKind::Value(ConstValue::Slice { start, end, .. }), ty::Slice(_)) => {
1879 let len = (end - start) as u64;
1880 Some(Slice(Slice { array_len: None, kind: FixedLen(len) }))
1881 }
1882 // FIXME(oli-obk): implement `deref` for `ConstValue`
1883 // (ty::ConstKind::Value(ConstValue::ByRef { .. }), ty::Slice(_)) => { ... }
1884 _ => Some(ConstantValue(value)),
1885 }
1886 }
1887 }
1888 PatKind::Range(PatRange { lo, hi, end }) => {
1889 let ty = lo.ty;
1890 if let Some(int_range) = IntRange::from_range(
1891 tcx,
1892 lo.eval_bits(tcx, param_env, lo.ty),
1893 hi.eval_bits(tcx, param_env, hi.ty),
1894 ty,
1895 &end,
1896 pat.span,
1897 ) {
1898 Some(IntRange(int_range))
1899 } else {
1900 Some(FloatRange(lo, hi, end))
1901 }
1902 }
1903 PatKind::Array { ref prefix, ref slice, ref suffix }
1904 | PatKind::Slice { ref prefix, ref slice, ref suffix } => {
1905 let array_len = match pat.ty.kind {
1906 ty::Array(_, length) => Some(length.eval_usize(tcx, param_env)),
1907 ty::Slice(_) => None,
1908 _ => span_bug!(pat.span, "bad ty {:?} for slice pattern", pat.ty),
1909 };
1910 let prefix = prefix.len() as u64;
1911 let suffix = suffix.len() as u64;
1912 let kind =
1913 if slice.is_some() { VarLen(prefix, suffix) } else { FixedLen(prefix + suffix) };
1914 Some(Slice(Slice { array_len, kind }))
1915 }
1916 PatKind::Or { .. } => bug!("Or-pattern should have been expanded earlier on."),
1917 }
1918 }
1919
1920 // checks whether a constant is equal to a user-written slice pattern. Only supports byte slices,
1921 // meaning all other types will compare unequal and thus equal patterns often do not cause the
1922 // second pattern to lint about unreachable match arms.
1923 fn slice_pat_covered_by_const<'tcx>(
1924 tcx: TyCtxt<'tcx>,
1925 _span: Span,
1926 const_val: &'tcx ty::Const<'tcx>,
1927 prefix: &[Pat<'tcx>],
1928 slice: &Option<Pat<'tcx>>,
1929 suffix: &[Pat<'tcx>],
1930 param_env: ty::ParamEnv<'tcx>,
1931 ) -> Result<bool, ErrorReported> {
1932 let const_val_val = if let ty::ConstKind::Value(val) = const_val.val {
1933 val
1934 } else {
1935 bug!(
1936 "slice_pat_covered_by_const: {:#?}, {:#?}, {:#?}, {:#?}",
1937 const_val,
1938 prefix,
1939 slice,
1940 suffix,
1941 )
1942 };
1943
1944 let data: &[u8] = match (const_val_val, &const_val.ty.kind) {
1945 (ConstValue::ByRef { offset, alloc, .. }, ty::Array(t, n)) => {
1946 assert_eq!(*t, tcx.types.u8);
1947 let n = n.eval_usize(tcx, param_env);
1948 let ptr = Pointer::new(AllocId(0), offset);
1949 alloc.get_bytes(&tcx, ptr, Size::from_bytes(n)).unwrap()
1950 }
1951 (ConstValue::Slice { data, start, end }, ty::Slice(t)) => {
1952 assert_eq!(*t, tcx.types.u8);
1953 let ptr = Pointer::new(AllocId(0), Size::from_bytes(start));
1954 data.get_bytes(&tcx, ptr, Size::from_bytes(end - start)).unwrap()
1955 }
1956 // FIXME(oli-obk): create a way to extract fat pointers from ByRef
1957 (_, ty::Slice(_)) => return Ok(false),
1958 _ => bug!(
1959 "slice_pat_covered_by_const: {:#?}, {:#?}, {:#?}, {:#?}",
1960 const_val,
1961 prefix,
1962 slice,
1963 suffix,
1964 ),
1965 };
1966
1967 let pat_len = prefix.len() + suffix.len();
1968 if data.len() < pat_len || (slice.is_none() && data.len() > pat_len) {
1969 return Ok(false);
1970 }
1971
1972 for (ch, pat) in data[..prefix.len()]
1973 .iter()
1974 .zip(prefix)
1975 .chain(data[data.len() - suffix.len()..].iter().zip(suffix))
1976 {
1977 if let box PatKind::Constant { value } = pat.kind {
1978 let b = value.eval_bits(tcx, param_env, pat.ty);
1979 assert_eq!(b as u8 as u128, b);
1980 if b as u8 != *ch {
1981 return Ok(false);
1982 }
1983 }
1984 }
