]> git.proxmox.com Git - rustc.git/blob - src/librustc_privacy/lib.rs
New upstream version 1.39.0+dfsg1
[rustc.git] / src / librustc_privacy / lib.rs
1 #![doc(html_root_url = "https://doc.rust-lang.org/nightly/")]
2
3 #![feature(in_band_lifetimes)]
4 #![feature(nll)]
5
6 #![recursion_limit="256"]
7
8 #[macro_use] extern crate syntax;
9
10 use rustc::bug;
11 use rustc::hir::{self, Node, PatKind, AssocItemKind};
12 use rustc::hir::def::{Res, DefKind};
13 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, CrateNum, DefId};
14 use rustc::hir::intravisit::{self, Visitor, NestedVisitorMap};
15 use rustc::hir::itemlikevisit::DeepVisitor;
16 use rustc::lint;
17 use rustc::middle::privacy::{AccessLevel, AccessLevels};
18 use rustc::ty::{self, TyCtxt, Ty, TraitRef, TypeFoldable, GenericParamDefKind};
19 use rustc::ty::fold::TypeVisitor;
20 use rustc::ty::query::Providers;
21 use rustc::ty::subst::InternalSubsts;
22 use rustc::util::nodemap::HirIdSet;
23 use rustc_data_structures::fx::FxHashSet;
24 use syntax::ast::Ident;
25 use syntax::attr;
26 use syntax::symbol::{kw, sym};
27 use syntax_pos::hygiene::Transparency;
28 use syntax_pos::Span;
29
30 use std::{cmp, fmt, mem};
31 use std::marker::PhantomData;
32
33 pub mod error_codes;
34
35 ////////////////////////////////////////////////////////////////////////////////
36 /// Generic infrastructure used to implement specific visitors below.
37 ////////////////////////////////////////////////////////////////////////////////
38
39 /// Implemented to visit all `DefId`s in a type.
40 /// Visiting `DefId`s is useful because visibilities and reachabilities are attached to them.
41 /// The idea is to visit "all components of a type", as documented in
42 /// https://github.com/rust-lang/rfcs/blob/master/text/2145-type-privacy.md#how-to-determine-visibility-of-a-type.
43 /// The default type visitor (`TypeVisitor`) does most of the job, but it has some shortcomings.
44 /// First, it doesn't have overridable `fn visit_trait_ref`, so we have to catch trait `DefId`s
45 /// manually. Second, it doesn't visit some type components like signatures of fn types, or traits
46 /// in `impl Trait`, see individual comments in `DefIdVisitorSkeleton::visit_ty`.
47 trait DefIdVisitor<'tcx> {
48 fn tcx(&self) -> TyCtxt<'tcx>;
49 fn shallow(&self) -> bool { false }
50 fn skip_assoc_tys(&self) -> bool { false }
51 fn visit_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool;
52
53 /// Not overridden, but used to actually visit types and traits.
54 fn skeleton(&mut self) -> DefIdVisitorSkeleton<'_, 'tcx, Self> {
55 DefIdVisitorSkeleton {
56 def_id_visitor: self,
57 visited_opaque_tys: Default::default(),
58 dummy: Default::default(),
59 }
60 }
61 fn visit(&mut self, ty_fragment: impl TypeFoldable<'tcx>) -> bool {
62 ty_fragment.visit_with(&mut self.skeleton())
63 }
64 fn visit_trait(&mut self, trait_ref: TraitRef<'tcx>) -> bool {
65 self.skeleton().visit_trait(trait_ref)
66 }
67 fn visit_predicates(&mut self, predicates: &ty::GenericPredicates<'tcx>) -> bool {
68 self.skeleton().visit_predicates(predicates)
69 }
70 }
71
72 struct DefIdVisitorSkeleton<'v, 'tcx, V>
73 where
74 V: DefIdVisitor<'tcx> + ?Sized,
75 {
76 def_id_visitor: &'v mut V,
77 visited_opaque_tys: FxHashSet<DefId>,
78 dummy: PhantomData<TyCtxt<'tcx>>,
79 }
80
81 impl<'tcx, V> DefIdVisitorSkeleton<'_, 'tcx, V>
82 where
83 V: DefIdVisitor<'tcx> + ?Sized,
84 {
85 fn visit_trait(&mut self, trait_ref: TraitRef<'tcx>) -> bool {
86 let TraitRef { def_id, substs } = trait_ref;
87 self.def_id_visitor.visit_def_id(def_id, "trait", &trait_ref) ||
88 (!self.def_id_visitor.shallow() && substs.visit_with(self))
89 }
90
91 fn visit_predicates(&mut self, predicates: &ty::GenericPredicates<'tcx>) -> bool {
92 let ty::GenericPredicates { parent: _, predicates } = predicates;
93 for (predicate, _span) in predicates {
94 match predicate {
95 ty::Predicate::Trait(poly_predicate) => {
96 let ty::TraitPredicate { trait_ref } = *poly_predicate.skip_binder();
97 if self.visit_trait(trait_ref) {
98 return true;
99 }
100 }
101 ty::Predicate::Projection(poly_predicate) => {
102 let ty::ProjectionPredicate { projection_ty, ty } =
103 *poly_predicate.skip_binder();
104 if ty.visit_with(self) {
105 return true;
106 }
107 if self.visit_trait(projection_ty.trait_ref(self.def_id_visitor.tcx())) {
108 return true;
109 }
110 }
111 ty::Predicate::TypeOutlives(poly_predicate) => {
112 let ty::OutlivesPredicate(ty, _region) = *poly_predicate.skip_binder();
113 if ty.visit_with(self) {
114 return true;
115 }
116 }
117 ty::Predicate::RegionOutlives(..) => {},
118 _ => bug!("unexpected predicate: {:?}", predicate),
119 }
120 }
121 false
122 }
123 }
124
125 impl<'tcx, V> TypeVisitor<'tcx> for DefIdVisitorSkeleton<'_, 'tcx, V>
126 where
127 V: DefIdVisitor<'tcx> + ?Sized,
128 {
129 fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
130 let tcx = self.def_id_visitor.tcx();
131 // InternalSubsts are not visited here because they are visited below in `super_visit_with`.
132 match ty.sty {
133 ty::Adt(&ty::AdtDef { did: def_id, .. }, ..) |
134 ty::Foreign(def_id) |
135 ty::FnDef(def_id, ..) |
136 ty::Closure(def_id, ..) |
137 ty::Generator(def_id, ..) => {
138 if self.def_id_visitor.visit_def_id(def_id, "type", &ty) {
139 return true;
140 }
141 if self.def_id_visitor.shallow() {
142 return false;
143 }
144 // Default type visitor doesn't visit signatures of fn types.
145 // Something like `fn() -> Priv {my_func}` is considered a private type even if
146 // `my_func` is public, so we need to visit signatures.
147 if let ty::FnDef(..) = ty.sty {
148 if tcx.fn_sig(def_id).visit_with(self) {
149 return true;
150 }
151 }
152 // Inherent static methods don't have self type in substs.
153 // Something like `fn() {my_method}` type of the method
154 // `impl Pub<Priv> { pub fn my_method() {} }` is considered a private type,
155 // so we need to visit the self type additionally.
156 if let Some(assoc_item) = tcx.opt_associated_item(def_id) {
157 if let ty::ImplContainer(impl_def_id) = assoc_item.container {
158 if tcx.type_of(impl_def_id).visit_with(self) {
159 return true;
160 }
161 }
162 }
163 }
164 ty::Projection(proj) | ty::UnnormalizedProjection(proj) => {
165 if self.def_id_visitor.skip_assoc_tys() {
166 // Visitors searching for minimal visibility/reachability want to
167 // conservatively approximate associated types like `<Type as Trait>::Alias`
168 // as visible/reachable even if both `Type` and `Trait` are private.
169 // Ideally, associated types should be substituted in the same way as
170 // free type aliases, but this isn't done yet.
171 return false;
172 }
173 // This will also visit substs if necessary, so we don't need to recurse.
174 return self.visit_trait(proj.trait_ref(tcx));
175 }
176 ty::Dynamic(predicates, ..) => {
177 // All traits in the list are considered the "primary" part of the type
178 // and are visited by shallow visitors.
179 for predicate in *predicates.skip_binder() {
180 let trait_ref = match *predicate {
181 ty::ExistentialPredicate::Trait(trait_ref) => trait_ref,
182 ty::ExistentialPredicate::Projection(proj) => proj.trait_ref(tcx),
183 ty::ExistentialPredicate::AutoTrait(def_id) =>
184 ty::ExistentialTraitRef { def_id, substs: InternalSubsts::empty() },
185 };
186 let ty::ExistentialTraitRef { def_id, substs: _ } = trait_ref;
187 if self.def_id_visitor.visit_def_id(def_id, "trait", &trait_ref) {
188 return true;
189 }
190 }
191 }
192 ty::Opaque(def_id, ..) => {
193 // Skip repeated `Opaque`s to avoid infinite recursion.
194 if self.visited_opaque_tys.insert(def_id) {
195 // The intent is to treat `impl Trait1 + Trait2` identically to
196 // `dyn Trait1 + Trait2`. Therefore we ignore def-id of the opaque type itself
197 // (it either has no visibility, or its visibility is insignificant, like
198 // visibilities of type aliases) and recurse into predicates instead to go
199 // through the trait list (default type visitor doesn't visit those traits).
200 // All traits in the list are considered the "primary" part of the type
201 // and are visited by shallow visitors.
202 if self.visit_predicates(tcx.predicates_of(def_id)) {
203 return true;
204 }
205 }
206 }
207 // These types don't have their own def-ids (but may have subcomponents
208 // with def-ids that should be visited recursively).
