]> git.proxmox.com Git - rustc.git/blob - src/librustc_trans/back/link.rs
New upstream version 1.25.0+dfsg1
[rustc.git] / src / librustc_trans / back / link.rs
1 // Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 use super::archive::{ArchiveBuilder, ArchiveConfig};
12 use super::bytecode::RLIB_BYTECODE_EXTENSION;
13 use super::linker::Linker;
14 use super::command::Command;
15 use super::rpath::RPathConfig;
16 use super::rpath;
17 use metadata::METADATA_FILENAME;
18 use rustc::session::config::{self, NoDebugInfo, OutputFilenames, OutputType, PrintRequest};
19 use rustc::session::config::{RUST_CGU_EXT, Lto};
20 use rustc::session::filesearch;
21 use rustc::session::search_paths::PathKind;
22 use rustc::session::Session;
23 use rustc::middle::cstore::{NativeLibrary, LibSource, NativeLibraryKind};
24 use rustc::middle::dependency_format::Linkage;
25 use {CrateTranslation, CrateInfo};
26 use rustc::util::common::time;
27 use rustc::util::fs::fix_windows_verbatim_for_gcc;
28 use rustc::hir::def_id::CrateNum;
29 use tempdir::TempDir;
30 use rustc_back::{PanicStrategy, RelroLevel, LinkerFlavor};
31 use context::get_reloc_model;
32 use llvm;
33
34 use std::ascii;
35 use std::char;
36 use std::env;
37 use std::ffi::OsString;
38 use std::fmt;
39 use std::fs;
40 use std::io;
41 use std::path::{Path, PathBuf};
42 use std::process::{Output, Stdio};
43 use std::str;
44 use syntax::attr;
45
46 /// The LLVM module name containing crate-metadata. This includes a `.` on
47 /// purpose, so it cannot clash with the name of a user-defined module.
48 pub const METADATA_MODULE_NAME: &'static str = "crate.metadata";
49
50 // same as for metadata above, but for allocator shim
51 pub const ALLOCATOR_MODULE_NAME: &'static str = "crate.allocator";
52
53 pub use rustc_trans_utils::link::{find_crate_name, filename_for_input, default_output_for_target,
54 invalid_output_for_target, build_link_meta, out_filename,
55 check_file_is_writeable};
56
57 // The third parameter is for env vars, used on windows to set up the
58 // path for MSVC to find its DLLs, and gcc to find its bundled
59 // toolchain
60 pub fn get_linker(sess: &Session) -> (PathBuf, Command, Vec<(OsString, OsString)>) {
61 let envs = vec![("PATH".into(), command_path(sess))];
62
63 // If our linker looks like a batch script on Windows then to execute this
64 // we'll need to spawn `cmd` explicitly. This is primarily done to handle
65 // emscripten where the linker is `emcc.bat` and needs to be spawned as
66 // `cmd /c emcc.bat ...`.
67 //
68 // This worked historically but is needed manually since #42436 (regression
69 // was tagged as #42791) and some more info can be found on #44443 for
70 // emscripten itself.
71 let cmd = |linker: &Path| {
72 if let Some(linker) = linker.to_str() {
73 if cfg!(windows) && linker.ends_with(".bat") {
74 return Command::bat_script(linker)
75 }
76 }
77 Command::new(linker)
78 };
79
80 if let Some(ref linker) = sess.opts.cg.linker {
81 (linker.clone(), cmd(linker), envs)
82 } else if sess.target.target.options.is_like_msvc {
83 let (cmd, envs) = msvc_link_exe_cmd(sess);
84 (PathBuf::from("link.exe"), cmd, envs)
85 } else {
86 let linker = PathBuf::from(&sess.target.target.options.linker);
87 let cmd = cmd(&linker);
88 (linker, cmd, envs)
89 }
90 }
91
92 #[cfg(windows)]
93 pub fn msvc_link_exe_cmd(sess: &Session) -> (Command, Vec<(OsString, OsString)>) {
94 use cc::windows_registry;
95
96 let target = &sess.opts.target_triple;
97 let tool = windows_registry::find_tool(target, "link.exe");
98
99 if let Some(tool) = tool {
100 let mut cmd = Command::new(tool.path());
101 cmd.args(tool.args());
102 for &(ref k, ref v) in tool.env() {
103 cmd.env(k, v);
104 }
105 let envs = tool.env().to_vec();
106 (cmd, envs)
107 } else {
108 debug!("Failed to locate linker.");
109 (Command::new("link.exe"), vec![])
110 }
111 }
112
113 #[cfg(not(windows))]
114 pub fn msvc_link_exe_cmd(_sess: &Session) -> (Command, Vec<(OsString, OsString)>) {
115 (Command::new("link.exe"), vec![])
116 }
117
118 fn command_path(sess: &Session) -> OsString {
119 // The compiler's sysroot often has some bundled tools, so add it to the
120 // PATH for the child.