1985
1986 Ok(true)
1987 }
1988
1989 /// For exhaustive integer matching, some constructors are grouped within other constructors
1990 /// (namely integer typed values are grouped within ranges). However, when specialising these
1991 /// constructors, we want to be specialising for the underlying constructors (the integers), not
1992 /// the groups (the ranges). Thus we need to split the groups up. Splitting them up naïvely would
1993 /// mean creating a separate constructor for every single value in the range, which is clearly
1994 /// impractical. However, observe that for some ranges of integers, the specialisation will be
1995 /// identical across all values in that range (i.e., there are equivalence classes of ranges of
1996 /// constructors based on their `is_useful_specialized` outcome). These classes are grouped by
1997 /// the patterns that apply to them (in the matrix `P`). We can split the range whenever the
1998 /// patterns that apply to that range (specifically: the patterns that *intersect* with that range)
1999 /// change.
2000 /// Our solution, therefore, is to split the range constructor into subranges at every single point
2001 /// the group of intersecting patterns changes (using the method described below).
2002 /// And voilà! We're testing precisely those ranges that we need to, without any exhaustive matching
2003 /// on actual integers. The nice thing about this is that the number of subranges is linear in the
2004 /// number of rows in the matrix (i.e., the number of cases in the `match` statement), so we don't
2005 /// need to be worried about matching over gargantuan ranges.
2006 ///
2007 /// Essentially, given the first column of a matrix representing ranges, looking like the following:
2008 ///
2009 /// |------| |----------| |-------| ||
2010 /// |-------| |-------| |----| ||
2011 /// |---------|
2012 ///
2013 /// We split the ranges up into equivalence classes so the ranges are no longer overlapping:
2014 ///
2015 /// |--|--|||-||||--||---|||-------| |-|||| ||
2016 ///
2017 /// The logic for determining how to split the ranges is fairly straightforward: we calculate
2018 /// boundaries for each interval range, sort them, then create constructors for each new interval
2019 /// between every pair of boundary points. (This essentially sums up to performing the intuitive
2020 /// merging operation depicted above.)
2021 ///
2022 /// `hir_id` is `None` when we're evaluating the wildcard pattern, do not lint for overlapping in
2023 /// ranges that case.
2024 ///
2025 /// This also splits variable-length slices into fixed-length slices.
2026 fn split_grouped_constructors<'p, 'tcx>(
2027 tcx: TyCtxt<'tcx>,
2028 param_env: ty::ParamEnv<'tcx>,
2029 pcx: PatCtxt<'tcx>,
2030 ctors: Vec<Constructor<'tcx>>,
2031 matrix: &Matrix<'p, 'tcx>,
2032 span: Span,
2033 hir_id: Option<HirId>,
2034 ) -> Vec<Constructor<'tcx>> {
2035 let ty = pcx.ty;
2036 let mut split_ctors = Vec::with_capacity(ctors.len());
2037 debug!("split_grouped_constructors({:#?}, {:#?})", matrix, ctors);
2038
2039 for ctor in ctors.into_iter() {
2040 match ctor {
2041 IntRange(ctor_range) if ctor_range.treat_exhaustively(tcx) => {
2042 // Fast-track if the range is trivial. In particular, don't do the overlapping
2043 // ranges check.
2044 if ctor_range.is_singleton() {
2045 split_ctors.push(IntRange(ctor_range));
2046 continue;
2047 }
2048
2049 /// Represents a border between 2 integers. Because the intervals spanning borders
2050 /// must be able to cover every integer, we need to be able to represent
2051 /// 2^128 + 1 such borders.
