]> git.proxmox.com Git - rustc.git/blob - src/librustc_trait_selection/traits/auto_trait.rs
New upstream version 1.44.1+dfsg1
[rustc.git] / src / librustc_trait_selection / traits / auto_trait.rs
1 //! Support code for rustdoc and external tools.
2 //! You really don't want to be using this unless you need to.
3
4 use super::*;
5
6 use crate::infer::region_constraints::{Constraint, RegionConstraintData};
7 use crate::infer::InferCtxt;
8 use rustc_middle::ty::fold::TypeFolder;
9 use rustc_middle::ty::{Region, RegionVid};
10
11 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
12
13 use std::collections::hash_map::Entry;
14 use std::collections::VecDeque;
15
16 // FIXME(twk): this is obviously not nice to duplicate like that
17 #[derive(Eq, PartialEq, Hash, Copy, Clone, Debug)]
18 pub enum RegionTarget<'tcx> {
19 Region(Region<'tcx>),
20 RegionVid(RegionVid),
21 }
22
23 #[derive(Default, Debug, Clone)]
24 pub struct RegionDeps<'tcx> {
25 larger: FxHashSet<RegionTarget<'tcx>>,
26 smaller: FxHashSet<RegionTarget<'tcx>>,
27 }
28
29 pub enum AutoTraitResult<A> {
30 ExplicitImpl,
31 PositiveImpl(A),
32 NegativeImpl,
33 }
34
35 impl<A> AutoTraitResult<A> {
36 fn is_auto(&self) -> bool {
37 match *self {
38 AutoTraitResult::PositiveImpl(_) | AutoTraitResult::NegativeImpl => true,
39 _ => false,
40 }
41 }
42 }
43
44 pub struct AutoTraitInfo<'cx> {
45 pub full_user_env: ty::ParamEnv<'cx>,
46 pub region_data: RegionConstraintData<'cx>,
47 pub vid_to_region: FxHashMap<ty::RegionVid, ty::Region<'cx>>,
48 }
49
50 pub struct AutoTraitFinder<'tcx> {
51 tcx: TyCtxt<'tcx>,
52 }
53
54 impl<'tcx> AutoTraitFinder<'tcx> {
55 pub fn new(tcx: TyCtxt<'tcx>) -> Self {
56 AutoTraitFinder { tcx }
57 }
58
59 /// Makes a best effort to determine whether and under which conditions an auto trait is
60 /// implemented for a type. For example, if you have
61 ///
62 /// ```
63 /// struct Foo<T> { data: Box<T> }
64 /// ```
65 ///
66 /// then this might return that Foo<T>: Send if T: Send (encoded in the AutoTraitResult type).
67 /// The analysis attempts to account for custom impls as well as other complex cases. This
68 /// result is intended for use by rustdoc and other such consumers.
69 ///
70 /// (Note that due to the coinductive nature of Send, the full and correct result is actually
71 /// quite simple to generate. That is, when a type has no custom impl, it is Send iff its field
72 /// types are all Send. So, in our example, we might have that Foo<T>: Send if Box<T>: Send.
73 /// But this is often not the best way to present to the user.)
74 ///
75 /// Warning: The API should be considered highly unstable, and it may be refactored or removed
76 /// in the future.
77 pub fn find_auto_trait_generics<A>(
78 &self,
79 ty: Ty<'tcx>,
80 orig_env: ty::ParamEnv<'tcx>,
81 trait_did: DefId,
82 auto_trait_callback: impl Fn(&InferCtxt<'_, 'tcx>, AutoTraitInfo<'tcx>) -> A,
83 ) -> AutoTraitResult<A> {
84 let tcx = self.tcx;
85
86 let trait_ref = ty::TraitRef { def_id: trait_did, substs: tcx.mk_substs_trait(ty, &[]) };
87
88 let trait_pred = ty::Binder::bind(trait_ref);
89
90 let bail_out = tcx.infer_ctxt().enter(|infcx| {
91 let mut selcx = SelectionContext::with_negative(&infcx, true);
92 let result = selcx.select(&Obligation::new(
93 ObligationCause::dummy(),
94 orig_env,
95 trait_pred.to_poly_trait_predicate(),
96 ));
97
98 match result {
99 Ok(Some(Vtable::VtableImpl(_))) => {
100 debug!(
101 "find_auto_trait_generics({:?}): \
102 manual impl found, bailing out",
103 trait_ref
104 );
105 true
106 }
107 _ => false,
108 }
109 });
110
111 // If an explicit impl exists, it always takes priority over an auto impl
112 if bail_out {
113 return AutoTraitResult::ExplicitImpl;
114 }
115
116 tcx.infer_ctxt().enter(|infcx| {
117 let mut fresh_preds = FxHashSet::default();
118
119 // Due to the way projections are handled by SelectionContext, we need to run
120 // evaluate_predicates twice: once on the original param env, and once on the result of
121 // the first evaluate_predicates call.