121 let mut new_path = sess.host_filesearch(PathKind::All)
122 .get_tools_search_paths();
123 if let Some(path) = env::var_os("PATH") {
124 new_path.extend(env::split_paths(&path));
125 }
126 env::join_paths(new_path).unwrap()
127 }
128
129 pub fn remove(sess: &Session, path: &Path) {
130 match fs::remove_file(path) {
131 Ok(..) => {}
132 Err(e) => {
133 sess.err(&format!("failed to remove {}: {}",
134 path.display(),
135 e));
136 }
137 }
138 }
139
140 /// Perform the linkage portion of the compilation phase. This will generate all
141 /// of the requested outputs for this compilation session.
142 pub(crate) fn link_binary(sess: &Session,
143 trans: &CrateTranslation,
144 outputs: &OutputFilenames,
145 crate_name: &str) -> Vec<PathBuf> {
146 let mut out_filenames = Vec::new();
147 for &crate_type in sess.crate_types.borrow().iter() {
148 // Ignore executable crates if we have -Z no-trans, as they will error.
149 if (sess.opts.debugging_opts.no_trans ||
150 !sess.opts.output_types.should_trans()) &&
151 crate_type == config::CrateTypeExecutable {
152 continue;
153 }
154
155 if invalid_output_for_target(sess, crate_type) {
156 bug!("invalid output type `{:?}` for target os `{}`",
157 crate_type, sess.opts.target_triple);
158 }
159 let mut out_files = link_binary_output(sess,
160 trans,
161 crate_type,
162 outputs,
163 crate_name);
164 out_filenames.append(&mut out_files);
165 }
166
167 // Remove the temporary object file and metadata if we aren't saving temps
168 if !sess.opts.cg.save_temps {
169 if sess.opts.output_types.should_trans() {
170 for obj in trans.modules.iter().filter_map(|m| m.object.as_ref()) {
171 remove(sess, obj);
172 }
173 }
174 for obj in trans.modules.iter().filter_map(|m| m.bytecode_compressed.as_ref()) {
175 remove(sess, obj);
176 }
177 if let Some(ref obj) = trans.metadata_module.object {
178 remove(sess, obj);
179 }
180 if let Some(ref allocator) = trans.allocator_module {
181 if let Some(ref obj) = allocator.object {
182 remove(sess, obj);
183 }
184 if let Some(ref bc) = allocator.bytecode_compressed {
185 remove(sess, bc);
186 }
187 }
188 }
189
190 out_filenames
191 }
192
193 fn filename_for_metadata(sess: &Session, crate_name: &str, outputs: &OutputFilenames) -> PathBuf {
194 let out_filename = outputs.single_output_file.clone()
195 .unwrap_or(outputs
196 .out_directory
197 .join(&format!("lib{}{}.rmeta", crate_name, sess.opts.cg.extra_filename)));
198 check_file_is_writeable(&out_filename, sess);
199 out_filename
200 }
201
202 pub(crate) fn each_linked_rlib(sess: &Session,
203 info: &CrateInfo,
204 f: &mut FnMut(CrateNum, &Path)) -> Result<(), String> {
205 let crates = info.used_crates_static.iter();
206 let fmts = sess.dependency_formats.borrow();
207 let fmts = fmts.get(&config::CrateTypeExecutable)
208 .or_else(|| fmts.get(&config::CrateTypeStaticlib))
209 .or_else(|| fmts.get(&config::CrateTypeCdylib))
210 .or_else(|| fmts.get(&config::CrateTypeProcMacro));
211 let fmts = match fmts {
212 Some(f) => f,
213 None => return Err(format!("could not find formats for rlibs"))
214 };
215 for &(cnum, ref path) in crates {
216 match fmts.get(cnum.as_usize() - 1) {
217 Some(&Linkage::NotLinked) |
218 Some(&Linkage::IncludedFromDylib) => continue,
219 Some(_) => {}
220 None => return Err(format!("could not find formats for rlibs"))
221 }
222 let name = &info.crate_name[&cnum];
223 let path = match *path {
224 LibSource::Some(ref p) => p,
225 LibSource::MetadataOnly => {
226 return Err(format!("could not find rlib for: `{}`, found rmeta (metadata) file",
227 name))
228 }
229 LibSource::None => {
230 return Err(format!("could not find rlib for: `{}`", name))
231 }
232 };
233 f(cnum, &path);
234 }
235 Ok(())
236 }
237
238 /// Returns a boolean indicating whether the specified crate should be ignored
239 /// during LTO.