2052 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
2053 enum Border {
2054 JustBefore(u128),
2055 AfterMax,
2056 }
2057
2058 // A function for extracting the borders of an integer interval.
2059 fn range_borders(r: IntRange<'_>) -> impl Iterator<Item = Border> {
2060 let (lo, hi) = r.range.into_inner();
2061 let from = Border::JustBefore(lo);
2062 let to = match hi.checked_add(1) {
2063 Some(m) => Border::JustBefore(m),
2064 None => Border::AfterMax,
2065 };
2066 vec![from, to].into_iter()
2067 }
2068
2069 // Collect the span and range of all the intersecting ranges to lint on likely
2070 // incorrect range patterns. (#63987)
2071 let mut overlaps = vec![];
2072 // `borders` is the set of borders between equivalence classes: each equivalence
2073 // class lies between 2 borders.
2074 let row_borders = matrix
2075 .0
2076 .iter()
2077 .flat_map(|row| {
2078 IntRange::from_pat(tcx, param_env, row.head()).map(|r| (r, row.len()))
2079 })
2080 .flat_map(|(range, row_len)| {
2081 let intersection = ctor_range.intersection(tcx, &range);
2082 let should_lint = ctor_range.suspicious_intersection(&range);
2083 if let (Some(range), 1, true) = (&intersection, row_len, should_lint) {
2084 // FIXME: for now, only check for overlapping ranges on simple range
2085 // patterns. Otherwise with the current logic the following is detected
2086 // as overlapping:
2087 // match (10u8, true) {
2088 // (0 ..= 125, false) => {}
2089 // (126 ..= 255, false) => {}
2090 // (0 ..= 255, true) => {}
2091 // }
2092 overlaps.push(range.clone());
2093 }
2094 intersection
2095 })
2096 .flat_map(range_borders);
2097 let ctor_borders = range_borders(ctor_range.clone());
2098 let mut borders: Vec<_> = row_borders.chain(ctor_borders).collect();
2099 borders.sort_unstable();
2100
2101 lint_overlapping_patterns(tcx, hir_id, ctor_range, ty, overlaps);
2102
2103 // We're going to iterate through every adjacent pair of borders, making sure that
2104 // each represents an interval of nonnegative length, and convert each such
2105 // interval into a constructor.
2106 split_ctors.extend(
2107 borders
2108 .windows(2)
2109 .filter_map(|window| match (window[0], window[1]) {
2110 (Border::JustBefore(n), Border::JustBefore(m)) => {
2111 if n < m {
2112 Some(IntRange { range: n..=(m - 1), ty, span })
2113 } else {
2114 None
2115 }
2116 }
2117 (Border::JustBefore(n), Border::AfterMax) => {
2118 Some(IntRange { range: n..=u128::MAX, ty, span })
2119 }
2120 (Border::AfterMax, _) => None,
2121 })
2122 .map(IntRange),
2123 );
2124 }
2125 Slice(Slice { array_len, kind: VarLen(self_prefix, self_suffix) }) => {
2126 // The exhaustiveness-checking paper does not include any details on
2127 // checking variable-length slice patterns. However, they are matched
2128 // by an infinite collection of fixed-length array patterns.
2129 //
2130 // Checking the infinite set directly would take an infinite amount
2131 // of time. However, it turns out that for each finite set of
2132 // patterns `P`, all sufficiently large array lengths are equivalent:
2133 //
2134 // Each slice `s` with a "sufficiently-large" length `l ≥ L` that applies
2135 // to exactly the subset `Pₜ` of `P` can be transformed to a slice
2136 // `sₘ` for each sufficiently-large length `m` that applies to exactly
2137 // the same subset of `P`.
2138 //
2139 // Because of that, each witness for reachability-checking from one
2140 // of the sufficiently-large lengths can be transformed to an
2141 // equally-valid witness from any other length, so we only have
2142 // to check slice lengths from the "minimal sufficiently-large length"
2143 // and below.