209 ty::Bool | ty::Char | ty::Int(..) | ty::Uint(..) |
210 ty::Float(..) | ty::Str | ty::Never |
211 ty::Array(..) | ty::Slice(..) | ty::Tuple(..) |
212 ty::RawPtr(..) | ty::Ref(..) | ty::FnPtr(..) |
213 ty::Param(..) | ty::Error | ty::GeneratorWitness(..) => {}
214 ty::Bound(..) | ty::Placeholder(..) | ty::Infer(..) =>
215 bug!("unexpected type: {:?}", ty),
216 }
217
218 !self.def_id_visitor.shallow() && ty.super_visit_with(self)
219 }
220 }
221
222 fn def_id_visibility<'tcx>(
223 tcx: TyCtxt<'tcx>,
224 def_id: DefId,
225 ) -> (ty::Visibility, Span, &'static str) {
226 match tcx.hir().as_local_hir_id(def_id) {
227 Some(hir_id) => {
228 let vis = match tcx.hir().get(hir_id) {
229 Node::Item(item) => &item.vis,
230 Node::ForeignItem(foreign_item) => &foreign_item.vis,
231 Node::MacroDef(macro_def) => {
232 if attr::contains_name(&macro_def.attrs, sym::macro_export) {
233 return (ty::Visibility::Public, macro_def.span, "public");
234 } else {
235 &macro_def.vis
236 }
237 },
238 Node::TraitItem(..) | Node::Variant(..) => {
239 return def_id_visibility(tcx, tcx.hir().get_parent_did(hir_id));
240 }
241 Node::ImplItem(impl_item) => {
242 match tcx.hir().get(tcx.hir().get_parent_item(hir_id)) {
243 Node::Item(item) => match &item.node {
244 hir::ItemKind::Impl(.., None, _, _) => &impl_item.vis,
245 hir::ItemKind::Impl(.., Some(trait_ref), _, _)
246 => return def_id_visibility(tcx, trait_ref.path.res.def_id()),
247 kind => bug!("unexpected item kind: {:?}", kind),
248 }
249 node => bug!("unexpected node kind: {:?}", node),
250 }
251 }
252 Node::Ctor(vdata) => {
253 let parent_hir_id = tcx.hir().get_parent_node(hir_id);
254 match tcx.hir().get(parent_hir_id) {
255 Node::Variant(..) => {
256 let parent_did = tcx.hir().local_def_id(parent_hir_id);
257 let (mut ctor_vis, mut span, mut descr) = def_id_visibility(
258 tcx, parent_did,
259 );
260
261 let adt_def = tcx.adt_def(tcx.hir().get_parent_did(hir_id));
262 let ctor_did = tcx.hir().local_def_id(
263 vdata.ctor_hir_id().unwrap());
264 let variant = adt_def.variant_with_ctor_id(ctor_did);
265
266 if variant.is_field_list_non_exhaustive() &&
267 ctor_vis == ty::Visibility::Public
268 {
269 ctor_vis = ty::Visibility::Restricted(
270 DefId::local(CRATE_DEF_INDEX));
271 let attrs = tcx.get_attrs(variant.def_id);
272 span = attr::find_by_name(&attrs, sym::non_exhaustive)
273 .unwrap().span;
274 descr = "crate-visible";
275 }
276
277 return (ctor_vis, span, descr);
278 }
279 Node::Item(..) => {
280 let item = match tcx.hir().get(parent_hir_id) {
281 Node::Item(item) => item,
282 node => bug!("unexpected node kind: {:?}", node),
283 };
284 let (mut ctor_vis, mut span, mut descr) =
285 (ty::Visibility::from_hir(&item.vis, parent_hir_id, tcx),
286 item.vis.span, item.vis.node.descr());
287 for field in vdata.fields() {
288 let field_vis = ty::Visibility::from_hir(&field.vis, hir_id, tcx);
289 if ctor_vis.is_at_least(field_vis, tcx) {
290 ctor_vis = field_vis;
291 span = field.vis.span;
292 descr = field.vis.node.descr();
293 }
294 }
295
296 // If the structure is marked as non_exhaustive then lower the
297 // visibility to within the crate.
298 if ctor_vis == ty::Visibility::Public {
299 let adt_def =
300 tcx.adt_def(tcx.hir().get_parent_did(hir_id));
301 if adt_def.non_enum_variant().is_field_list_non_exhaustive() {
302 ctor_vis =
303 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX));
304 span = attr::find_by_name(&item.attrs, sym::non_exhaustive)
305 .unwrap().span;
306 descr = "crate-visible";
307 }
308 }
309
310 return (ctor_vis, span, descr);
311 }
312 node => bug!("unexpected node kind: {:?}", node),
313 }
314 }
315 Node::Expr(expr) => {
316 return (ty::Visibility::Restricted(
317 tcx.hir().get_module_parent(expr.hir_id)),
318 expr.span, "private")
319 }
320 node => bug!("unexpected node kind: {:?}", node)
321 };
322 (ty::Visibility::from_hir(vis, hir_id, tcx), vis.span, vis.node.descr())
323 }
324 None => {
325 let vis = tcx.visibility(def_id);
326 let descr = if vis == ty::Visibility::Public { "public" } else { "private" };
327 (vis, tcx.def_span(def_id), descr)
328 }
329 }
330 }
331
332 // Set the correct `TypeckTables` for the given `item_id` (or an empty table if
333 // there is no `TypeckTables` for the item).
334 fn item_tables<'a, 'tcx>(
335 tcx: TyCtxt<'tcx>,
336 hir_id: hir::HirId,
337 empty_tables: &'a ty::TypeckTables<'tcx>,
338 ) -> &'a ty::TypeckTables<'tcx> {
339 let def_id = tcx.hir().local_def_id(hir_id);
340 if tcx.has_typeck_tables(def_id) { tcx.typeck_tables_of(def_id) } else { empty_tables }
341 }
342
343 fn min(vis1: ty::Visibility, vis2: ty::Visibility, tcx: TyCtxt<'_>) -> ty::Visibility {
344 if vis1.is_at_least(vis2, tcx) { vis2 } else { vis1 }
345 }
346
347 ////////////////////////////////////////////////////////////////////////////////
348 /// Visitor used to determine if pub(restricted) is used anywhere in the crate.
349 ///
350 /// This is done so that `private_in_public` warnings can be turned into hard errors
351 /// in crates that have been updated to use pub(restricted).
352 ////////////////////////////////////////////////////////////////////////////////
353 struct PubRestrictedVisitor<'tcx> {
354 tcx: TyCtxt<'tcx>,
355 has_pub_restricted: bool,
356 }
357
358 impl Visitor<'tcx> for PubRestrictedVisitor<'tcx> {
359 fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
360 NestedVisitorMap::All(&self.tcx.hir())
361 }
362 fn visit_vis(&mut self, vis: &'tcx hir::Visibility) {
363 self.has_pub_restricted = self.has_pub_restricted || vis.node.is_pub_restricted();
364 }
365 }
366
367 ////////////////////////////////////////////////////////////////////////////////
368 /// Visitor used to determine impl visibility and reachability.
369 ////////////////////////////////////////////////////////////////////////////////
370
371 struct FindMin<'a, 'tcx, VL: VisibilityLike> {
372 tcx: TyCtxt<'tcx>,
373 access_levels: &'a AccessLevels,
374 min: VL,
375 }
376
377 impl<'a, 'tcx, VL: VisibilityLike> DefIdVisitor<'tcx> for FindMin<'a, 'tcx, VL> {
378 fn tcx(&self) -> TyCtxt<'tcx> { self.tcx }
379 fn shallow(&self) -> bool { VL::SHALLOW }
380 fn skip_assoc_tys(&self) -> bool { true }
381 fn visit_def_id(&mut self, def_id: DefId, _kind: &str, _descr: &dyn fmt::Display) -> bool {
382 self.min = VL::new_min(self, def_id);
383 false
384 }
385 }
386
387 trait VisibilityLike: Sized {
388 const MAX: Self;
389 const SHALLOW: bool = false;
390 fn new_min(find: &FindMin<'_, '_, Self>, def_id: DefId) -> Self;
391
392 // Returns an over-approximation (`skip_assoc_tys` = true) of visibility due to
393 // associated types for which we can't determine visibility precisely.
394 fn of_impl(
395 hir_id: hir::HirId,
396 tcx: TyCtxt<'_>,
397 access_levels: &AccessLevels,
398 ) -> Self {
399 let mut find = FindMin { tcx, access_levels, min: Self::MAX };
400 let def_id = tcx.hir().local_def_id(hir_id);
401 find.visit(tcx.type_of(def_id));
402 if let Some(trait_ref) = tcx.impl_trait_ref(def_id) {
403 find.visit_trait(trait_ref);
404 }
405 find.min
406 }
407 }
408 impl VisibilityLike for ty::Visibility {
409 const MAX: Self = ty::Visibility::Public;
410 fn new_min(find: &FindMin<'_, '_, Self>, def_id: DefId) -> Self {
411 min(def_id_visibility(find.tcx, def_id).0, find.min, find.tcx)
412 }
413 }
414 impl VisibilityLike for Option<AccessLevel> {
415 const MAX: Self = Some(AccessLevel::Public);
416 // Type inference is very smart sometimes.
417 // It can make an impl reachable even some components of its type or trait are unreachable.
418 // E.g. methods of `impl ReachableTrait<UnreachableTy> for ReachableTy<UnreachableTy> { ... }`
419 // can be usable from other crates (#57264). So we skip substs when calculating reachability
420 // and consider an impl reachable if its "shallow" type and trait are reachable.
421 //
422 // The assumption we make here is that type-inference won't let you use an impl without knowing
423 // both "shallow" version of its self type and "shallow" version of its trait if it exists
424 // (which require reaching the `DefId`s in them).
425 const SHALLOW: bool = true;
426 fn new_min(find: &FindMin<'_, '_, Self>, def_id: DefId) -> Self {
427 cmp::min(if let Some(hir_id) = find.tcx.hir().as_local_hir_id(def_id) {
428 find.access_levels.map.get(&hir_id).cloned()
429 } else {
430 Self::MAX
431 }, find.min)
432 }
433 }
434
435 ////////////////////////////////////////////////////////////////////////////////
436 /// The embargo visitor, used to determine the exports of the AST.
437 ////////////////////////////////////////////////////////////////////////////////
438
439 struct EmbargoVisitor<'tcx> {
440 tcx: TyCtxt<'tcx>,
441
442 /// Accessibility levels for reachable nodes.
443 access_levels: AccessLevels,
444 /// A set of pairs corresponding to modules, where the first module is
445 /// reachable via a macro that's defined in the second module. This cannot
446 /// be represented as reachable because it can't handle the following case:
447 ///
448 /// pub mod n { // Should be `Public`
449 /// pub(crate) mod p { // Should *not* be accessible
450 /// pub fn f() -> i32 { 12 } // Must be `Reachable`
451 /// }
452 /// }
453 /// pub macro m() {
454 /// n::p::f()
455 /// }
456 macro_reachable: FxHashSet<(hir::HirId, DefId)>,
457 /// Previous accessibility level; `None` means unreachable.
458 prev_level: Option<AccessLevel>,
459 /// Has something changed in the level map?
460 changed: bool,
461 }
462
463 struct ReachEverythingInTheInterfaceVisitor<'a, 'tcx> {
464 access_level: Option<AccessLevel>,
465 item_def_id: DefId,
466 ev: &'a mut EmbargoVisitor<'tcx>,
467 }
468
469 impl EmbargoVisitor<'tcx> {
470 fn get(&self, id: hir::HirId) -> Option<AccessLevel> {
471 self.access_levels.map.get(&id).cloned()
472 }
473
474 /// Updates node level and returns the updated level.