240 ///
241 /// Crates ignored during LTO are not lumped together in the "massive object
242 /// file" that we create and are linked in their normal rlib states. See
243 /// comments below for what crates do not participate in LTO.
244 ///
245 /// It's unusual for a crate to not participate in LTO. Typically only
246 /// compiler-specific and unstable crates have a reason to not participate in
247 /// LTO.
248 pub(crate) fn ignored_for_lto(sess: &Session, info: &CrateInfo, cnum: CrateNum) -> bool {
249 // If our target enables builtin function lowering in LLVM then the
250 // crates providing these functions don't participate in LTO (e.g.
251 // no_builtins or compiler builtins crates).
252 !sess.target.target.options.no_builtins &&
253 (info.is_no_builtins.contains(&cnum) || info.compiler_builtins == Some(cnum))
254 }
255
256 fn link_binary_output(sess: &Session,
257 trans: &CrateTranslation,
258 crate_type: config::CrateType,
259 outputs: &OutputFilenames,
260 crate_name: &str) -> Vec<PathBuf> {
261 for obj in trans.modules.iter().filter_map(|m| m.object.as_ref()) {
262 check_file_is_writeable(obj, sess);
263 }
264
265 let mut out_filenames = vec![];
266
267 if outputs.outputs.contains_key(&OutputType::Metadata) {
268 let out_filename = filename_for_metadata(sess, crate_name, outputs);
269 // To avoid races with another rustc process scanning the output directory,
270 // we need to write the file somewhere else and atomically move it to its
271 // final destination, with a `fs::rename` call. In order for the rename to
272 // always succeed, the temporary file needs to be on the same filesystem,
273 // which is why we create it inside the output directory specifically.
274 let metadata_tmpdir = match TempDir::new_in(out_filename.parent().unwrap(), "rmeta") {
275 Ok(tmpdir) => tmpdir,
276 Err(err) => sess.fatal(&format!("couldn't create a temp dir: {}", err)),
277 };
278 let metadata = emit_metadata(sess, trans, &metadata_tmpdir);
279 if let Err(e) = fs::rename(metadata, &out_filename) {
280 sess.fatal(&format!("failed to write {}: {}", out_filename.display(), e));
281 }
282 out_filenames.push(out_filename);
283 }
284
285 let tmpdir = match TempDir::new("rustc") {
286 Ok(tmpdir) => tmpdir,
287 Err(err) => sess.fatal(&format!("couldn't create a temp dir: {}", err)),
288 };
289
290 if outputs.outputs.should_trans() {
291 let out_filename = out_filename(sess, crate_type, outputs, crate_name);
292 match crate_type {
293 config::CrateTypeRlib => {
294 link_rlib(sess,
295 trans,
296 RlibFlavor::Normal,
297 &out_filename,
298 &tmpdir).build();
299 }
300 config::CrateTypeStaticlib => {
301 link_staticlib(sess, trans, &out_filename, &tmpdir);
302 }
303 _ => {
304 link_natively(sess, crate_type, &out_filename, trans, tmpdir.path());
305 }
306 }
307 out_filenames.push(out_filename);
308 }
309
310 if sess.opts.cg.save_temps {
311 let _ = tmpdir.into_path();
312 }
313
314 out_filenames
315 }
316
317 fn archive_search_paths(sess: &Session) -> Vec<PathBuf> {
318 let mut search = Vec::new();
319 sess.target_filesearch(PathKind::Native).for_each_lib_search_path(|path, _| {
320 search.push(path.to_path_buf());
321 });
322 return search;
323 }
324
325 fn archive_config<'a>(sess: &'a Session,
326 output: &Path,
327 input: Option<&Path>) -> ArchiveConfig<'a> {
328 ArchiveConfig {
329 sess,
330 dst: output.to_path_buf(),
331 src: input.map(|p| p.to_path_buf()),
332 lib_search_paths: archive_search_paths(sess),
333 }
334 }
335
336 /// We use a temp directory here to avoid races between concurrent rustc processes,
337 /// such as builds in the same directory using the same filename for metadata while
338 /// building an `.rlib` (stomping over one another), or writing an `.rmeta` into a
339 /// directory being searched for `extern crate` (observing an incomplete file).
