]> git.proxmox.com Git - rustc.git/blob - src/librustc_trait_selection/traits/query/dropck_outlives.rs
New upstream version 1.46.0~beta.2+dfsg1
[rustc.git] / src / librustc_trait_selection / traits / query / dropck_outlives.rs
1 use crate::infer::at::At;
2 use crate::infer::canonical::OriginalQueryValues;
3 use crate::infer::InferOk;
4
5 use rustc_middle::ty::subst::GenericArg;
6 use rustc_middle::ty::{self, Ty, TyCtxt};
7
8 pub use rustc_middle::traits::query::{DropckOutlivesResult, DtorckConstraint};
9
10 pub trait AtExt<'tcx> {
11 fn dropck_outlives(&self, ty: Ty<'tcx>) -> InferOk<'tcx, Vec<GenericArg<'tcx>>>;
12 }
13
14 impl<'cx, 'tcx> AtExt<'tcx> for At<'cx, 'tcx> {
15 /// Given a type `ty` of some value being dropped, computes a set
16 /// of "kinds" (types, regions) that must be outlive the execution
17 /// of the destructor. These basically correspond to data that the
18 /// destructor might access. This is used during regionck to
19 /// impose "outlives" constraints on any lifetimes referenced
20 /// within.
21 ///
22 /// The rules here are given by the "dropck" RFCs, notably [#1238]
23 /// and [#1327]. This is a fixed-point computation, where we
24 /// explore all the data that will be dropped (transitively) when
25 /// a value of type `ty` is dropped. For each type T that will be
26 /// dropped and which has a destructor, we must assume that all
27 /// the types/regions of T are live during the destructor, unless
28 /// they are marked with a special attribute (`#[may_dangle]`).
29 ///
30 /// [#1238]: https://github.com/rust-lang/rfcs/blob/master/text/1238-nonparametric-dropck.md
31 /// [#1327]: https://github.com/rust-lang/rfcs/blob/master/text/1327-dropck-param-eyepatch.md
32 fn dropck_outlives(&self, ty: Ty<'tcx>) -> InferOk<'tcx, Vec<GenericArg<'tcx>>> {
33 debug!("dropck_outlives(ty={:?}, param_env={:?})", ty, self.param_env,);
34
35 // Quick check: there are a number of cases that we know do not require
36 // any destructor.
37 let tcx = self.infcx.tcx;
38 if trivial_dropck_outlives(tcx, ty) {
39 return InferOk { value: vec![], obligations: vec![] };
40 }
41
42 let mut orig_values = OriginalQueryValues::default();
43 let c_ty = self.infcx.canonicalize_query(&self.param_env.and(ty), &mut orig_values);
44 let span = self.cause.span;
45 debug!("c_ty = {:?}", c_ty);
46 if let Ok(result) = &tcx.dropck_outlives(c_ty) {
47 if result.is_proven() {
48 if let Ok(InferOk { value, obligations }) =
49 self.infcx.instantiate_query_response_and_region_obligations(
50 self.cause,
51 self.param_env,
52 &orig_values,
53 result,
54 )
55 {
56 let ty = self.infcx.resolve_vars_if_possible(&ty);
57 let kinds = value.into_kinds_reporting_overflows(tcx, span, ty);
58 return InferOk { value: kinds, obligations };
59 }
60 }
61 }
62
63 // Errors and ambiuity in dropck occur in two cases:
64 // - unresolved inference variables at the end of typeck
65 // - non well-formed types where projections cannot be resolved
66 // Either of these should have created an error before.
67 tcx.sess.delay_span_bug(span, "dtorck encountered internal error");
68
69 InferOk { value: vec![], obligations: vec![] }
70 }
71 }
72
73 /// This returns true if the type `ty` is "trivial" for
74 /// dropck-outlives -- that is, if it doesn't require any types to
75 /// outlive. This is similar but not *quite* the same as the
76 /// `needs_drop` test in the compiler already -- that is, for every
77 /// type T for which this function return true, needs-drop would
78 /// return `false`. But the reverse does not hold: in particular,
79 /// `needs_drop` returns false for `PhantomData`, but it is not
80 /// trivial for dropck-outlives.
81 ///
82 /// Note also that `needs_drop` requires a "global" type (i.e., one
83 /// with erased regions), but this function does not.
84 pub fn trivial_dropck_outlives<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> bool {
85 match ty.kind {
86 // None of these types have a destructor and hence they do not
87 // require anything in particular to outlive the dtor's
88 // execution.
89 ty::Infer(ty::FreshIntTy(_))
90 | ty::Infer(ty::FreshFloatTy(_))
91 | ty::Bool
92 | ty::Int(_)
93 | ty::Uint(_)
94 | ty::Float(_)
95 | ty::Never
96 | ty::FnDef(..)
97 | ty::FnPtr(_)
98 | ty::Char
99 | ty::GeneratorWitness(..)
100 | ty::RawPtr(_)
101 | ty::Ref(..)
102 | ty::Str
103 | ty::Foreign(..)
104 | ty::Error(_) => true,
105
106 // [T; N] and [T] have same properties as T.
107 ty::Array(ty, _) | ty::Slice(ty) => trivial_dropck_outlives(tcx, ty),
108
109 // (T1..Tn) and closures have same properties as T1..Tn --
110 // check if *any* of those are trivial.
111 ty::Tuple(ref tys) => tys.iter().all(|t| trivial_dropck_outlives(tcx, t.expect_ty())),
112 ty::Closure(_, ref substs) => {
113 substs.as_closure().upvar_tys().all(|t| trivial_dropck_outlives(tcx, t))
114 }
115
116 ty::Adt(def, _) => {
117 if Some(def.did) == tcx.lang_items().manually_drop() {
118 // `ManuallyDrop` never has a dtor.
119 true
120 } else {
121 // Other types might. Moreover, PhantomData doesn't
122 // have a dtor, but it is considered to own its
123 // content, so it is non-trivial. Unions can have `impl Drop`,
124 // and hence are non-trivial as well.
125 false
126 }
127 }
128
129 // The following *might* require a destructor: needs deeper inspection.
130 ty::Dynamic(..)
131 | ty::Projection(..)
132 | ty::Param(_)
133 | ty::Opaque(..)
134 | ty::Placeholder(..)
135 | ty::Infer(_)
136 | ty::Bound(..)
137 | ty::Generator(..) => false,
138 }
139 }