2144 //
2145 // Note that the fact that there is a *single* `sₘ` for each `m`
2146 // not depending on the specific pattern in `P` is important: if
2147 // you look at the pair of patterns
2148 // `[true, ..]`
2149 // `[.., false]`
2150 // Then any slice of length ≥1 that matches one of these two
2151 // patterns can be trivially turned to a slice of any
2152 // other length ≥1 that matches them and vice-versa - for
2153 // but the slice from length 2 `[false, true]` that matches neither
2154 // of these patterns can't be turned to a slice from length 1 that
2155 // matches neither of these patterns, so we have to consider
2156 // slices from length 2 there.
2157 //
2158 // Now, to see that that length exists and find it, observe that slice
2159 // patterns are either "fixed-length" patterns (`[_, _, _]`) or
2160 // "variable-length" patterns (`[_, .., _]`).
2161 //
2162 // For fixed-length patterns, all slices with lengths *longer* than
2163 // the pattern's length have the same outcome (of not matching), so
2164 // as long as `L` is greater than the pattern's length we can pick
2165 // any `sₘ` from that length and get the same result.
2166 //
2167 // For variable-length patterns, the situation is more complicated,
2168 // because as seen above the precise value of `sₘ` matters.
2169 //
2170 // However, for each variable-length pattern `p` with a prefix of length
2171 // `plₚ` and suffix of length `slₚ`, only the first `plₚ` and the last
2172 // `slₚ` elements are examined.
2173 //
2174 // Therefore, as long as `L` is positive (to avoid concerns about empty
2175 // types), all elements after the maximum prefix length and before
2176 // the maximum suffix length are not examined by any variable-length
2177 // pattern, and therefore can be added/removed without affecting
2178 // them - creating equivalent patterns from any sufficiently-large
2179 // length.
2180 //
2181 // Of course, if fixed-length patterns exist, we must be sure
2182 // that our length is large enough to miss them all, so
2183 // we can pick `L = max(max(FIXED_LEN)+1, max(PREFIX_LEN) + max(SUFFIX_LEN))`
2184 //
2185 // for example, with the above pair of patterns, all elements
2186 // but the first and last can be added/removed, so any
2187 // witness of length ≥2 (say, `[false, false, true]`) can be
2188 // turned to a witness from any other length ≥2.
2189
2190 let mut max_prefix_len = self_prefix;
2191 let mut max_suffix_len = self_suffix;
2192 let mut max_fixed_len = 0;
2193
2194 let head_ctors =
2195 matrix.heads().filter_map(|pat| pat_constructor(tcx, param_env, pat));
2196 for ctor in head_ctors {
2197 if let Slice(slice) = ctor {
2198 match slice.pattern_kind() {
2199 FixedLen(len) => {
2200 max_fixed_len = cmp::max(max_fixed_len, len);
2201 }
2202 VarLen(prefix, suffix) => {
2203 max_prefix_len = cmp::max(max_prefix_len, prefix);
2204 max_suffix_len = cmp::max(max_suffix_len, suffix);
2205 }
2206 }
2207 }
2208 }
2209
2210 // For diagnostics, we keep the prefix and suffix lengths separate, so in the case
2211 // where `max_fixed_len + 1` is the largest, we adapt `max_prefix_len` accordingly,
2212 // so that `L = max_prefix_len + max_suffix_len`.
2213 if max_fixed_len + 1 >= max_prefix_len + max_suffix_len {
2214 // The subtraction can't overflow thanks to the above check.
2215 // The new `max_prefix_len` is also guaranteed to be larger than its previous
2216 // value.
2217 max_prefix_len = max_fixed_len + 1 - max_suffix_len;
2218 }
2219
2220 match array_len {
2221 Some(len) => {
2222 let kind = if max_prefix_len + max_suffix_len < len {
2223 VarLen(max_prefix_len, max_suffix_len)
2224 } else {
2225 FixedLen(len)
2226 };
2227 split_ctors.push(Slice(Slice { array_len, kind }));
2228 }
2229 None => {
2230 // `ctor` originally covered the range `(self_prefix +
2231 // self_suffix..infinity)`. We now split it into two: lengths smaller than
2232 // `max_prefix_len + max_suffix_len` are treated independently as
2233 // fixed-lengths slices, and lengths above are captured by a final VarLen
2234 // constructor.