340 /// The returned path is the temporary file containing the complete metadata.
341 fn emit_metadata<'a>(sess: &'a Session, trans: &CrateTranslation, tmpdir: &TempDir)
342 -> PathBuf {
343 let out_filename = tmpdir.path().join(METADATA_FILENAME);
344 let result = fs::write(&out_filename, &trans.metadata.raw_data);
345
346 if let Err(e) = result {
347 sess.fatal(&format!("failed to write {}: {}", out_filename.display(), e));
348 }
349
350 out_filename
351 }
352
353 enum RlibFlavor {
354 Normal,
355 StaticlibBase,
356 }
357
358 // Create an 'rlib'
359 //
360 // An rlib in its current incarnation is essentially a renamed .a file. The
361 // rlib primarily contains the object file of the crate, but it also contains
362 // all of the object files from native libraries. This is done by unzipping
363 // native libraries and inserting all of the contents into this archive.
364 fn link_rlib<'a>(sess: &'a Session,
365 trans: &CrateTranslation,
366 flavor: RlibFlavor,
367 out_filename: &Path,
368 tmpdir: &TempDir) -> ArchiveBuilder<'a> {
369 info!("preparing rlib to {:?}", out_filename);
370 let mut ab = ArchiveBuilder::new(archive_config(sess, out_filename, None));
371
372 for obj in trans.modules.iter().filter_map(|m| m.object.as_ref()) {
373 ab.add_file(obj);
374 }
375
376 // Note that in this loop we are ignoring the value of `lib.cfg`. That is,
377 // we may not be configured to actually include a static library if we're
378 // adding it here. That's because later when we consume this rlib we'll
379 // decide whether we actually needed the static library or not.
380 //
381 // To do this "correctly" we'd need to keep track of which libraries added
382 // which object files to the archive. We don't do that here, however. The
383 // #[link(cfg(..))] feature is unstable, though, and only intended to get
384 // liblibc working. In that sense the check below just indicates that if
385 // there are any libraries we want to omit object files for at link time we
386 // just exclude all custom object files.
387 //
388 // Eventually if we want to stabilize or flesh out the #[link(cfg(..))]
389 // feature then we'll need to figure out how to record what objects were
390 // loaded from the libraries found here and then encode that into the
391 // metadata of the rlib we're generating somehow.
392 for lib in trans.crate_info.used_libraries.iter() {
393 match lib.kind {
394 NativeLibraryKind::NativeStatic => {}
395 NativeLibraryKind::NativeStaticNobundle |
396 NativeLibraryKind::NativeFramework |
397 NativeLibraryKind::NativeUnknown => continue,
398 }
399 ab.add_native_library(&lib.name.as_str());
400 }
401
402 // After adding all files to the archive, we need to update the
403 // symbol table of the archive.
404 ab.update_symbols();
405
406 // Note that it is important that we add all of our non-object "magical
407 // files" *after* all of the object files in the archive. The reason for
408 // this is as follows:
409 //
410 // * When performing LTO, this archive will be modified to remove
411 // objects from above. The reason for this is described below.
412 //
413 // * When the system linker looks at an archive, it will attempt to
414 // determine the architecture of the archive in order to see whether its
415 // linkable.
416 //
417 // The algorithm for this detection is: iterate over the files in the
418 // archive. Skip magical SYMDEF names. Interpret the first file as an
419 // object file. Read architecture from the object file.
420 //
421 // * As one can probably see, if "metadata" and "foo.bc" were placed
422 // before all of the objects, then the architecture of this archive would
423 // not be correctly inferred once 'foo.o' is removed.
424 //
425 // Basically, all this means is that this code should not move above the
426 // code above.