475 fn update(&mut self, id: hir::HirId, level: Option<AccessLevel>) -> Option<AccessLevel> {
476 let old_level = self.get(id);
477 // Accessibility levels can only grow.
478 if level > old_level {
479 self.access_levels.map.insert(id, level.unwrap());
480 self.changed = true;
481 level
482 } else {
483 old_level
484 }
485 }
486
487 fn reach(
488 &mut self,
489 item_id: hir::HirId,
490 access_level: Option<AccessLevel>,
491 ) -> ReachEverythingInTheInterfaceVisitor<'_, 'tcx> {
492 ReachEverythingInTheInterfaceVisitor {
493 access_level: cmp::min(access_level, Some(AccessLevel::Reachable)),
494 item_def_id: self.tcx.hir().local_def_id(item_id),
495 ev: self,
496 }
497 }
498
499 /// Updates the item as being reachable through a macro defined in the given
500 /// module. Returns `true` if the level has changed.
501 fn update_macro_reachable(&mut self, reachable_mod: hir::HirId, defining_mod: DefId) -> bool {
502 if self.macro_reachable.insert((reachable_mod, defining_mod)) {
503 self.update_macro_reachable_mod(reachable_mod, defining_mod);
504 true
505 } else {
506 false
507 }
508 }
509
510 fn update_macro_reachable_mod(&mut self, reachable_mod: hir::HirId, defining_mod: DefId) {
511 let module_def_id = self.tcx.hir().local_def_id(reachable_mod);
512 let module = self.tcx.hir().get_module(module_def_id).0;
513 for item_id in &module.item_ids {
514 let hir_id = item_id.id;
515 let item_def_id = self.tcx.hir().local_def_id(hir_id);
516 if let Some(def_kind) = self.tcx.def_kind(item_def_id) {
517 let item = self.tcx.hir().expect_item(hir_id);
518 let vis = ty::Visibility::from_hir(&item.vis, hir_id, self.tcx);
519 self.update_macro_reachable_def(hir_id, def_kind, vis, defining_mod);
520 }
521 }
522 if let Some(exports) = self.tcx.module_exports(module_def_id) {
523 for export in exports {
524 if export.vis.is_accessible_from(defining_mod, self.tcx) {
525 if let Res::Def(def_kind, def_id) = export.res {
526 let vis = def_id_visibility(self.tcx, def_id).0;
527 if let Some(hir_id) = self.tcx.hir().as_local_hir_id(def_id) {
528 self.update_macro_reachable_def(hir_id, def_kind, vis, defining_mod);
529 }
530 }
531 }
532 }
533 }
534 }
535
536 fn update_macro_reachable_def(
537 &mut self,
538 hir_id: hir::HirId,
539 def_kind: DefKind,
540 vis: ty::Visibility,
541 module: DefId,
542 ) {
543 let level = Some(AccessLevel::Reachable);
544 if let ty::Visibility::Public = vis {
545 self.update(hir_id, level);
546 }
547 match def_kind {
548 // No type privacy, so can be directly marked as reachable.
549 DefKind::Const
550 | DefKind::Macro(_)
551 | DefKind::Static
552 | DefKind::TraitAlias
553 | DefKind::TyAlias => {
554 if vis.is_accessible_from(module, self.tcx) {
555 self.update(hir_id, level);
556 }
557 },
558
559 // We can't use a module name as the final segment of a path, except
560 // in use statements. Since re-export checking doesn't consider
561 // hygiene these don't need to be marked reachable. The contents of
562 // the module, however may be reachable.
563 DefKind::Mod => {
564 if vis.is_accessible_from(module, self.tcx) {
565 self.update_macro_reachable(hir_id, module);
566 }
567 }
568
569 DefKind::Struct | DefKind::Union => {
570 // While structs and unions have type privacy, their fields do
571 // not.
572 if let ty::Visibility::Public = vis {
573 let item = self.tcx.hir().expect_item(hir_id);
574 if let hir::ItemKind::Struct(ref struct_def, _)
575 | hir::ItemKind::Union(ref struct_def, _) = item.node
576 {
577 for field in struct_def.fields() {
578 let field_vis = ty::Visibility::from_hir(
579 &field.vis,
580 field.hir_id,
581 self.tcx,
582 );
583 if field_vis.is_accessible_from(module, self.tcx) {
584 self.reach(field.hir_id, level).ty();
585 }
586 }
587 } else {
588 bug!("item {:?} with DefKind {:?}", item, def_kind);
589 }
590 }
591 }
592
593 // These have type privacy, so are not reachable unless they're
594 // public
595 DefKind::AssocConst
596 | DefKind::AssocTy
597 | DefKind::AssocOpaqueTy
598 | DefKind::ConstParam
599 | DefKind::Ctor(_, _)
600 | DefKind::Enum
601 | DefKind::ForeignTy
602 | DefKind::Fn
603 | DefKind::OpaqueTy
604 | DefKind::Method
605 | DefKind::Trait
606 | DefKind::TyParam
607 | DefKind::Variant => (),
608 }
609 }
610
611 /// Given the path segments of a `ItemKind::Use`, then we need
612 /// to update the visibility of the intermediate use so that it isn't linted
613 /// by `unreachable_pub`.
614 ///
615 /// This isn't trivial as `path.res` has the `DefId` of the eventual target
616 /// of the use statement not of the next intermediate use statement.
617 ///
618 /// To do this, consider the last two segments of the path to our intermediate
619 /// use statement. We expect the penultimate segment to be a module and the
620 /// last segment to be the name of the item we are exporting. We can then
621 /// look at the items contained in the module for the use statement with that
622 /// name and update that item's visibility.
623 ///
624 /// FIXME: This solution won't work with glob imports and doesn't respect
625 /// namespaces. See <https://github.com/rust-lang/rust/pull/57922#discussion_r251234202>.
626 fn update_visibility_of_intermediate_use_statements(&mut self, segments: &[hir::PathSegment]) {
627 if let Some([module, segment]) = segments.rchunks_exact(2).next() {
628 if let Some(item) = module.res
629 .and_then(|res| res.mod_def_id())
630 .and_then(|def_id| self.tcx.hir().as_local_hir_id(def_id))
631 .map(|module_hir_id| self.tcx.hir().expect_item(module_hir_id))
632 {
633 if let hir::ItemKind::Mod(m) = &item.node {
634 for item_id in m.item_ids.as_ref() {
635 let item = self.tcx.hir().expect_item(item_id.id);
636 let def_id = self.tcx.hir().local_def_id(item_id.id);
637 if !self.tcx.hygienic_eq(segment.ident, item.ident, def_id) { continue; }
638 if let hir::ItemKind::Use(..) = item.node {
639 self.update(item.hir_id, Some(AccessLevel::Exported));
640 }
641 }
642 }
643 }
644 }
645 }
646 }
647
648 impl Visitor<'tcx> for EmbargoVisitor<'tcx> {
649 /// We want to visit items in the context of their containing
650 /// module and so forth, so supply a crate for doing a deep walk.
651 fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
652 NestedVisitorMap::All(&self.tcx.hir())
653 }
654
655 fn visit_item(&mut self, item: &'tcx hir::Item) {
656 let inherited_item_level = match item.node {
657 hir::ItemKind::Impl(..) =>
658 Option::<AccessLevel>::of_impl(item.hir_id, self.tcx, &self.access_levels),
659 // Foreign modules inherit level from parents.
660 hir::ItemKind::ForeignMod(..) => self.prev_level,
661 // Other `pub` items inherit levels from parents.
662 hir::ItemKind::Const(..) | hir::ItemKind::Enum(..) | hir::ItemKind::ExternCrate(..) |
663 hir::ItemKind::GlobalAsm(..) | hir::ItemKind::Fn(..) | hir::ItemKind::Mod(..) |
664 hir::ItemKind::Static(..) | hir::ItemKind::Struct(..) |
665 hir::ItemKind::Trait(..) | hir::ItemKind::TraitAlias(..) |
666 hir::ItemKind::OpaqueTy(..) |
667 hir::ItemKind::TyAlias(..) | hir::ItemKind::Union(..) | hir::ItemKind::Use(..) => {
668 if item.vis.node.is_pub() { self.prev_level } else { None }
669 }
670 };
671
672 // Update level of the item itself.
673 let item_level = self.update(item.hir_id, inherited_item_level);
674
675 // Update levels of nested things.
676 match item.node {
677 hir::ItemKind::Enum(ref def, _) => {
678 for variant in &def.variants {
679 let variant_level = self.update(variant.id, item_level);
680 if let Some(ctor_hir_id) = variant.data.ctor_hir_id() {
681 self.update(ctor_hir_id, item_level);
682 }
683 for field in variant.data.fields() {
684 self.update(field.hir_id, variant_level);
685 }
686 }
687 }
688 hir::ItemKind::Impl(.., ref trait_ref, _, ref impl_item_refs) => {
689 for impl_item_ref in impl_item_refs {
690 if trait_ref.is_some() || impl_item_ref.vis.node.is_pub() {
691 self.update(impl_item_ref.id.hir_id, item_level);
692 }
693 }
694 }
695 hir::ItemKind::Trait(.., ref trait_item_refs) => {
696 for trait_item_ref in trait_item_refs {
697 self.update(trait_item_ref.id.hir_id, item_level);
698 }
699 }
700 hir::ItemKind::Struct(ref def, _) | hir::ItemKind::Union(ref def, _) => {
701 if let Some(ctor_hir_id) = def.ctor_hir_id() {
702 self.update(ctor_hir_id, item_level);
703 }
704 for field in def.fields() {
705 if field.vis.node.is_pub() {
706 self.update(field.hir_id, item_level);
707 }
708 }
709 }
710 hir::ItemKind::ForeignMod(ref foreign_mod) => {
711 for foreign_item in &foreign_mod.items {
712 if foreign_item.vis.node.is_pub() {
713 self.update(foreign_item.hir_id, item_level);
714 }
715 }
716 }
717 hir::ItemKind::OpaqueTy(..) |
718 hir::ItemKind::Use(..) |
719 hir::ItemKind::Static(..) |
720 hir::ItemKind::Const(..) |
721 hir::ItemKind::GlobalAsm(..) |
722 hir::ItemKind::TyAlias(..) |
723 hir::ItemKind::Mod(..) |
724 hir::ItemKind::TraitAlias(..) |
725 hir::ItemKind::Fn(..) |
726 hir::ItemKind::ExternCrate(..) => {}
727 }
728
729 // Mark all items in interfaces of reachable items as reachable.