2235 split_ctors.extend(
2236 (self_prefix + self_suffix..max_prefix_len + max_suffix_len)
2237 .map(|len| Slice(Slice { array_len, kind: FixedLen(len) })),
2238 );
2239 split_ctors.push(Slice(Slice {
2240 array_len,
2241 kind: VarLen(max_prefix_len, max_suffix_len),
2242 }));
2243 }
2244 }
2245 }
2246 // Any other constructor can be used unchanged.
2247 _ => split_ctors.push(ctor),
2248 }
2249 }
2250
2251 debug!("split_grouped_constructors(..)={:#?}", split_ctors);
2252 split_ctors
2253 }
2254
2255 fn lint_overlapping_patterns<'tcx>(
2256 tcx: TyCtxt<'tcx>,
2257 hir_id: Option<HirId>,
2258 ctor_range: IntRange<'tcx>,
2259 ty: Ty<'tcx>,
2260 overlaps: Vec<IntRange<'tcx>>,
2261 ) {
2262 if let (true, Some(hir_id)) = (!overlaps.is_empty(), hir_id) {
2263 tcx.struct_span_lint_hir(
2264 lint::builtin::OVERLAPPING_PATTERNS,
2265 hir_id,
2266 ctor_range.span,
2267 |lint| {
2268 let mut err = lint.build("multiple patterns covering the same range");
2269 err.span_label(ctor_range.span, "overlapping patterns");
2270 for int_range in overlaps {
2271 // Use the real type for user display of the ranges:
2272 err.span_label(
2273 int_range.span,
2274 &format!(
2275 "this range overlaps on `{}`",
2276 IntRange { range: int_range.range, ty, span: DUMMY_SP }.to_pat(tcx),
2277 ),
2278 );
2279 }
2280 err.emit();
2281 },
2282 );
2283 }
2284 }
2285
2286 fn constructor_covered_by_range<'tcx>(
2287 tcx: TyCtxt<'tcx>,
2288 param_env: ty::ParamEnv<'tcx>,
2289 ctor: &Constructor<'tcx>,
2290 pat: &Pat<'tcx>,
2291 ) -> Option<()> {
2292 if let Single = ctor {
2293 return Some(());
2294 }
2295
2296 let (pat_from, pat_to, pat_end, ty) = match *pat.kind {
2297 PatKind::Constant { value } => (value, value, RangeEnd::Included, value.ty),
2298 PatKind::Range(PatRange { lo, hi, end }) => (lo, hi, end, lo.ty),
2299 _ => bug!("`constructor_covered_by_range` called with {:?}", pat),
2300 };
2301 let (ctor_from, ctor_to, ctor_end) = match *ctor {
2302 ConstantValue(value) => (value, value, RangeEnd::Included),
2303 FloatRange(from, to, ctor_end) => (from, to, ctor_end),
2304 _ => bug!("`constructor_covered_by_range` called with {:?}", ctor),
2305 };
2306 trace!("constructor_covered_by_range {:#?}, {:#?}, {:#?}, {}", ctor, pat_from, pat_to, ty);
2307
2308 let to = compare_const_vals(tcx, ctor_to, pat_to, param_env, ty)?;
2309 let from = compare_const_vals(tcx, ctor_from, pat_from, param_env, ty)?;
2310 let intersects = (from == Ordering::Greater || from == Ordering::Equal)
2311 && (to == Ordering::Less || (pat_end == ctor_end && to == Ordering::Equal));
2312 if intersects { Some(()) } else { None }
2313 }
2314
2315 fn patterns_for_variant<'p, 'tcx>(
2316 cx: &mut MatchCheckCtxt<'p, 'tcx>,
2317 subpatterns: &'p [FieldPat<'tcx>],
2318 ctor_wild_subpatterns: &'p [Pat<'tcx>],
2319 is_non_exhaustive: bool,
2320 ) -> PatStack<'p, 'tcx> {
2321 let mut result: SmallVec<_> = ctor_wild_subpatterns.iter().collect();
2322
2323 for subpat in subpatterns {
2324 if !is_non_exhaustive || !cx.is_uninhabited(subpat.pattern.ty) {
2325 result[subpat.field.index()] = &subpat.pattern;
2326 }
2327 }
2328
2329 debug!(
2330 "patterns_for_variant({:#?}, {:#?}) = {:#?}",
2331 subpatterns, ctor_wild_subpatterns, result
2332 );
2333 PatStack::from_vec(result)
2334 }
2335
2336 /// This is the main specialization step. It expands the pattern
2337 /// into `arity` patterns based on the constructor. For most patterns, the step is trivial,
2338 /// for instance tuple patterns are flattened and box patterns expand into their inner pattern.