122 //
123 // The problem is this: most of rustc, including SelectionContext and traits::project,
124 // are designed to work with a concrete usage of a type (e.g., Vec<u8>
125 // fn<T>() { Vec<T> }. This information will generally never change - given
126 // the 'T' in fn<T>() { ... }, we'll never know anything else about 'T'.
127 // If we're unable to prove that 'T' implements a particular trait, we're done -
128 // there's nothing left to do but error out.
129 //
130 // However, synthesizing an auto trait impl works differently. Here, we start out with
131 // a set of initial conditions - the ParamEnv of the struct/enum/union we're dealing
132 // with - and progressively discover the conditions we need to fulfill for it to
133 // implement a certain auto trait. This ends up breaking two assumptions made by trait
134 // selection and projection:
135 //
136 // * We can always cache the result of a particular trait selection for the lifetime of
137 // an InfCtxt
138 // * Given a projection bound such as '<T as SomeTrait>::SomeItem = K', if 'T:
139 // SomeTrait' doesn't hold, then we don't need to care about the 'SomeItem = K'
140 //
141 // We fix the first assumption by manually clearing out all of the InferCtxt's caches
142 // in between calls to SelectionContext.select. This allows us to keep all of the
143 // intermediate types we create bound to the 'tcx lifetime, rather than needing to lift
144 // them between calls.
145 //
146 // We fix the second assumption by reprocessing the result of our first call to
147 // evaluate_predicates. Using the example of '<T as SomeTrait>::SomeItem = K', our first
148 // pass will pick up 'T: SomeTrait', but not 'SomeItem = K'. On our second pass,
149 // traits::project will see that 'T: SomeTrait' is in our ParamEnv, allowing
150 // SelectionContext to return it back to us.
151
152 let (new_env, user_env) = match self.evaluate_predicates(
153 &infcx,
154 trait_did,
155 ty,
156 orig_env,
157 orig_env,
158 &mut fresh_preds,
159 false,
160 ) {
161 Some(e) => e,
162 None => return AutoTraitResult::NegativeImpl,
163 };
164
165 let (full_env, full_user_env) = self
166 .evaluate_predicates(
167 &infcx,
168 trait_did,
169 ty,
170 new_env,
171 user_env,
172 &mut fresh_preds,
173 true,
174 )
175 .unwrap_or_else(|| {
176 panic!("Failed to fully process: {:?} {:?} {:?}", ty, trait_did, orig_env)
177 });
178
179 debug!(
180 "find_auto_trait_generics({:?}): fulfilling \
181 with {:?}",
182 trait_ref, full_env
183 );
184 infcx.clear_caches();
185
186 // At this point, we already have all of the bounds we need. FulfillmentContext is used
187 // to store all of the necessary region/lifetime bounds in the InferContext, as well as
188 // an additional sanity check.