730 match item.node {
731 // The interface is empty.
732 hir::ItemKind::ExternCrate(..) => {}
733 // All nested items are checked by `visit_item`.
734 hir::ItemKind::Mod(..) => {}
735 // Re-exports are handled in `visit_mod`. However, in order to avoid looping over
736 // all of the items of a mod in `visit_mod` looking for use statements, we handle
737 // making sure that intermediate use statements have their visibilities updated here.
738 hir::ItemKind::Use(ref path, _) => {
739 if item_level.is_some() {
740 self.update_visibility_of_intermediate_use_statements(path.segments.as_ref());
741 }
742 }
743 // The interface is empty.
744 hir::ItemKind::GlobalAsm(..) => {}
745 hir::ItemKind::OpaqueTy(..) => {
746 // FIXME: This is some serious pessimization intended to workaround deficiencies
747 // in the reachability pass (`middle/reachable.rs`). Types are marked as link-time
748 // reachable if they are returned via `impl Trait`, even from private functions.
749 let exist_level = cmp::max(item_level, Some(AccessLevel::ReachableFromImplTrait));
750 self.reach(item.hir_id, exist_level).generics().predicates().ty();
751 }
752 // Visit everything.
753 hir::ItemKind::Const(..) | hir::ItemKind::Static(..) |
754 hir::ItemKind::Fn(..) | hir::ItemKind::TyAlias(..) => {
755 if item_level.is_some() {
756 self.reach(item.hir_id, item_level).generics().predicates().ty();
757 }
758 }
759 hir::ItemKind::Trait(.., ref trait_item_refs) => {
760 if item_level.is_some() {
761 self.reach(item.hir_id, item_level).generics().predicates();
762
763 for trait_item_ref in trait_item_refs {
764 let mut reach = self.reach(trait_item_ref.id.hir_id, item_level);
765 reach.generics().predicates();
766
767 if trait_item_ref.kind == AssocItemKind::Type &&
768 !trait_item_ref.defaultness.has_value() {
769 // No type to visit.
770 } else {
771 reach.ty();
772 }
773 }
774 }
775 }
776 hir::ItemKind::TraitAlias(..) => {
777 if item_level.is_some() {
778 self.reach(item.hir_id, item_level).generics().predicates();
779 }
780 }
781 // Visit everything except for private impl items.
782 hir::ItemKind::Impl(.., ref impl_item_refs) => {
783 if item_level.is_some() {
784 self.reach(item.hir_id, item_level).generics().predicates().ty().trait_ref();
785
786 for impl_item_ref in impl_item_refs {
787 let impl_item_level = self.get(impl_item_ref.id.hir_id);
788 if impl_item_level.is_some() {
789 self.reach(impl_item_ref.id.hir_id, impl_item_level)
790 .generics().predicates().ty();
791 }
792 }
793 }
794 }
795
796 // Visit everything, but enum variants have their own levels.
797 hir::ItemKind::Enum(ref def, _) => {
798 if item_level.is_some() {
799 self.reach(item.hir_id, item_level).generics().predicates();
800 }
801 for variant in &def.variants {
802 let variant_level = self.get(variant.id);
803 if variant_level.is_some() {
804 for field in variant.data.fields() {
805 self.reach(field.hir_id, variant_level).ty();
806 }
807 // Corner case: if the variant is reachable, but its
808 // enum is not, make the enum reachable as well.
809 self.update(item.hir_id, variant_level);
810 }
811 }
812 }
813 // Visit everything, but foreign items have their own levels.
814 hir::ItemKind::ForeignMod(ref foreign_mod) => {
815 for foreign_item in &foreign_mod.items {
816 let foreign_item_level = self.get(foreign_item.hir_id);
817 if foreign_item_level.is_some() {
818 self.reach(foreign_item.hir_id, foreign_item_level)
819 .generics().predicates().ty();
820 }
821 }
822 }
823 // Visit everything except for private fields.
824 hir::ItemKind::Struct(ref struct_def, _) |
825 hir::ItemKind::Union(ref struct_def, _) => {
826 if item_level.is_some() {
827 self.reach(item.hir_id, item_level).generics().predicates();
828 for field in struct_def.fields() {
829 let field_level = self.get(field.hir_id);
830 if field_level.is_some() {
831 self.reach(field.hir_id, field_level).ty();
832 }
833 }
834 }
835 }
836 }
837
838 let orig_level = mem::replace(&mut self.prev_level, item_level);
839 intravisit::walk_item(self, item);
840 self.prev_level = orig_level;
841 }
842
843 fn visit_block(&mut self, b: &'tcx hir::Block) {
844 // Blocks can have public items, for example impls, but they always
845 // start as completely private regardless of publicity of a function,
846 // constant, type, field, etc., in which this block resides.
847 let orig_level = mem::replace(&mut self.prev_level, None);
848 intravisit::walk_block(self, b);
849 self.prev_level = orig_level;
850 }
851
852 fn visit_mod(&mut self, m: &'tcx hir::Mod, _sp: Span, id: hir::HirId) {
853 // This code is here instead of in visit_item so that the
854 // crate module gets processed as well.
855 if self.prev_level.is_some() {
856 let def_id = self.tcx.hir().local_def_id(id);
857 if let Some(exports) = self.tcx.module_exports(def_id) {
858 for export in exports.iter() {
859 if export.vis == ty::Visibility::Public {
860 if let Some(def_id) = export.res.opt_def_id() {
861 if let Some(hir_id) = self.tcx.hir().as_local_hir_id(def_id) {
862 self.update(hir_id, Some(AccessLevel::Exported));
863 }
864 }
865 }
866 }
867 }
868 }
869
870 intravisit::walk_mod(self, m, id);
871 }
872
873 fn visit_macro_def(&mut self, md: &'tcx hir::MacroDef) {
874 if attr::find_transparency(&md.attrs, md.legacy).0 != Transparency::Opaque {
875 self.update(md.hir_id, Some(AccessLevel::Public));
876 return
877 }
878
879 let macro_module_def_id = ty::DefIdTree::parent(
880 self.tcx,
881 self.tcx.hir().local_def_id(md.hir_id)
882 ).unwrap();
883 let mut module_id = self.tcx.hir().as_local_hir_id(macro_module_def_id).unwrap();
884 if !self.tcx.hir().is_hir_id_module(module_id) {
885 // `module_id` doesn't correspond to a `mod`, return early (#63164).
886 return;
887 }
888 let level = if md.vis.node.is_pub() { self.get(module_id) } else { None };
889 let new_level = self.update(md.hir_id, level);
890 if new_level.is_none() {
891 return;
892 }
893
894 loop {
895 let changed_reachability = self.update_macro_reachable(module_id, macro_module_def_id);
896 if changed_reachability || module_id == hir::CRATE_HIR_ID {
897 break;
898 }
899 module_id = self.tcx.hir().get_parent_node(module_id);
900 }
901 }
902 }
903
904 impl ReachEverythingInTheInterfaceVisitor<'_, 'tcx> {
905 fn generics(&mut self) -> &mut Self {
906 for param in &self.ev.tcx.generics_of(self.item_def_id).params {
907 match param.kind {
908 GenericParamDefKind::Lifetime => {}
909 GenericParamDefKind::Type { has_default, .. } => {
910 if has_default {
911 self.visit(self.ev.tcx.type_of(param.def_id));
912 }
913 }
914 GenericParamDefKind::Const => {
915 self.visit(self.ev.tcx.type_of(param.def_id));
916 }
917 }
918 }
919 self
920 }
921
922 fn predicates(&mut self) -> &mut Self {
923 self.visit_predicates(self.ev.tcx.predicates_of(self.item_def_id));
924 self
925 }
926
927 fn ty(&mut self) -> &mut Self {
928 self.visit(self.ev.tcx.type_of(self.item_def_id));
929 self
930 }
931
932 fn trait_ref(&mut self) -> &mut Self {
933 if let Some(trait_ref) = self.ev.tcx.impl_trait_ref(self.item_def_id) {
934 self.visit_trait(trait_ref);
935 }
936 self
937 }
938 }
939
940 impl DefIdVisitor<'tcx> for ReachEverythingInTheInterfaceVisitor<'_, 'tcx> {
941 fn tcx(&self) -> TyCtxt<'tcx> { self.ev.tcx }
942 fn visit_def_id(&mut self, def_id: DefId, _kind: &str, _descr: &dyn fmt::Display) -> bool {
943 if let Some(hir_id) = self.ev.tcx.hir().as_local_hir_id(def_id) {
944 if let ((ty::Visibility::Public, ..), _)
945 | (_, Some(AccessLevel::ReachableFromImplTrait))
946 = (def_id_visibility(self.tcx(), def_id), self.access_level)
947 {
948 self.ev.update(hir_id, self.access_level);
949 }
950 }
951 false
952 }
953 }
954
955 //////////////////////////////////////////////////////////////////////////////////////
956 /// Name privacy visitor, checks privacy and reports violations.
957 /// Most of name privacy checks are performed during the main resolution phase,
958 /// or later in type checking when field accesses and associated items are resolved.
959 /// This pass performs remaining checks for fields in struct expressions and patterns.
960 //////////////////////////////////////////////////////////////////////////////////////
961
962 struct NamePrivacyVisitor<'a, 'tcx> {
963 tcx: TyCtxt<'tcx>,
964 tables: &'a ty::TypeckTables<'tcx>,
965 current_item: hir::HirId,
966 empty_tables: &'a ty::TypeckTables<'tcx>,
967 }
968
969 impl<'a, 'tcx> NamePrivacyVisitor<'a, 'tcx> {
970 // Checks that a field in a struct constructor (expression or pattern) is accessible.
971 fn check_field(&mut self,
972 use_ctxt: Span, // syntax context of the field name at the use site
973 span: Span, // span of the field pattern, e.g., `x: 0`
974 def: &'tcx ty::AdtDef, // definition of the struct or enum
975 field: &'tcx ty::FieldDef) { // definition of the field
976 let ident = Ident::new(kw::Invalid, use_ctxt);
977 let current_hir = self.current_item;
978 let def_id = self.tcx.adjust_ident_and_get_scope(ident, def.did, current_hir).1;
979 if !def.is_enum() && !field.vis.is_accessible_from(def_id, self.tcx) {
980 struct_span_err!(self.tcx.sess, span, E0451, "field `{}` of {} `{}` is private",
981 field.ident, def.variant_descr(), self.tcx.def_path_str(def.did))
982 .span_label(span, format!("field `{}` is private", field.ident))
983 .emit();
984 }
985 }
986 }
987
988 impl<'a, 'tcx> Visitor<'tcx> for NamePrivacyVisitor<'a, 'tcx> {
989 /// We want to visit items in the context of their containing
990 /// module and so forth, so supply a crate for doing a deep walk.