427 match flavor {
428 RlibFlavor::Normal => {
429 // Instead of putting the metadata in an object file section, rlibs
430 // contain the metadata in a separate file.
431 ab.add_file(&emit_metadata(sess, trans, tmpdir));
432
433 // For LTO purposes, the bytecode of this library is also inserted
434 // into the archive.
435 for bytecode in trans.modules.iter().filter_map(|m| m.bytecode_compressed.as_ref()) {
436 ab.add_file(bytecode);
437 }
438
439 // After adding all files to the archive, we need to update the
440 // symbol table of the archive. This currently dies on macOS (see
441 // #11162), and isn't necessary there anyway
442 if !sess.target.target.options.is_like_osx {
443 ab.update_symbols();
444 }
445 }
446
447 RlibFlavor::StaticlibBase => {
448 let obj = trans.allocator_module
449 .as_ref()
450 .and_then(|m| m.object.as_ref());
451 if let Some(obj) = obj {
452 ab.add_file(obj);
453 }
454 }
455 }
456
457 ab
458 }
459
460 // Create a static archive
461 //
462 // This is essentially the same thing as an rlib, but it also involves adding
463 // all of the upstream crates' objects into the archive. This will slurp in
464 // all of the native libraries of upstream dependencies as well.
465 //
466 // Additionally, there's no way for us to link dynamic libraries, so we warn
467 // about all dynamic library dependencies that they're not linked in.
468 //
469 // There's no need to include metadata in a static archive, so ensure to not
470 // link in the metadata object file (and also don't prepare the archive with a
471 // metadata file).
472 fn link_staticlib(sess: &Session,
473 trans: &CrateTranslation,
474 out_filename: &Path,
475 tempdir: &TempDir) {
476 let mut ab = link_rlib(sess,
477 trans,
478 RlibFlavor::StaticlibBase,
479 out_filename,
480 tempdir);
481 let mut all_native_libs = vec![];
482
483 let res = each_linked_rlib(sess, &trans.crate_info, &mut |cnum, path| {
484 let name = &trans.crate_info.crate_name[&cnum];
485 let native_libs = &trans.crate_info.native_libraries[&cnum];
486
487 // Here when we include the rlib into our staticlib we need to make a
488 // decision whether to include the extra object files along the way.
489 // These extra object files come from statically included native
490 // libraries, but they may be cfg'd away with #[link(cfg(..))].
491 //
492 // This unstable feature, though, only needs liblibc to work. The only
493 // use case there is where musl is statically included in liblibc.rlib,
494 // so if we don't want the included version we just need to skip it. As
495 // a result the logic here is that if *any* linked library is cfg'd away
496 // we just skip all object files.
497 //
498 // Clearly this is not sufficient for a general purpose feature, and
499 // we'd want to read from the library's metadata to determine which
500 // object files come from where and selectively skip them.
501 let skip_object_files = native_libs.iter().any(|lib| {
502 lib.kind == NativeLibraryKind::NativeStatic && !relevant_lib(sess, lib)
503 });
504 ab.add_rlib(path,
505 &name.as_str(),
506 is_full_lto_enabled(sess) &&
507 !ignored_for_lto(sess, &trans.crate_info, cnum),
508 skip_object_files).unwrap();
509
510 all_native_libs.extend(trans.crate_info.native_libraries[&cnum].iter().cloned());
511 });
512 if let Err(e) = res {
513 sess.fatal(&e);
514 }
515
516 ab.update_symbols();
517 ab.build();
518
519 if !all_native_libs.is_empty() {
520 if sess.opts.prints.contains(&PrintRequest::NativeStaticLibs) {
521 print_native_static_libs(sess, &all_native_libs);
522 }
523 }
524 }
525
526 fn print_native_static_libs(sess: &Session, all_native_libs: &[NativeLibrary]) {
527 let lib_args: Vec<_> = all_native_libs.iter()
528 .filter(|l| relevant_lib(sess, l))
529 .filter_map(|lib| match lib.kind {
530 NativeLibraryKind::NativeStaticNobundle |
531 NativeLibraryKind::NativeUnknown => {
532 if sess.target.target.options.is_like_msvc {
533 Some(format!("{}.lib", lib.name))
534 } else {
535 Some(format!("-l{}", lib.name))
536 }
537 },
538 NativeLibraryKind::NativeFramework => {
539 // ld-only syntax, since there are no frameworks in MSVC
540 Some(format!("-framework {}", lib.name))
541 },
542 // These are included, no need to print them
543 NativeLibraryKind::NativeStatic => None,
544 })
545 .collect();
546 if !lib_args.is_empty() {
547 sess.note_without_error("Link against the following native artifacts when linking \
548 against this static library. The order and any duplication \
549 can be significant on some platforms.");
550 // Prefix for greppability
551 sess.note_without_error(&format!("native-static-libs: {}", &lib_args.join(" ")));
552 }
553 }
554
555 // Create a dynamic library or executable
556 //
557 // This will invoke the system linker/cc to create the resulting file. This
558 // links to all upstream files as well.