189 let mut fulfill = FulfillmentContext::new();
190 fulfill.register_bound(&infcx, full_env, ty, trait_did, ObligationCause::dummy());
191 fulfill.select_all_or_error(&infcx).unwrap_or_else(|e| {
192 panic!("Unable to fulfill trait {:?} for '{:?}': {:?}", trait_did, ty, e)
193 });
194
195 let body_id_map: FxHashMap<_, _> = infcx
196 .inner
197 .borrow()
198 .region_obligations
199 .iter()
200 .map(|&(id, _)| (id, vec![]))
201 .collect();
202
203 infcx.process_registered_region_obligations(&body_id_map, None, full_env);
204
205 let region_data = infcx
206 .inner
207 .borrow_mut()
208 .unwrap_region_constraints()
209 .region_constraint_data()
210 .clone();
211
212 let vid_to_region = self.map_vid_to_region(&region_data);
213
214 let info = AutoTraitInfo { full_user_env, region_data, vid_to_region };
215
216 AutoTraitResult::PositiveImpl(auto_trait_callback(&infcx, info))
217 })
218 }
219 }
220
221 impl AutoTraitFinder<'tcx> {
222 /// The core logic responsible for computing the bounds for our synthesized impl.
223 ///
224 /// To calculate the bounds, we call `SelectionContext.select` in a loop. Like
225 /// `FulfillmentContext`, we recursively select the nested obligations of predicates we
226 /// encounter. However, whenever we encounter an `UnimplementedError` involving a type
227 /// parameter, we add it to our `ParamEnv`. Since our goal is to determine when a particular
228 /// type implements an auto trait, Unimplemented errors tell us what conditions need to be met.
229 ///
230 /// This method ends up working somewhat similarly to `FulfillmentContext`, but with a few key
231 /// differences. `FulfillmentContext` works under the assumption that it's dealing with concrete
232 /// user code. According, it considers all possible ways that a `Predicate` could be met, which
233 /// isn't always what we want for a synthesized impl. For example, given the predicate `T:
234 /// Iterator`, `FulfillmentContext` can end up reporting an Unimplemented error for `T:
235 /// IntoIterator` -- since there's an implementation of `Iterator` where `T: IntoIterator`,
236 /// `FulfillmentContext` will drive `SelectionContext` to consider that impl before giving up.
237 /// If we were to rely on `FulfillmentContext`s decision, we might end up synthesizing an impl
238 /// like this:
239 ///
240 /// impl<T> Send for Foo<T> where T: IntoIterator
241 ///
242 /// While it might be technically true that Foo implements Send where `T: IntoIterator`,
243 /// the bound is overly restrictive - it's really only necessary that `T: Iterator`.
244 ///
245 /// For this reason, `evaluate_predicates` handles predicates with type variables specially.
246 /// When we encounter an `Unimplemented` error for a bound such as `T: Iterator`, we immediately
247 /// add it to our `ParamEnv`, and add it to our stack for recursive evaluation. When we later
248 /// select it, we'll pick up any nested bounds, without ever inferring that `T: IntoIterator`
249 /// needs to hold.
250 ///
251 /// One additional consideration is supertrait bounds. Normally, a `ParamEnv` is only ever
252 /// constructed once for a given type. As part of the construction process, the `ParamEnv` will
253 /// have any supertrait bounds normalized -- e.g., if we have a type `struct Foo<T: Copy>`, the
254 /// `ParamEnv` will contain `T: Copy` and `T: Clone`, since `Copy: Clone`. When we construct our
255 /// own `ParamEnv`, we need to do this ourselves, through `traits::elaborate_predicates`, or
256 /// else `SelectionContext` will choke on the missing predicates. However, this should never
257 /// show up in the final synthesized generics: we don't want our generated docs page to contain
258 /// something like `T: Copy + Clone`, as that's redundant. Therefore, we keep track of a
259 /// separate `user_env`, which only holds the predicates that will actually be displayed to the
260 /// user.