2339 /// Returns `None` if the pattern does not have the given constructor.
2340 ///
2341 /// OTOH, slice patterns with a subslice pattern (tail @ ..) can be expanded into multiple
2342 /// different patterns.
2343 /// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing
2344 /// fields filled with wild patterns.
2345 fn specialize_one_pattern<'p, 'tcx>(
2346 cx: &mut MatchCheckCtxt<'p, 'tcx>,
2347 pat: &'p Pat<'tcx>,
2348 constructor: &Constructor<'tcx>,
2349 ctor_wild_subpatterns: &'p [Pat<'tcx>],
2350 ) -> Option<PatStack<'p, 'tcx>> {
2351 if let NonExhaustive = constructor {
2352 // Only a wildcard pattern can match the special extra constructor
2353 return if pat.is_wildcard() { Some(PatStack::default()) } else { None };
2354 }
2355
2356 let result = match *pat.kind {
2357 PatKind::AscribeUserType { .. } => bug!(), // Handled by `expand_pattern`
2358
2359 PatKind::Binding { .. } | PatKind::Wild => Some(ctor_wild_subpatterns.iter().collect()),
2360
2361 PatKind::Variant { adt_def, variant_index, ref subpatterns, .. } => {
2362 let variant = &adt_def.variants[variant_index];
2363 let is_non_exhaustive = cx.is_foreign_non_exhaustive_variant(pat.ty, variant);
2364 Some(Variant(variant.def_id))
2365 .filter(|variant_constructor| variant_constructor == constructor)
2366 .map(|_| {
2367 patterns_for_variant(cx, subpatterns, ctor_wild_subpatterns, is_non_exhaustive)
2368 })
2369 }
2370
2371 PatKind::Leaf { ref subpatterns } => {
2372 Some(patterns_for_variant(cx, subpatterns, ctor_wild_subpatterns, false))
2373 }
2374
2375 PatKind::Deref { ref subpattern } => Some(PatStack::from_pattern(subpattern)),
2376
2377 PatKind::Constant { value } if constructor.is_slice() => {
2378 // We extract an `Option` for the pointer because slices of zero
2379 // elements don't necessarily point to memory, they are usually
2380 // just integers. The only time they should be pointing to memory
2381 // is when they are subslices of nonzero slices.
2382 let (alloc, offset, n, ty) = match value.ty.kind {
2383 ty::Array(t, n) => {
2384 let n = n.eval_usize(cx.tcx, cx.param_env);
2385 // Shortcut for `n == 0` where no matter what `alloc` and `offset` we produce,
2386 // the result would be exactly what we early return here.
2387 if n == 0 {
2388 if ctor_wild_subpatterns.len() as u64 == 0 {
2389 return Some(PatStack::from_slice(&[]));
2390 } else {
2391 return None;
2392 }
2393 }
2394 match value.val {
2395 ty::ConstKind::Value(ConstValue::ByRef { offset, alloc, .. }) => {
2396 (Cow::Borrowed(alloc), offset, n, t)
2397 }
2398 _ => span_bug!(pat.span, "array pattern is {:?}", value,),
2399 }
2400 }
2401 ty::Slice(t) => {
2402 match value.val {
2403 ty::ConstKind::Value(ConstValue::Slice { data, start, end }) => {
2404 let offset = Size::from_bytes(start);
2405 let n = (end - start) as u64;
2406 (Cow::Borrowed(data), offset, n, t)
2407 }
2408 ty::ConstKind::Value(ConstValue::ByRef { .. }) => {
2409 // FIXME(oli-obk): implement `deref` for `ConstValue`
2410 return None;
2411 }
2412 _ => span_bug!(
2413 pat.span,
2414 "slice pattern constant must be scalar pair but is {:?}",
2415 value,
2416 ),
2417 }
2418 }
2419 _ => span_bug!(
2420 pat.span,
2421 "unexpected const-val {:?} with ctor {:?}",
2422 value,
2423 constructor,
2424 ),
2425 };
2426 if ctor_wild_subpatterns.len() as u64 == n {
2427 // convert a constant slice/array pattern to a list of patterns.