991 fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
992 NestedVisitorMap::All(&self.tcx.hir())
993 }
994
995 fn visit_mod(&mut self, _m: &'tcx hir::Mod, _s: Span, _n: hir::HirId) {
996 // Don't visit nested modules, since we run a separate visitor walk
997 // for each module in `privacy_access_levels`
998 }
999
1000 fn visit_nested_body(&mut self, body: hir::BodyId) {
1001 let orig_tables = mem::replace(&mut self.tables, self.tcx.body_tables(body));
1002 let body = self.tcx.hir().body(body);
1003 self.visit_body(body);
1004 self.tables = orig_tables;
1005 }
1006
1007 fn visit_item(&mut self, item: &'tcx hir::Item) {
1008 let orig_current_item = mem::replace(&mut self.current_item, item.hir_id);
1009 let orig_tables =
1010 mem::replace(&mut self.tables, item_tables(self.tcx, item.hir_id, self.empty_tables));
1011 intravisit::walk_item(self, item);
1012 self.current_item = orig_current_item;
1013 self.tables = orig_tables;
1014 }
1015
1016 fn visit_trait_item(&mut self, ti: &'tcx hir::TraitItem) {
1017 let orig_tables =
1018 mem::replace(&mut self.tables, item_tables(self.tcx, ti.hir_id, self.empty_tables));
1019 intravisit::walk_trait_item(self, ti);
1020 self.tables = orig_tables;
1021 }
1022
1023 fn visit_impl_item(&mut self, ii: &'tcx hir::ImplItem) {
1024 let orig_tables =
1025 mem::replace(&mut self.tables, item_tables(self.tcx, ii.hir_id, self.empty_tables));
1026 intravisit::walk_impl_item(self, ii);
1027 self.tables = orig_tables;
1028 }
1029
1030 fn visit_expr(&mut self, expr: &'tcx hir::Expr) {
1031 match expr.node {
1032 hir::ExprKind::Struct(ref qpath, ref fields, ref base) => {
1033 let res = self.tables.qpath_res(qpath, expr.hir_id);
1034 let adt = self.tables.expr_ty(expr).ty_adt_def().unwrap();
1035 let variant = adt.variant_of_res(res);
1036 if let Some(ref base) = *base {
1037 // If the expression uses FRU we need to make sure all the unmentioned fields
1038 // are checked for privacy (RFC 736). Rather than computing the set of
1039 // unmentioned fields, just check them all.
1040 for (vf_index, variant_field) in variant.fields.iter().enumerate() {
1041 let field = fields.iter().find(|f| {
1042 self.tcx.field_index(f.hir_id, self.tables) == vf_index
1043 });
1044 let (use_ctxt, span) = match field {
1045 Some(field) => (field.ident.span, field.span),
1046 None => (base.span, base.span),
1047 };
1048 self.check_field(use_ctxt, span, adt, variant_field);
1049 }
1050 } else {
1051 for field in fields {
1052 let use_ctxt = field.ident.span;
1053 let index = self.tcx.field_index(field.hir_id, self.tables);
1054 self.check_field(use_ctxt, field.span, adt, &variant.fields[index]);
1055 }
1056 }
1057 }
1058 _ => {}
1059 }
1060
1061 intravisit::walk_expr(self, expr);
1062 }
1063
1064 fn visit_pat(&mut self, pat: &'tcx hir::Pat) {
1065 match pat.node {
1066 PatKind::Struct(ref qpath, ref fields, _) => {
1067 let res = self.tables.qpath_res(qpath, pat.hir_id);
1068 let adt = self.tables.pat_ty(pat).ty_adt_def().unwrap();
1069 let variant = adt.variant_of_res(res);
1070 for field in fields {
1071 let use_ctxt = field.ident.span;
1072 let index = self.tcx.field_index(field.hir_id, self.tables);
1073 self.check_field(use_ctxt, field.span, adt, &variant.fields[index]);
1074 }
1075 }
1076 _ => {}
1077 }
1078
1079 intravisit::walk_pat(self, pat);
1080 }
1081 }
1082
1083 ////////////////////////////////////////////////////////////////////////////////////////////
1084 /// Type privacy visitor, checks types for privacy and reports violations.
1085 /// Both explicitly written types and inferred types of expressions and patters are checked.
1086 /// Checks are performed on "semantic" types regardless of names and their hygiene.
1087 ////////////////////////////////////////////////////////////////////////////////////////////
1088
1089 struct TypePrivacyVisitor<'a, 'tcx> {
1090 tcx: TyCtxt<'tcx>,
1091 tables: &'a ty::TypeckTables<'tcx>,
1092 current_item: DefId,
1093 in_body: bool,
1094 span: Span,
1095 empty_tables: &'a ty::TypeckTables<'tcx>,
1096 }
1097
1098 impl<'a, 'tcx> TypePrivacyVisitor<'a, 'tcx> {
1099 fn item_is_accessible(&self, did: DefId) -> bool {
1100 def_id_visibility(self.tcx, did).0.is_accessible_from(self.current_item, self.tcx)
1101 }
1102
1103 // Take node-id of an expression or pattern and check its type for privacy.
1104 fn check_expr_pat_type(&mut self, id: hir::HirId, span: Span) -> bool {
1105 self.span = span;
1106 if self.visit(self.tables.node_type(id)) || self.visit(self.tables.node_substs(id)) {
1107 return true;
1108 }
1109 if let Some(adjustments) = self.tables.adjustments().get(id) {
1110 for adjustment in adjustments {
1111 if self.visit(adjustment.target) {
1112 return true;
1113 }
1114 }
1115 }
1116 false
1117 }
1118
1119 fn check_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool {
1120 let is_error = !self.item_is_accessible(def_id);
1121 if is_error {
1122 self.tcx.sess.span_err(self.span, &format!("{} `{}` is private", kind, descr));
1123 }
1124 is_error
1125 }
1126 }
1127
1128 impl<'a, 'tcx> Visitor<'tcx> for TypePrivacyVisitor<'a, 'tcx> {
1129 /// We want to visit items in the context of their containing
1130 /// module and so forth, so supply a crate for doing a deep walk.
1131 fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
1132 NestedVisitorMap::All(&self.tcx.hir())
1133 }
1134
1135 fn visit_mod(&mut self, _m: &'tcx hir::Mod, _s: Span, _n: hir::HirId) {
1136 // Don't visit nested modules, since we run a separate visitor walk
1137 // for each module in `privacy_access_levels`
1138 }
1139
1140 fn visit_nested_body(&mut self, body: hir::BodyId) {
1141 let orig_tables = mem::replace(&mut self.tables, self.tcx.body_tables(body));
1142 let orig_in_body = mem::replace(&mut self.in_body, true);
1143 let body = self.tcx.hir().body(body);
1144 self.visit_body(body);
1145 self.tables = orig_tables;
1146 self.in_body = orig_in_body;
1147 }
1148
1149 fn visit_ty(&mut self, hir_ty: &'tcx hir::Ty) {
1150 self.span = hir_ty.span;
1151 if self.in_body {
1152 // Types in bodies.
1153 if self.visit(self.tables.node_type(hir_ty.hir_id)) {
1154 return;
1155 }
1156 } else {
1157 // Types in signatures.
1158 // FIXME: This is very ineffective. Ideally each HIR type should be converted
1159 // into a semantic type only once and the result should be cached somehow.
1160 if self.visit(rustc_typeck::hir_ty_to_ty(self.tcx, hir_ty)) {
1161 return;
1162 }
1163 }
1164
1165 intravisit::walk_ty(self, hir_ty);
1166 }
1167
1168 fn visit_trait_ref(&mut self, trait_ref: &'tcx hir::TraitRef) {
1169 self.span = trait_ref.path.span;
1170 if !self.in_body {
1171 // Avoid calling `hir_trait_to_predicates` in bodies, it will ICE.
1172 // The traits' privacy in bodies is already checked as a part of trait object types.
1173 let bounds = rustc_typeck::hir_trait_to_predicates(self.tcx, trait_ref);
1174
1175 for (trait_predicate, _) in bounds.trait_bounds {
1176 if self.visit_trait(*trait_predicate.skip_binder()) {
1177 return;
1178 }
1179 }
1180
1181 for (poly_predicate, _) in bounds.projection_bounds {
1182 let tcx = self.tcx;
1183 if self.visit(poly_predicate.skip_binder().ty)
1184 || self.visit_trait(poly_predicate.skip_binder().projection_ty.trait_ref(tcx))
1185 {
1186 return;
1187 }
1188 }
1189 }
1190
1191 intravisit::walk_trait_ref(self, trait_ref);
1192 }
1193
1194 // Check types of expressions
1195 fn visit_expr(&mut self, expr: &'tcx hir::Expr) {
1196 if self.check_expr_pat_type(expr.hir_id, expr.span) {
1197 // Do not check nested expressions if the error already happened.
1198 return;
1199 }
1200 match expr.node {
1201 hir::ExprKind::Assign(.., ref rhs) | hir::ExprKind::Match(ref rhs, ..) => {
1202 // Do not report duplicate errors for `x = y` and `match x { ... }`.
1203 if self.check_expr_pat_type(rhs.hir_id, rhs.span) {
1204 return;
1205 }
1206 }
1207 hir::ExprKind::MethodCall(_, span, _) => {
1208 // Method calls have to be checked specially.
1209 self.span = span;
1210 if let Some(def_id) = self.tables.type_dependent_def_id(expr.hir_id) {
1211 if self.visit(self.tcx.type_of(def_id)) {
1212 return;
1213 }
1214 } else {
1215 self.tcx.sess.delay_span_bug(expr.span,
1216 "no type-dependent def for method call");
1217 }
1218 }
1219 _ => {}
1220 }
1221
1222 intravisit::walk_expr(self, expr);
1223 }
1224
1225 // Prohibit access to associated items with insufficient nominal visibility.
1226 //
1227 // Additionally, until better reachability analysis for macros 2.0 is available,
1228 // we prohibit access to private statics from other crates, this allows to give
1229 // more code internal visibility at link time. (Access to private functions
1230 // is already prohibited by type privacy for function types.)