261 fn evaluate_predicates(
262 &self,
263 infcx: &InferCtxt<'_, 'tcx>,
264 trait_did: DefId,
265 ty: Ty<'tcx>,
266 param_env: ty::ParamEnv<'tcx>,
267 user_env: ty::ParamEnv<'tcx>,
268 fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
269 only_projections: bool,
270 ) -> Option<(ty::ParamEnv<'tcx>, ty::ParamEnv<'tcx>)> {
271 let tcx = infcx.tcx;
272
273 let mut select = SelectionContext::with_negative(&infcx, true);
274
275 let mut already_visited = FxHashSet::default();
276 let mut predicates = VecDeque::new();
277 predicates.push_back(ty::Binder::bind(ty::TraitPredicate {
278 trait_ref: ty::TraitRef {
279 def_id: trait_did,
280 substs: infcx.tcx.mk_substs_trait(ty, &[]),
281 },
282 }));
283
284 let computed_preds = param_env.caller_bounds.iter().cloned();
285 let mut user_computed_preds: FxHashSet<_> =
286 user_env.caller_bounds.iter().cloned().collect();
287
288 let mut new_env = param_env;
289 let dummy_cause = ObligationCause::dummy();
290
291 while let Some(pred) = predicates.pop_front() {
292 infcx.clear_caches();
293
294 if !already_visited.insert(pred) {
295 continue;
296 }
297
298 // Call `infcx.resolve_vars_if_possible` to see if we can
299 // get rid of any inference variables.
300 let obligation = infcx.resolve_vars_if_possible(&Obligation::new(
301 dummy_cause.clone(),
302 new_env,
303 pred,
304 ));
305 let result = select.select(&obligation);
306
307 match &result {
308 &Ok(Some(ref vtable)) => {
309 // If we see an explicit negative impl (e.g., `impl !Send for MyStruct`),
310 // we immediately bail out, since it's impossible for us to continue.
311
312 if let Vtable::VtableImpl(VtableImplData { impl_def_id, .. }) = vtable {
313 // Blame 'tidy' for the weird bracket placement.
314 if infcx.tcx.impl_polarity(*impl_def_id) == ty::ImplPolarity::Negative {
315 debug!(
316 "evaluate_nested_obligations: found explicit negative impl\
317 {:?}, bailing out",
318 impl_def_id
319 );
320 return None;
321 }
322 }
323
324 let obligations = vtable.clone().nested_obligations().into_iter();
325
326 if !self.evaluate_nested_obligations(
327 ty,
328 obligations,
329 &mut user_computed_preds,
330 fresh_preds,
331 &mut predicates,
332 &mut select,
333 only_projections,
334 ) {
335 return None;
336 }
337 }
338 &Ok(None) => {}
339 &Err(SelectionError::Unimplemented) => {
340 if self.is_param_no_infer(pred.skip_binder().trait_ref.substs) {
341 already_visited.remove(&pred);
342 self.add_user_pred(
343 &mut user_computed_preds,
344 ty::Predicate::Trait(pred, hir::Constness::NotConst),
345 );
346 predicates.push_back(pred);
347 } else {
348 debug!(
349 "evaluate_nested_obligations: `Unimplemented` found, bailing: \
350 {:?} {:?} {:?}",
351 ty,
352 pred,
353 pred.skip_binder().trait_ref.substs
354 );
355 return None;
356 }
357 }
358 _ => panic!("Unexpected error for '{:?}': {:?}", ty, result),
359 };
360
361 let normalized_preds = elaborate_predicates(
362 tcx,
363 computed_preds.clone().chain(user_computed_preds.iter().cloned()),
364 )
365 .map(|o| o.predicate);
366 new_env =
367 ty::ParamEnv::new(tcx.mk_predicates(normalized_preds), param_env.reveal, None);
368 }
369
370 let final_user_env = ty::ParamEnv::new(
371 tcx.mk_predicates(user_computed_preds.into_iter()),
372 user_env.reveal,
373 None,
374 );
375 debug!(
376 "evaluate_nested_obligations(ty={:?}, trait_did={:?}): succeeded with '{:?}' \
377 '{:?}'",
378 ty, trait_did, new_env, final_user_env
379 );
380
381 Some((new_env, final_user_env))
382 }
383
384 /// This method is designed to work around the following issue:
385 /// When we compute auto trait bounds, we repeatedly call `SelectionContext.select`,
386 /// progressively building a `ParamEnv` based on the results we get.
387 /// However, our usage of `SelectionContext` differs from its normal use within the compiler,
388 /// in that we capture and re-reprocess predicates from `Unimplemented` errors.
389 ///
390 /// This can lead to a corner case when dealing with region parameters.