559 fn link_natively(sess: &Session,
560 crate_type: config::CrateType,
561 out_filename: &Path,
562 trans: &CrateTranslation,
563 tmpdir: &Path) {
564 info!("preparing {:?} to {:?}", crate_type, out_filename);
565 let flavor = sess.linker_flavor();
566
567 // The "binaryen linker" is massively special, so skip everything below.
568 if flavor == LinkerFlavor::Binaryen {
569 return link_binaryen(sess, crate_type, out_filename, trans, tmpdir);
570 }
571
572 // The invocations of cc share some flags across platforms
573 let (pname, mut cmd, envs) = get_linker(sess);
574 // This will set PATH on windows
575 cmd.envs(envs);
576
577 let root = sess.target_filesearch(PathKind::Native).get_lib_path();
578 if let Some(args) = sess.target.target.options.pre_link_args.get(&flavor) {
579 cmd.args(args);
580 }
581 if let Some(ref args) = sess.opts.debugging_opts.pre_link_args {
582 cmd.args(args);
583 }
584 cmd.args(&sess.opts.debugging_opts.pre_link_arg);
585
586 let pre_link_objects = if crate_type == config::CrateTypeExecutable {
587 &sess.target.target.options.pre_link_objects_exe
588 } else {
589 &sess.target.target.options.pre_link_objects_dll
590 };
591 for obj in pre_link_objects {
592 cmd.arg(root.join(obj));
593 }
594
595 if sess.target.target.options.is_like_emscripten {
596 cmd.arg("-s");
597 cmd.arg(if sess.panic_strategy() == PanicStrategy::Abort {
598 "DISABLE_EXCEPTION_CATCHING=1"
599 } else {
600 "DISABLE_EXCEPTION_CATCHING=0"
601 });
602 }
603
604 {
605 let mut linker = trans.linker_info.to_linker(cmd, &sess);
606 link_args(&mut *linker, sess, crate_type, tmpdir,
607 out_filename, trans);
608 cmd = linker.finalize();
609 }
610 if let Some(args) = sess.target.target.options.late_link_args.get(&flavor) {
611 cmd.args(args);
612 }
613 for obj in &sess.target.target.options.post_link_objects {
614 cmd.arg(root.join(obj));
615 }
616 if let Some(args) = sess.target.target.options.post_link_args.get(&flavor) {
617 cmd.args(args);
618 }
619 for &(ref k, ref v) in &sess.target.target.options.link_env {
620 cmd.env(k, v);
621 }
622
623 if sess.opts.debugging_opts.print_link_args {
624 println!("{:?}", &cmd);
625 }
626
627 // May have not found libraries in the right formats.
628 sess.abort_if_errors();
629
630 // Invoke the system linker
631 //
632 // Note that there's a terribly awful hack that really shouldn't be present
633 // in any compiler. Here an environment variable is supported to
634 // automatically retry the linker invocation if the linker looks like it
635 // segfaulted.
636 //
637 // Gee that seems odd, normally segfaults are things we want to know about!
638 // Unfortunately though in rust-lang/rust#38878 we're experiencing the
639 // linker segfaulting on Travis quite a bit which is causing quite a bit of
640 // pain to land PRs when they spuriously fail due to a segfault.
641 //
642 // The issue #38878 has some more debugging information on it as well, but
643 // this unfortunately looks like it's just a race condition in macOS's linker
644 // with some thread pool working in the background. It seems that no one
645 // currently knows a fix for this so in the meantime we're left with this...