1231 fn visit_qpath(&mut self, qpath: &'tcx hir::QPath, id: hir::HirId, span: Span) {
1232 let def = match self.tables.qpath_res(qpath, id) {
1233 Res::Def(kind, def_id) => Some((kind, def_id)),
1234 _ => None,
1235 };
1236 let def = def.filter(|(kind, _)| {
1237 match kind {
1238 DefKind::Method
1239 | DefKind::AssocConst
1240 | DefKind::AssocTy
1241 | DefKind::AssocOpaqueTy
1242 | DefKind::Static => true,
1243 _ => false,
1244 }
1245 });
1246 if let Some((kind, def_id)) = def {
1247 let is_local_static = if let DefKind::Static = kind {
1248 def_id.is_local()
1249 } else { false };
1250 if !self.item_is_accessible(def_id) && !is_local_static {
1251 let name = match *qpath {
1252 hir::QPath::Resolved(_, ref path) => path.to_string(),
1253 hir::QPath::TypeRelative(_, ref segment) => segment.ident.to_string(),
1254 };
1255 let msg = format!("{} `{}` is private", kind.descr(def_id), name);
1256 self.tcx.sess.span_err(span, &msg);
1257 return;
1258 }
1259 }
1260
1261 intravisit::walk_qpath(self, qpath, id, span);
1262 }
1263
1264 // Check types of patterns.
1265 fn visit_pat(&mut self, pattern: &'tcx hir::Pat) {
1266 if self.check_expr_pat_type(pattern.hir_id, pattern.span) {
1267 // Do not check nested patterns if the error already happened.
1268 return;
1269 }
1270
1271 intravisit::walk_pat(self, pattern);
1272 }
1273
1274 fn visit_local(&mut self, local: &'tcx hir::Local) {
1275 if let Some(ref init) = local.init {
1276 if self.check_expr_pat_type(init.hir_id, init.span) {
1277 // Do not report duplicate errors for `let x = y`.
1278 return;
1279 }
1280 }
1281
1282 intravisit::walk_local(self, local);
1283 }
1284
1285 // Check types in item interfaces.
1286 fn visit_item(&mut self, item: &'tcx hir::Item) {
1287 let orig_current_item = mem::replace(&mut self.current_item,
1288 self.tcx.hir().local_def_id(item.hir_id));
1289 let orig_in_body = mem::replace(&mut self.in_body, false);
1290 let orig_tables =
1291 mem::replace(&mut self.tables, item_tables(self.tcx, item.hir_id, self.empty_tables));
1292 intravisit::walk_item(self, item);
1293 self.tables = orig_tables;
1294 self.in_body = orig_in_body;
1295 self.current_item = orig_current_item;
1296 }
1297
1298 fn visit_trait_item(&mut self, ti: &'tcx hir::TraitItem) {
1299 let orig_tables =
1300 mem::replace(&mut self.tables, item_tables(self.tcx, ti.hir_id, self.empty_tables));
1301 intravisit::walk_trait_item(self, ti);
1302 self.tables = orig_tables;
1303 }
1304
1305 fn visit_impl_item(&mut self, ii: &'tcx hir::ImplItem) {
1306 let orig_tables =
1307 mem::replace(&mut self.tables, item_tables(self.tcx, ii.hir_id, self.empty_tables));
1308 intravisit::walk_impl_item(self, ii);
1309 self.tables = orig_tables;
1310 }
1311 }
1312
1313 impl DefIdVisitor<'tcx> for TypePrivacyVisitor<'a, 'tcx> {
1314 fn tcx(&self) -> TyCtxt<'tcx> { self.tcx }
1315 fn visit_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool {
1316 self.check_def_id(def_id, kind, descr)
1317 }
1318 }
1319
1320 ///////////////////////////////////////////////////////////////////////////////
1321 /// Obsolete visitors for checking for private items in public interfaces.
1322 /// These visitors are supposed to be kept in frozen state and produce an
1323 /// "old error node set". For backward compatibility the new visitor reports
1324 /// warnings instead of hard errors when the erroneous node is not in this old set.
1325 ///////////////////////////////////////////////////////////////////////////////
1326
1327 struct ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> {
1328 tcx: TyCtxt<'tcx>,
1329 access_levels: &'a AccessLevels,
1330 in_variant: bool,
1331 // Set of errors produced by this obsolete visitor.
1332 old_error_set: HirIdSet,
1333 }
1334
1335 struct ObsoleteCheckTypeForPrivatenessVisitor<'a, 'b, 'tcx> {
1336 inner: &'a ObsoleteVisiblePrivateTypesVisitor<'b, 'tcx>,
1337 /// Whether the type refers to private types.
1338 contains_private: bool,
1339 /// Whether we've recurred at all (i.e., if we're pointing at the
1340 /// first type on which `visit_ty` was called).
1341 at_outer_type: bool,
1342 /// Whether that first type is a public path.
1343 outer_type_is_public_path: bool,
1344 }
1345
1346 impl<'a, 'tcx> ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> {
1347 fn path_is_private_type(&self, path: &hir::Path) -> bool {
1348 let did = match path.res {
1349 Res::PrimTy(..) | Res::SelfTy(..) | Res::Err => return false,
1350 res => res.def_id(),
1351 };
1352
1353 // A path can only be private if:
1354 // it's in this crate...
1355 if let Some(hir_id) = self.tcx.hir().as_local_hir_id(did) {
1356 // .. and it corresponds to a private type in the AST (this returns
1357 // `None` for type parameters).
1358 match self.tcx.hir().find(hir_id) {
1359 Some(Node::Item(ref item)) => !item.vis.node.is_pub(),
1360 Some(_) | None => false,
1361 }
1362 } else {
1363 return false
1364 }
1365 }
1366
1367 fn trait_is_public(&self, trait_id: hir::HirId) -> bool {
1368 // FIXME: this would preferably be using `exported_items`, but all
1369 // traits are exported currently (see `EmbargoVisitor.exported_trait`).
1370 self.access_levels.is_public(trait_id)
1371 }
1372
1373 fn check_generic_bound(&mut self, bound: &hir::GenericBound) {
1374 if let hir::GenericBound::Trait(ref trait_ref, _) = *bound {
1375 if self.path_is_private_type(&trait_ref.trait_ref.path) {
1376 self.old_error_set.insert(trait_ref.trait_ref.hir_ref_id);
1377 }
1378 }
1379 }
1380
1381 fn item_is_public(&self, id: &hir::HirId, vis: &hir::Visibility) -> bool {
1382 self.access_levels.is_reachable(*id) || vis.node.is_pub()
1383 }
1384 }
1385
1386 impl<'a, 'b, 'tcx, 'v> Visitor<'v> for ObsoleteCheckTypeForPrivatenessVisitor<'a, 'b, 'tcx> {
1387 fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'v> {
1388 NestedVisitorMap::None
1389 }
1390
1391 fn visit_ty(&mut self, ty: &hir::Ty) {
1392 if let hir::TyKind::Path(hir::QPath::Resolved(_, ref path)) = ty.node {
1393 if self.inner.path_is_private_type(path) {
1394 self.contains_private = true;
1395 // Found what we're looking for, so let's stop working.
1396 return
1397 }
1398 }
1399 if let hir::TyKind::Path(_) = ty.node {
1400 if self.at_outer_type {
1401 self.outer_type_is_public_path = true;
1402 }
1403 }
1404 self.at_outer_type = false;
1405 intravisit::walk_ty(self, ty)
1406 }
1407
1408 // Don't want to recurse into `[, .. expr]`.
1409 fn visit_expr(&mut self, _: &hir::Expr) {}
1410 }
1411
1412 impl<'a, 'tcx> Visitor<'tcx> for ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> {
1413 /// We want to visit items in the context of their containing
1414 /// module and so forth, so supply a crate for doing a deep walk.
1415 fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
1416 NestedVisitorMap::All(&self.tcx.hir())
1417 }
1418
1419 fn visit_item(&mut self, item: &'tcx hir::Item) {
1420 match item.node {
1421 // Contents of a private mod can be re-exported, so we need
1422 // to check internals.
1423 hir::ItemKind::Mod(_) => {}
1424
1425 // An `extern {}` doesn't introduce a new privacy
1426 // namespace (the contents have their own privacies).
1427 hir::ItemKind::ForeignMod(_) => {}
1428
1429 hir::ItemKind::Trait(.., ref bounds, _) => {
1430 if !self.trait_is_public(item.hir_id) {
1431 return
1432 }
1433
1434 for bound in bounds.iter() {
1435 self.check_generic_bound(bound)
1436 }
1437 }
1438
1439 // Impls need some special handling to try to offer useful
1440 // error messages without (too many) false positives
1441 // (i.e., we could just return here to not check them at
1442 // all, or some worse estimation of whether an impl is
1443 // publicly visible).
1444 hir::ItemKind::Impl(.., ref g, ref trait_ref, ref self_, ref impl_item_refs) => {
1445 // `impl [... for] Private` is never visible.
1446 let self_contains_private;
1447 // `impl [... for] Public<...>`, but not `impl [... for]
1448 // Vec<Public>` or `(Public,)`, etc.
1449 let self_is_public_path;
1450
1451 // Check the properties of the `Self` type:
1452 {
1453 let mut visitor = ObsoleteCheckTypeForPrivatenessVisitor {
1454 inner: self,
1455 contains_private: false,
1456 at_outer_type: true,
1457 outer_type_is_public_path: false,
1458 };
1459 visitor.visit_ty(&self_);
1460 self_contains_private = visitor.contains_private;
1461 self_is_public_path = visitor.outer_type_is_public_path;
1462 }
1463
1464 // Miscellaneous info about the impl:
1465
1466 // `true` iff this is `impl Private for ...`.
1467 let not_private_trait =
1468 trait_ref.as_ref().map_or(true, // no trait counts as public trait
1469 |tr| {
1470 let did = tr.path.res.def_id();
1471
1472 if let Some(hir_id) = self.tcx.hir().as_local_hir_id(did) {
1473 self.trait_is_public(hir_id)
1474 } else {
1475 true // external traits must be public
1476 }
1477 });
1478
1479 // `true` iff this is a trait impl or at least one method is public.
1480 //
1481 // `impl Public { $( fn ...() {} )* }` is not visible.
1482 //
1483 // This is required over just using the methods' privacy
1484 // directly because we might have `impl<T: Foo<Private>> ...`,
1485 // and we shouldn't warn about the generics if all the methods
1486 // are private (because `T` won't be visible externally).