391 /// During our selection loop in `evaluate_predicates`, we might end up with
392 /// two trait predicates that differ only in their region parameters:
393 /// one containing a HRTB lifetime parameter, and one containing a 'normal'
394 /// lifetime parameter. For example:
395 ///
396 /// T as MyTrait<'a>
397 /// T as MyTrait<'static>
398 ///
399 /// If we put both of these predicates in our computed `ParamEnv`, we'll
400 /// confuse `SelectionContext`, since it will (correctly) view both as being applicable.
401 ///
402 /// To solve this, we pick the 'more strict' lifetime bound -- i.e., the HRTB
403 /// Our end goal is to generate a user-visible description of the conditions
404 /// under which a type implements an auto trait. A trait predicate involving
405 /// a HRTB means that the type needs to work with any choice of lifetime,
406 /// not just one specific lifetime (e.g., `'static`).
407 fn add_user_pred<'c>(
408 &self,
409 user_computed_preds: &mut FxHashSet<ty::Predicate<'c>>,
410 new_pred: ty::Predicate<'c>,
411 ) {
412 let mut should_add_new = true;
413 user_computed_preds.retain(|&old_pred| {
414 if let (&ty::Predicate::Trait(new_trait, _), ty::Predicate::Trait(old_trait, _)) =
415 (&new_pred, old_pred)
416 {
417 if new_trait.def_id() == old_trait.def_id() {
418 let new_substs = new_trait.skip_binder().trait_ref.substs;
419 let old_substs = old_trait.skip_binder().trait_ref.substs;
420
421 if !new_substs.types().eq(old_substs.types()) {
422 // We can't compare lifetimes if the types are different,
423 // so skip checking `old_pred`.
424 return true;
425 }
426
427 for (new_region, old_region) in new_substs.regions().zip(old_substs.regions()) {
428 match (new_region, old_region) {
429 // If both predicates have an `ReLateBound` (a HRTB) in the
430 // same spot, we do nothing.
431 (
432 ty::RegionKind::ReLateBound(_, _),
433 ty::RegionKind::ReLateBound(_, _),
434 ) => {}
435
436 (ty::RegionKind::ReLateBound(_, _), _)
437 | (_, ty::RegionKind::ReVar(_)) => {
438 // One of these is true:
439 // The new predicate has a HRTB in a spot where the old
440 // predicate does not (if they both had a HRTB, the previous
441 // match arm would have executed). A HRBT is a 'stricter'
442 // bound than anything else, so we want to keep the newer
443 // predicate (with the HRBT) in place of the old predicate.
444 //
445 // OR
446 //
447 // The old predicate has a region variable where the new
448 // predicate has some other kind of region. An region
449 // variable isn't something we can actually display to a user,
450 // so we choose their new predicate (which doesn't have a region
451 // variable).
452 //
453 // In both cases, we want to remove the old predicate,
454 // from `user_computed_preds`, and replace it with the new
455 // one. Having both the old and the new
456 // predicate in a `ParamEnv` would confuse `SelectionContext`.
457 //
458 // We're currently in the predicate passed to 'retain',
459 // so we return `false` to remove the old predicate from
460 // `user_computed_preds`.
461 return false;
462 }
463 (_, ty::RegionKind::ReLateBound(_, _))
464 | (ty::RegionKind::ReVar(_), _) => {
465 // This is the opposite situation as the previous arm.
466 // One of these is true:
467 //
468 // The old predicate has a HRTB lifetime in a place where the
469 // new predicate does not.
470 //
471 // OR
472 //
473 // The new predicate has a region variable where the old
474 // predicate has some other type of region.
475 //
476 // We want to leave the old
477 // predicate in `user_computed_preds`, and skip adding
478 // new_pred to `user_computed_params`.
479 should_add_new = false
480 }
481 _ => {}
482 }
483 }
484 }
485 }
486 true
487 });
488
489 if should_add_new {
490 user_computed_preds.insert(new_pred);
491 }
492 }
493
494 /// This is very similar to `handle_lifetimes`. However, instead of matching `ty::Region`s
495 /// to each other, we match `ty::RegionVid`s to `ty::Region`s.