2428 let layout = cx.tcx.layout_of(cx.param_env.and(ty)).ok()?;
2429 let ptr = Pointer::new(AllocId(0), offset);
2430 (0..n)
2431 .map(|i| {
2432 let ptr = ptr.offset(layout.size * i, &cx.tcx).ok()?;
2433 let scalar = alloc.read_scalar(&cx.tcx, ptr, layout.size).ok()?;
2434 let scalar = scalar.not_undef().ok()?;
2435 let value = ty::Const::from_scalar(cx.tcx, scalar, ty);
2436 let pattern =
2437 Pat { ty, span: pat.span, kind: box PatKind::Constant { value } };
2438 Some(&*cx.pattern_arena.alloc(pattern))
2439 })
2440 .collect()
2441 } else {
2442 None
2443 }
2444 }
2445
2446 PatKind::Constant { .. } | PatKind::Range { .. } => {
2447 // If the constructor is a:
2448 // - Single value: add a row if the pattern contains the constructor.
2449 // - Range: add a row if the constructor intersects the pattern.
2450 if let IntRange(ctor) = constructor {
2451 match IntRange::from_pat(cx.tcx, cx.param_env, pat) {
2452 Some(pat) => ctor.intersection(cx.tcx, &pat).map(|_| {
2453 // Constructor splitting should ensure that all intersections we encounter
2454 // are actually inclusions.
2455 assert!(ctor.is_subrange(&pat));
2456 PatStack::default()
2457 }),
2458 _ => None,
2459 }
2460 } else {
2461 // Fallback for non-ranges and ranges that involve
2462 // floating-point numbers, which are not conveniently handled
2463 // by `IntRange`. For these cases, the constructor may not be a
2464 // range so intersection actually devolves into being covered
2465 // by the pattern.
2466 constructor_covered_by_range(cx.tcx, cx.param_env, constructor, pat)
2467 .map(|()| PatStack::default())
2468 }
2469 }
2470
2471 PatKind::Array { ref prefix, ref slice, ref suffix }
2472 | PatKind::Slice { ref prefix, ref slice, ref suffix } => match *constructor {
2473 Slice(_) => {
2474 let pat_len = prefix.len() + suffix.len();
2475 if let Some(slice_count) = ctor_wild_subpatterns.len().checked_sub(pat_len) {
2476 if slice_count == 0 || slice.is_some() {
2477 Some(
2478 prefix
2479 .iter()
2480 .chain(
2481 ctor_wild_subpatterns
2482 .iter()
2483 .skip(prefix.len())
2484 .take(slice_count)
2485 .chain(suffix.iter()),
2486 )
2487 .collect(),
2488 )
2489 } else {
2490 None
2491 }
2492 } else {
2493 None
2494 }
2495 }
2496 ConstantValue(cv) => {
2497 match slice_pat_covered_by_const(
2498 cx.tcx,
2499 pat.span,
2500 cv,
2501 prefix,
2502 slice,
2503 suffix,
2504 cx.param_env,
2505 ) {
2506 Ok(true) => Some(PatStack::default()),
2507 Ok(false) => None,
2508 Err(ErrorReported) => None,
2509 }
2510 }
2511 _ => span_bug!(pat.span, "unexpected ctor {:?} for slice pat", constructor),
2512 },
2513
2514 PatKind::Or { .. } => bug!("Or-pattern should have been expanded earlier on."),
2515 };
2516 debug!("specialize({:#?}, {:#?}) = {:#?}", pat, ctor_wild_subpatterns, result);
2517
2518 result
2519 }