1487 let trait_or_some_public_method =
1488 trait_ref.is_some() ||
1489 impl_item_refs.iter()
1490 .any(|impl_item_ref| {
1491 let impl_item = self.tcx.hir().impl_item(impl_item_ref.id);
1492 match impl_item.node {
1493 hir::ImplItemKind::Const(..) |
1494 hir::ImplItemKind::Method(..) => {
1495 self.access_levels.is_reachable(
1496 impl_item_ref.id.hir_id)
1497 }
1498 hir::ImplItemKind::OpaqueTy(..) |
1499 hir::ImplItemKind::TyAlias(_) => false,
1500 }
1501 });
1502
1503 if !self_contains_private &&
1504 not_private_trait &&
1505 trait_or_some_public_method {
1506
1507 intravisit::walk_generics(self, g);
1508
1509 match *trait_ref {
1510 None => {
1511 for impl_item_ref in impl_item_refs {
1512 // This is where we choose whether to walk down
1513 // further into the impl to check its items. We
1514 // should only walk into public items so that we
1515 // don't erroneously report errors for private
1516 // types in private items.
1517 let impl_item = self.tcx.hir().impl_item(impl_item_ref.id);
1518 match impl_item.node {
1519 hir::ImplItemKind::Const(..) |
1520 hir::ImplItemKind::Method(..)
1521 if self.item_is_public(&impl_item.hir_id, &impl_item.vis) =>
1522 {
1523 intravisit::walk_impl_item(self, impl_item)
1524 }
1525 hir::ImplItemKind::TyAlias(..) => {
1526 intravisit::walk_impl_item(self, impl_item)
1527 }
1528 _ => {}
1529 }
1530 }
1531 }
1532 Some(ref tr) => {
1533 // Any private types in a trait impl fall into three
1534 // categories.
1535 // 1. mentioned in the trait definition
1536 // 2. mentioned in the type params/generics
1537 // 3. mentioned in the associated types of the impl
1538 //
1539 // Those in 1. can only occur if the trait is in
1540 // this crate and will've been warned about on the
1541 // trait definition (there's no need to warn twice
1542 // so we don't check the methods).
1543 //
1544 // Those in 2. are warned via walk_generics and this
1545 // call here.
1546 intravisit::walk_path(self, &tr.path);
1547
1548 // Those in 3. are warned with this call.
1549 for impl_item_ref in impl_item_refs {
1550 let impl_item = self.tcx.hir().impl_item(impl_item_ref.id);
1551 if let hir::ImplItemKind::TyAlias(ref ty) = impl_item.node {
1552 self.visit_ty(ty);
1553 }
1554 }
1555 }
1556 }
1557 } else if trait_ref.is_none() && self_is_public_path {
1558 // `impl Public<Private> { ... }`. Any public static
1559 // methods will be visible as `Public::foo`.
1560 let mut found_pub_static = false;
1561 for impl_item_ref in impl_item_refs {
1562 if self.item_is_public(&impl_item_ref.id.hir_id, &impl_item_ref.vis) {
1563 let impl_item = self.tcx.hir().impl_item(impl_item_ref.id);
1564 match impl_item_ref.kind {
1565 AssocItemKind::Const => {
1566 found_pub_static = true;
1567 intravisit::walk_impl_item(self, impl_item);
1568 }
1569 AssocItemKind::Method { has_self: false } => {
1570 found_pub_static = true;
1571 intravisit::walk_impl_item(self, impl_item);
1572 }
1573 _ => {}
1574 }
1575 }
1576 }
1577 if found_pub_static {
1578 intravisit::walk_generics(self, g)
1579 }
1580 }
1581 return
1582 }
1583
1584 // `type ... = ...;` can contain private types, because
1585 // we're introducing a new name.
1586 hir::ItemKind::TyAlias(..) => return,
1587
1588 // Not at all public, so we don't care.
1589 _ if !self.item_is_public(&item.hir_id, &item.vis) => {
1590 return;
1591 }
1592
1593 _ => {}
1594 }
1595
1596 // We've carefully constructed it so that if we're here, then
1597 // any `visit_ty`'s will be called on things that are in
1598 // public signatures, i.e., things that we're interested in for
1599 // this visitor.
1600 intravisit::walk_item(self, item);
1601 }
1602
1603 fn visit_generics(&mut self, generics: &'tcx hir::Generics) {
1604 for param in &generics.params {
1605 for bound in &param.bounds {
1606 self.check_generic_bound(bound);
1607 }
1608 }
1609 for predicate in &generics.where_clause.predicates {
1610 match predicate {
1611 hir::WherePredicate::BoundPredicate(bound_pred) => {
1612 for bound in bound_pred.bounds.iter() {
1613 self.check_generic_bound(bound)
1614 }
1615 }
1616 hir::WherePredicate::RegionPredicate(_) => {}
1617 hir::WherePredicate::EqPredicate(eq_pred) => {
1618 self.visit_ty(&eq_pred.rhs_ty);
1619 }
1620 }
1621 }
1622 }
1623
1624 fn visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem) {
1625 if self.access_levels.is_reachable(item.hir_id) {
1626 intravisit::walk_foreign_item(self, item)
1627 }
1628 }
1629
1630 fn visit_ty(&mut self, t: &'tcx hir::Ty) {
1631 if let hir::TyKind::Path(hir::QPath::Resolved(_, ref path)) = t.node {
1632 if self.path_is_private_type(path) {
1633 self.old_error_set.insert(t.hir_id);
1634 }
1635 }
1636 intravisit::walk_ty(self, t)
1637 }
1638
1639 fn visit_variant(&mut self,
1640 v: &'tcx hir::Variant,
1641 g: &'tcx hir::Generics,
1642 item_id: hir::HirId) {
1643 if self.access_levels.is_reachable(v.id) {
1644 self.in_variant = true;
1645 intravisit::walk_variant(self, v, g, item_id);
1646 self.in_variant = false;
1647 }
1648 }
1649
1650 fn visit_struct_field(&mut self, s: &'tcx hir::StructField) {
1651 if s.vis.node.is_pub() || self.in_variant {
1652 intravisit::walk_struct_field(self, s);
1653 }
1654 }
1655
1656 // We don't need to introspect into these at all: an
1657 // expression/block context can't possibly contain exported things.
1658 // (Making them no-ops stops us from traversing the whole AST without
1659 // having to be super careful about our `walk_...` calls above.)
1660 fn visit_block(&mut self, _: &'tcx hir::Block) {}
1661 fn visit_expr(&mut self, _: &'tcx hir::Expr) {}
1662 }
1663
1664 ///////////////////////////////////////////////////////////////////////////////
1665 /// SearchInterfaceForPrivateItemsVisitor traverses an item's interface and
1666 /// finds any private components in it.
1667 /// PrivateItemsInPublicInterfacesVisitor ensures there are no private types
1668 /// and traits in public interfaces.
1669 ///////////////////////////////////////////////////////////////////////////////
1670
1671 struct SearchInterfaceForPrivateItemsVisitor<'tcx> {
1672 tcx: TyCtxt<'tcx>,
1673 item_id: hir::HirId,
1674 item_def_id: DefId,
1675 span: Span,
1676 /// The visitor checks that each component type is at least this visible.
1677 required_visibility: ty::Visibility,
1678 has_pub_restricted: bool,
1679 has_old_errors: bool,
1680 in_assoc_ty: bool,
1681 }
1682
1683 impl SearchInterfaceForPrivateItemsVisitor<'tcx> {
1684 fn generics(&mut self) -> &mut Self {
1685 for param in &self.tcx.generics_of(self.item_def_id).params {
1686 match param.kind {
1687 GenericParamDefKind::Lifetime => {}
1688 GenericParamDefKind::Type { has_default, .. } => {
1689 if has_default {
1690 self.visit(self.tcx.type_of(param.def_id));
1691 }
1692 }
1693 GenericParamDefKind::Const => {
1694 self.visit(self.tcx.type_of(param.def_id));
1695 }
1696 }
1697 }
1698 self
1699 }
1700
1701 fn predicates(&mut self) -> &mut Self {
1702 // N.B., we use `explicit_predicates_of` and not `predicates_of`
1703 // because we don't want to report privacy errors due to where
1704 // clauses that the compiler inferred. We only want to
1705 // consider the ones that the user wrote. This is important
1706 // for the inferred outlives rules; see
1707 // `src/test/ui/rfc-2093-infer-outlives/privacy.rs`.
1708 self.visit_predicates(self.tcx.explicit_predicates_of(self.item_def_id));
1709 self
1710 }
1711
1712 fn ty(&mut self) -> &mut Self {
1713 self.visit(self.tcx.type_of(self.item_def_id));
1714 self
1715 }
1716
1717 fn check_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool {
1718 if self.leaks_private_dep(def_id) {
1719 self.tcx.lint_hir(lint::builtin::EXPORTED_PRIVATE_DEPENDENCIES,
1720 self.item_id,
1721 self.span,
1722 &format!("{} `{}` from private dependency '{}' in public \
1723 interface", kind, descr,
1724 self.tcx.crate_name(def_id.krate)));
1725
1726 }
1727
1728 let hir_id = match self.tcx.hir().as_local_hir_id(def_id) {
1729 Some(hir_id) => hir_id,
1730 None => return false,
1731 };
1732
1733 let (vis, vis_span, vis_descr) = def_id_visibility(self.tcx, def_id);
1734 if !vis.is_at_least(self.required_visibility, self.tcx) {
1735 let msg = format!("{} {} `{}` in public interface", vis_descr, kind, descr);
1736 if self.has_pub_restricted || self.has_old_errors || self.in_assoc_ty {
1737 let mut err = if kind == "trait" {
1738 struct_span_err!(self.tcx.sess, self.span, E0445, "{}", msg)
1739 } else {
1740 struct_span_err!(self.tcx.sess, self.span, E0446, "{}", msg)
1741 };
1742 err.span_label(self.span, format!("can't leak {} {}", vis_descr, kind));
1743 err.span_label(vis_span, format!("`{}` declared as {}", descr, vis_descr));
1744 err.emit();
1745 } else {
1746 let err_code = if kind == "trait" { "E0445" } else { "E0446" };
1747 self.tcx.lint_hir(lint::builtin::PRIVATE_IN_PUBLIC, hir_id, self.span,
1748 &format!("{} (error {})", msg, err_code));
1749 }
1750
1751 }
1752
1753 false
1754 }
1755
1756 /// An item is 'leaked' from a private dependency if all
1757 /// of the following are true:
1758 /// 1. It's contained within a public type
1759 /// 2. It comes from a private crate
1760 fn leaks_private_dep(&self, item_id: DefId) -> bool {
1761 let ret = self.required_visibility == ty::Visibility::Public &&
1762 self.tcx.is_private_dep(item_id.krate);
1763
1764 log::debug!("leaks_private_dep(item_id={:?})={}", item_id, ret);
1765 return ret;
1766 }
1767 }
1768
1769 impl DefIdVisitor<'tcx> for SearchInterfaceForPrivateItemsVisitor<'tcx> {
1770 fn tcx(&self) -> TyCtxt<'tcx> { self.tcx }
1771 fn visit_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool {
1772 self.check_def_id(def_id, kind, descr)
1773 }
1774 }
1775
1776 struct PrivateItemsInPublicInterfacesVisitor<'a, 'tcx> {
1777 tcx: TyCtxt<'tcx>,
1778 has_pub_restricted: bool,
1779 old_error_set: &'a HirIdSet,
1780 }
1781
1782 impl<'a, 'tcx> PrivateItemsInPublicInterfacesVisitor<'a, 'tcx> {
1783 fn check(
1784 &self,
1785 item_id: hir::HirId,
1786 required_visibility: ty::Visibility,
1787 ) -> SearchInterfaceForPrivateItemsVisitor<'tcx> {
1788 let mut has_old_errors = false;
1789
1790 // Slow path taken only if there any errors in the crate.