496 fn map_vid_to_region<'cx>(
497 &self,
498 regions: &RegionConstraintData<'cx>,
499 ) -> FxHashMap<ty::RegionVid, ty::Region<'cx>> {
500 let mut vid_map: FxHashMap<RegionTarget<'cx>, RegionDeps<'cx>> = FxHashMap::default();
501 let mut finished_map = FxHashMap::default();
502
503 for constraint in regions.constraints.keys() {
504 match constraint {
505 &Constraint::VarSubVar(r1, r2) => {
506 {
507 let deps1 = vid_map.entry(RegionTarget::RegionVid(r1)).or_default();
508 deps1.larger.insert(RegionTarget::RegionVid(r2));
509 }
510
511 let deps2 = vid_map.entry(RegionTarget::RegionVid(r2)).or_default();
512 deps2.smaller.insert(RegionTarget::RegionVid(r1));
513 }
514 &Constraint::RegSubVar(region, vid) => {
515 {
516 let deps1 = vid_map.entry(RegionTarget::Region(region)).or_default();
517 deps1.larger.insert(RegionTarget::RegionVid(vid));
518 }
519
520 let deps2 = vid_map.entry(RegionTarget::RegionVid(vid)).or_default();
521 deps2.smaller.insert(RegionTarget::Region(region));
522 }
523 &Constraint::VarSubReg(vid, region) => {
524 finished_map.insert(vid, region);
525 }
526 &Constraint::RegSubReg(r1, r2) => {
527 {
528 let deps1 = vid_map.entry(RegionTarget::Region(r1)).or_default();
529 deps1.larger.insert(RegionTarget::Region(r2));
530 }
531
532 let deps2 = vid_map.entry(RegionTarget::Region(r2)).or_default();
533 deps2.smaller.insert(RegionTarget::Region(r1));
534 }
535 }
536 }
537
538 while !vid_map.is_empty() {
539 let target = *vid_map.keys().next().expect("Keys somehow empty");
540 let deps = vid_map.remove(&target).expect("Entry somehow missing");
541
542 for smaller in deps.smaller.iter() {
543 for larger in deps.larger.iter() {
544 match (smaller, larger) {
545 (&RegionTarget::Region(_), &RegionTarget::Region(_)) => {
546 if let Entry::Occupied(v) = vid_map.entry(*smaller) {
547 let smaller_deps = v.into_mut();
548 smaller_deps.larger.insert(*larger);
549 smaller_deps.larger.remove(&target);
550 }
551
552 if let Entry::Occupied(v) = vid_map.entry(*larger) {
553 let larger_deps = v.into_mut();
554 larger_deps.smaller.insert(*smaller);
555 larger_deps.smaller.remove(&target);
556 }
557 }
558 (&RegionTarget::RegionVid(v1), &RegionTarget::Region(r1)) => {
559 finished_map.insert(v1, r1);
560 }
561 (&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
562 // Do nothing; we don't care about regions that are smaller than vids.
563 }
564 (&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
565 if let Entry::Occupied(v) = vid_map.entry(*smaller) {
566 let smaller_deps = v.into_mut();
567 smaller_deps.larger.insert(*larger);
568 smaller_deps.larger.remove(&target);
569 }
570
571 if let Entry::Occupied(v) = vid_map.entry(*larger) {
572 let larger_deps = v.into_mut();
573 larger_deps.smaller.insert(*smaller);
574 larger_deps.smaller.remove(&target);
575 }
576 }
577 }
578 }
579 }
580 }
581 finished_map
582 }
583
584 fn is_param_no_infer(&self, substs: SubstsRef<'_>) -> bool {
585 self.is_of_param(substs.type_at(0)) && !substs.types().any(|t| t.has_infer_types())
586 }
587
588 pub fn is_of_param(&self, ty: Ty<'_>) -> bool {
589 match ty.kind {
590 ty::Param(_) => true,
591 ty::Projection(p) => self.is_of_param(p.self_ty()),
592 _ => false,
593 }
594 }
595
596 fn is_self_referential_projection(&self, p: ty::PolyProjectionPredicate<'_>) -> bool {
597 match p.ty().skip_binder().kind {
598 ty::Projection(proj) if proj == p.skip_binder().projection_ty => true,
599 _ => false,
600 }
601 }
602
603 fn evaluate_nested_obligations(
604 &self,
605 ty: Ty<'_>,
606 nested: impl Iterator<Item = Obligation<'tcx, ty::Predicate<'tcx>>>,
607 computed_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
608 fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
609 predicates: &mut VecDeque<ty::PolyTraitPredicate<'tcx>>,
610 select: &mut SelectionContext<'_, 'tcx>,
611 only_projections: bool,
612 ) -> bool {
613 let dummy_cause = ObligationCause::dummy();
614
615 for (obligation, mut predicate) in nested.map(|o| (o.clone(), o.predicate)) {
616 let is_new_pred = fresh_preds.insert(self.clean_pred(select.infcx(), predicate));
617
618 // Resolve any inference variables that we can, to help selection succeed
619 predicate = select.infcx().resolve_vars_if_possible(&predicate);
620
621 // We only add a predicate as a user-displayable bound if
622 // it involves a generic parameter, and doesn't contain
623 // any inference variables.
624 //
625 // Displaying a bound involving a concrete type (instead of a generic
626 // parameter) would be pointless, since it's always true
627 // (e.g. u8: Copy)
628 // Displaying an inference variable is impossible, since they're
629 // an internal compiler detail without a defined visual representation
630 //
631 // We check this by calling is_of_param on the relevant types
632 // from the various possible predicates
633 match &predicate {
634 &ty::Predicate::Trait(p, _) => {
635 if self.is_param_no_infer(p.skip_binder().trait_ref.substs)
636 && !only_projections
637 && is_new_pred
638 {
639 self.add_user_pred(computed_preds, predicate);
640 }
641 predicates.push_back(p);
642 }
643 &ty::Predicate::Projection(p) => {
644 debug!(
645 "evaluate_nested_obligations: examining projection predicate {:?}",
646 predicate
647 );
648
649 // As described above, we only want to display
650 // bounds which include a generic parameter but don't include
651 // an inference variable.
652 // Additionally, we check if we've seen this predicate before,
653 // to avoid rendering duplicate bounds to the user.
654 if self.is_param_no_infer(p.skip_binder().projection_ty.substs)
655 && !p.ty().skip_binder().has_infer_types()
656 && is_new_pred
657 {
658 debug!(
659 "evaluate_nested_obligations: adding projection predicate\
660 to computed_preds: {:?}",
661 predicate
662 );
663
664 // Under unusual circumstances, we can end up with a self-refeential
665 // projection predicate. For example:
666 // <T as MyType>::Value == <T as MyType>::Value
667 // Not only is displaying this to the user pointless,
668 // having it in the ParamEnv will cause an issue if we try to call
669 // poly_project_and_unify_type on the predicate, since this kind of
670 // predicate will normally never end up in a ParamEnv.
671 //
672 // For these reasons, we ignore these weird predicates,
673 // ensuring that we're able to properly synthesize an auto trait impl
674 if self.is_self_referential_projection(p) {
675 debug!(
676 "evaluate_nested_obligations: encountered a projection
677 predicate equating a type with itself! Skipping"
678 );
679 } else {
680 self.add_user_pred(computed_preds, predicate);
681 }
682 }
683
684 // There are three possible cases when we project a predicate:
685 //
686 // 1. We encounter an error. This means that it's impossible for
687 // our current type to implement the auto trait - there's bound
688 // that we could add to our ParamEnv that would 'fix' this kind
689 // of error, as it's not caused by an unimplemented type.
690 //
691 // 2. We successfully project the predicate (Ok(Some(_))), generating
692 // some subobligations. We then process these subobligations
693 // like any other generated sub-obligations.
694 //
695 // 3. We receive an 'ambiguous' result (Ok(None))
696 // If we were actually trying to compile a crate,
697 // we would need to re-process this obligation later.
698 // However, all we care about is finding out what bounds
699 // are needed for our type to implement a particular auto trait.
700 // We've already added this obligation to our computed ParamEnv
701 // above (if it was necessary). Therefore, we don't need
702 // to do any further processing of the obligation.
703 //
704 // Note that we *must* try to project *all* projection predicates
705 // we encounter, even ones without inference variable.