1791 for &id in self.old_error_set {
1792 // Walk up the nodes until we find `item_id` (or we hit a root).
1793 let mut id = id;
1794 loop {
1795 if id == item_id {
1796 has_old_errors = true;
1797 break;
1798 }
1799 let parent = self.tcx.hir().get_parent_node(id);
1800 if parent == id {
1801 break;
1802 }
1803 id = parent;
1804 }
1805
1806 if has_old_errors {
1807 break;
1808 }
1809 }
1810
1811 SearchInterfaceForPrivateItemsVisitor {
1812 tcx: self.tcx,
1813 item_id,
1814 item_def_id: self.tcx.hir().local_def_id(item_id),
1815 span: self.tcx.hir().span(item_id),
1816 required_visibility,
1817 has_pub_restricted: self.has_pub_restricted,
1818 has_old_errors,
1819 in_assoc_ty: false,
1820 }
1821 }
1822
1823 fn check_assoc_item(
1824 &self,
1825 hir_id: hir::HirId,
1826 assoc_item_kind: AssocItemKind,
1827 defaultness: hir::Defaultness,
1828 vis: ty::Visibility,
1829 ) {
1830 let mut check = self.check(hir_id, vis);
1831
1832 let (check_ty, is_assoc_ty) = match assoc_item_kind {
1833 AssocItemKind::Const | AssocItemKind::Method { .. } => (true, false),
1834 AssocItemKind::Type => (defaultness.has_value(), true),
1835 // `ty()` for opaque types is the underlying type,
1836 // it's not a part of interface, so we skip it.
1837 AssocItemKind::OpaqueTy => (false, true),
1838 };
1839 check.in_assoc_ty = is_assoc_ty;
1840 check.generics().predicates();
1841 if check_ty {
1842 check.ty();
1843 }
1844 }
1845 }
1846
1847 impl<'a, 'tcx> Visitor<'tcx> for PrivateItemsInPublicInterfacesVisitor<'a, 'tcx> {
1848 fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
1849 NestedVisitorMap::OnlyBodies(&self.tcx.hir())
1850 }
1851
1852 fn visit_item(&mut self, item: &'tcx hir::Item) {
1853 let tcx = self.tcx;
1854 let item_visibility = ty::Visibility::from_hir(&item.vis, item.hir_id, tcx);
1855
1856 match item.node {
1857 // Crates are always public.
1858 hir::ItemKind::ExternCrate(..) => {}
1859 // All nested items are checked by `visit_item`.
1860 hir::ItemKind::Mod(..) => {}
1861 // Checked in resolve.
1862 hir::ItemKind::Use(..) => {}
1863 // No subitems.
1864 hir::ItemKind::GlobalAsm(..) => {}
1865 // Subitems of these items have inherited publicity.
1866 hir::ItemKind::Const(..) | hir::ItemKind::Static(..) |
1867 hir::ItemKind::Fn(..) | hir::ItemKind::TyAlias(..) => {
1868 self.check(item.hir_id, item_visibility).generics().predicates().ty();
1869 }
1870 hir::ItemKind::OpaqueTy(..) => {
1871 // `ty()` for opaque types is the underlying type,
1872 // it's not a part of interface, so we skip it.
1873 self.check(item.hir_id, item_visibility).generics().predicates();
1874 }
1875 hir::ItemKind::Trait(.., ref trait_item_refs) => {
1876 self.check(item.hir_id, item_visibility).generics().predicates();
1877
1878 for trait_item_ref in trait_item_refs {
1879 self.check_assoc_item(
1880 trait_item_ref.id.hir_id,
1881 trait_item_ref.kind,
1882 trait_item_ref.defaultness,
1883 item_visibility,
1884 );
1885 }
1886 }
1887 hir::ItemKind::TraitAlias(..) => {
1888 self.check(item.hir_id, item_visibility).generics().predicates();
1889 }
1890 hir::ItemKind::Enum(ref def, _) => {
1891 self.check(item.hir_id, item_visibility).generics().predicates();
1892
1893 for variant in &def.variants {
1894 for field in variant.data.fields() {
1895 self.check(field.hir_id, item_visibility).ty();
1896 }
1897 }
1898 }
1899 // Subitems of foreign modules have their own publicity.
1900 hir::ItemKind::ForeignMod(ref foreign_mod) => {
1901 for foreign_item in &foreign_mod.items {
1902 let vis = ty::Visibility::from_hir(&foreign_item.vis, item.hir_id, tcx);
1903 self.check(foreign_item.hir_id, vis).generics().predicates().ty();
1904 }
1905 }
1906 // Subitems of structs and unions have their own publicity.
1907 hir::ItemKind::Struct(ref struct_def, _) |
1908 hir::ItemKind::Union(ref struct_def, _) => {
1909 self.check(item.hir_id, item_visibility).generics().predicates();
1910
1911 for field in struct_def.fields() {
1912 let field_visibility = ty::Visibility::from_hir(&field.vis, item.hir_id, tcx);
1913 self.check(field.hir_id, min(item_visibility, field_visibility, tcx)).ty();
1914 }
1915 }
1916 // An inherent impl is public when its type is public
1917 // Subitems of inherent impls have their own publicity.
1918 // A trait impl is public when both its type and its trait are public
1919 // Subitems of trait impls have inherited publicity.
1920 hir::ItemKind::Impl(.., ref trait_ref, _, ref impl_item_refs) => {
1921 let impl_vis = ty::Visibility::of_impl(item.hir_id, tcx, &Default::default());
1922 self.check(item.hir_id, impl_vis).generics().predicates();
1923 for impl_item_ref in impl_item_refs {
1924 let impl_item = tcx.hir().impl_item(impl_item_ref.id);
1925 let impl_item_vis = if trait_ref.is_none() {
1926 min(ty::Visibility::from_hir(&impl_item.vis, item.hir_id, tcx),
1927 impl_vis,
1928 tcx)
1929 } else {
1930 impl_vis
1931 };
1932 self.check_assoc_item(
1933 impl_item_ref.id.hir_id,
1934 impl_item_ref.kind,
1935 impl_item_ref.defaultness,
1936 impl_item_vis,
1937 );
1938 }
1939 }
1940 }
1941 }
1942 }
1943
1944 pub fn provide(providers: &mut Providers<'_>) {
1945 *providers = Providers {
1946 privacy_access_levels,
1947 check_private_in_public,
1948 check_mod_privacy,
1949 ..*providers
1950 };
1951 }
1952
1953 fn check_mod_privacy(tcx: TyCtxt<'_>, module_def_id: DefId) {
1954 let empty_tables = ty::TypeckTables::empty(None);
1955
1956 // Check privacy of names not checked in previous compilation stages.
1957 let mut visitor = NamePrivacyVisitor {
1958 tcx,
1959 tables: &empty_tables,
1960 current_item: hir::DUMMY_HIR_ID,
1961 empty_tables: &empty_tables,
1962 };
1963 let (module, span, hir_id) = tcx.hir().get_module(module_def_id);
1964
1965 intravisit::walk_mod(&mut visitor, module, hir_id);
1966
1967 // Check privacy of explicitly written types and traits as well as
1968 // inferred types of expressions and patterns.
1969 let mut visitor = TypePrivacyVisitor {
1970 tcx,
1971 tables: &empty_tables,
1972 current_item: module_def_id,
1973 in_body: false,
1974 span,
1975 empty_tables: &empty_tables,
1976 };
1977 intravisit::walk_mod(&mut visitor, module, hir_id);
1978 }
1979
1980 fn privacy_access_levels(tcx: TyCtxt<'_>, krate: CrateNum) -> &AccessLevels {
1981 assert_eq!(krate, LOCAL_CRATE);
1982
1983 // Build up a set of all exported items in the AST. This is a set of all
1984 // items which are reachable from external crates based on visibility.
1985 let mut visitor = EmbargoVisitor {
1986 tcx,
1987 access_levels: Default::default(),
1988 macro_reachable: Default::default(),
1989 prev_level: Some(AccessLevel::Public),
1990 changed: false,
1991 };
1992 loop {
1993 intravisit::walk_crate(&mut visitor, tcx.hir().krate());
1994 if visitor.changed {
1995 visitor.changed = false;
1996 } else {
1997 break
1998 }
1999 }
2000 visitor.update(hir::CRATE_HIR_ID, Some(AccessLevel::Public));
2001
2002 tcx.arena.alloc(visitor.access_levels)
2003 }
2004
2005 fn check_private_in_public(tcx: TyCtxt<'_>, krate: CrateNum) {
2006 assert_eq!(krate, LOCAL_CRATE);
2007
2008 let access_levels = tcx.privacy_access_levels(LOCAL_CRATE);
2009
2010 let krate = tcx.hir().krate();
2011
2012 let mut visitor = ObsoleteVisiblePrivateTypesVisitor {
2013 tcx,
2014 access_levels: &access_levels,
2015 in_variant: false,
2016 old_error_set: Default::default(),
2017 };
2018 intravisit::walk_crate(&mut visitor, krate);
2019
2020 let has_pub_restricted = {
2021 let mut pub_restricted_visitor = PubRestrictedVisitor {
2022 tcx,
2023 has_pub_restricted: false
2024 };
2025 intravisit::walk_crate(&mut pub_restricted_visitor, krate);
2026 pub_restricted_visitor.has_pub_restricted
2027 };
2028
2029 // Check for private types and traits in public interfaces.
2030 let mut visitor = PrivateItemsInPublicInterfacesVisitor {
2031 tcx,
2032 has_pub_restricted,
2033 old_error_set: &visitor.old_error_set,
2034 };
2035 krate.visit_all_item_likes(&mut DeepVisitor::new(&mut visitor));
2036 }