706 // This ensures that we detect any projection errors,
707 // which indicate that our type can *never* implement the given
708 // auto trait. In that case, we will generate an explicit negative
709 // impl (e.g. 'impl !Send for MyType'). However, we don't
710 // try to process any of the generated subobligations -
711 // they contain no new information, since we already know
712 // that our type implements the projected-through trait,
713 // and can lead to weird region issues.
714 //
715 // Normally, we'll generate a negative impl as a result of encountering
716 // a type with an explicit negative impl of an auto trait
717 // (for example, raw pointers have !Send and !Sync impls)
718 // However, through some **interesting** manipulations of the type
719 // system, it's actually possible to write a type that never
720 // implements an auto trait due to a projection error, not a normal
721 // negative impl error. To properly handle this case, we need
722 // to ensure that we catch any potential projection errors,
723 // and turn them into an explicit negative impl for our type.
724 debug!("Projecting and unifying projection predicate {:?}", predicate);
725
726 match poly_project_and_unify_type(select, &obligation.with(p)) {
727 Err(e) => {
728 debug!(
729 "evaluate_nested_obligations: Unable to unify predicate \
730 '{:?}' '{:?}', bailing out",
731 ty, e
732 );
733 return false;
734 }
735 Ok(Some(v)) => {
736 // We only care about sub-obligations
737 // when we started out trying to unify
738 // some inference variables. See the comment above
739 // for more infomration
740 if p.ty().skip_binder().has_infer_types() {
741 if !self.evaluate_nested_obligations(
742 ty,
743 v.into_iter(),
744 computed_preds,
745 fresh_preds,
746 predicates,
747 select,
748 only_projections,
749 ) {
750 return false;
751 }
752 }
753 }
754 Ok(None) => {
755 // It's ok not to make progress when hvave no inference variables -
756 // in that case, we were only performing unifcation to check if an
757 // error occurred (which would indicate that it's impossible for our
758 // type to implement the auto trait).
759 // However, we should always make progress (either by generating
760 // subobligations or getting an error) when we started off with
761 // inference variables
762 if p.ty().skip_binder().has_infer_types() {
763 panic!("Unexpected result when selecting {:?} {:?}", ty, obligation)
764 }
765 }
766 }
767 }
768 &ty::Predicate::RegionOutlives(ref binder) => {
769 if select.infcx().region_outlives_predicate(&dummy_cause, binder).is_err() {
770 return false;
771 }
772 }
773 &ty::Predicate::TypeOutlives(ref binder) => {
774 match (
775 binder.no_bound_vars(),
776 binder.map_bound_ref(|pred| pred.0).no_bound_vars(),
777 ) {
778 (None, Some(t_a)) => {
779 select.infcx().register_region_obligation_with_cause(
780 t_a,
781 select.infcx().tcx.lifetimes.re_static,
782 &dummy_cause,
783 );
784 }
785 (Some(ty::OutlivesPredicate(t_a, r_b)), _) => {
786 select.infcx().register_region_obligation_with_cause(
787 t_a,
788 r_b,
789 &dummy_cause,
790 );
791 }
792 _ => {}
793 };
794 }
795 _ => panic!("Unexpected predicate {:?} {:?}", ty, predicate),
796 };
797 }
798 true
799 }
800
801 pub fn clean_pred(
802 &self,
803 infcx: &InferCtxt<'_, 'tcx>,
804 p: ty::Predicate<'tcx>,
805 ) -> ty::Predicate<'tcx> {
806 infcx.freshen(p)
807 }
808 }
809
810 // Replaces all ReVars in a type with ty::Region's, using the provided map
811 pub struct RegionReplacer<'a, 'tcx> {
812 vid_to_region: &'a FxHashMap<ty::RegionVid, ty::Region<'tcx>>,
813 tcx: TyCtxt<'tcx>,
814 }
815
816 impl<'a, 'tcx> TypeFolder<'tcx> for RegionReplacer<'a, 'tcx> {
817 fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
818 self.tcx
819 }
820
821 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
822 (match r {
823 &ty::ReVar(vid) => self.vid_to_region.get(&vid).cloned(),
824 _ => None,
825 })
826 .unwrap_or_else(|| r.super_fold_with(self))
827 }
828 }