646 info!("{:?}", &cmd);
647 let retry_on_segfault = env::var("RUSTC_RETRY_LINKER_ON_SEGFAULT").is_ok();
648 let mut prog;
649 let mut i = 0;
650 loop {
651 i += 1;
652 prog = time(sess.time_passes(), "running linker", || {
653 exec_linker(sess, &mut cmd, tmpdir)
654 });
655 if !retry_on_segfault || i > 3 {
656 break
657 }
658 let output = match prog {
659 Ok(ref output) => output,
660 Err(_) => break,
661 };
662 if output.status.success() {
663 break
664 }
665 let mut out = output.stderr.clone();
666 out.extend(&output.stdout);
667 let out = String::from_utf8_lossy(&out);
668 let msg_segv = "clang: error: unable to execute command: Segmentation fault: 11";
669 let msg_bus = "clang: error: unable to execute command: Bus error: 10";
670 if !(out.contains(msg_segv) || out.contains(msg_bus)) {
671 break
672 }
673
674 warn!(
675 "looks like the linker segfaulted when we tried to call it, \
676 automatically retrying again. cmd = {:?}, out = {}.",
677 cmd,
678 out,
679 );
680 }
681
682 match prog {
683 Ok(prog) => {
684 fn escape_string(s: &[u8]) -> String {
685 str::from_utf8(s).map(|s| s.to_owned())
686 .unwrap_or_else(|_| {
687 let mut x = "Non-UTF-8 output: ".to_string();
688 x.extend(s.iter()
689 .flat_map(|&b| ascii::escape_default(b))
690 .map(|b| char::from_u32(b as u32).unwrap()));
691 x
692 })
693 }
694 if !prog.status.success() {
695 let mut output = prog.stderr.clone();
696 output.extend_from_slice(&prog.stdout);
697 sess.struct_err(&format!("linking with `{}` failed: {}",
698 pname.display(),
699 prog.status))
700 .note(&format!("{:?}", &cmd))
701 .note(&escape_string(&output))
702 .emit();
703 sess.abort_if_errors();
704 }
705 info!("linker stderr:\n{}", escape_string(&prog.stderr));
706 info!("linker stdout:\n{}", escape_string(&prog.stdout));
707 },
708 Err(e) => {
709 let linker_not_found = e.kind() == io::ErrorKind::NotFound;
710
711 let mut linker_error = {
712 if linker_not_found {
713 sess.struct_err(&format!("linker `{}` not found", pname.display()))
714 } else {
715 sess.struct_err(&format!("could not exec the linker `{}`", pname.display()))
716 }
717 };
718
719 linker_error.note(&format!("{}", e));
720
721 if !linker_not_found {
722 linker_error.note(&format!("{:?}", &cmd));
723 }
724
725 linker_error.emit();
726
727 if sess.target.target.options.is_like_msvc && linker_not_found {
728 sess.note_without_error("the msvc targets depend on the msvc linker \
729 but `link.exe` was not found");
730 sess.note_without_error("please ensure that VS 2013 or VS 2015 was installed \
731 with the Visual C++ option");
732 }
733 sess.abort_if_errors();
734 }
735 }
736
737
738 // On macOS, debuggers need this utility to get run to do some munging of
739 // the symbols
740 if sess.target.target.options.is_like_osx && sess.opts.debuginfo != NoDebugInfo {
741 match Command::new("dsymutil").arg(out_filename).output() {
742 Ok(..) => {}
743 Err(e) => sess.fatal(&format!("failed to run dsymutil: {}", e)),
744 }
745 }
746 }
747
748 fn exec_linker(sess: &Session, cmd: &mut Command, tmpdir: &Path)
749 -> io::Result<Output>
750 {
751 // When attempting to spawn the linker we run a risk of blowing out the
752 // size limits for spawning a new process with respect to the arguments
753 // we pass on the command line.
754 //
755 // Here we attempt to handle errors from the OS saying "your list of
756 // arguments is too big" by reinvoking the linker again with an `@`-file
757 // that contains all the arguments. The theory is that this is then
758 // accepted on all linkers and the linker will read all its options out of
759 // there instead of looking at the command line.
760 if !cmd.very_likely_to_exceed_some_spawn_limit() {
761 match cmd.command().stdout(Stdio::piped()).stderr(Stdio::piped()).spawn() {
762 Ok(child) => return child.wait_with_output(),
763 Err(ref e) if command_line_too_big(e) => {}
764 Err(e) => return Err(e)
765 }
766 }
767
768 let mut cmd2 = cmd.clone();
769 let mut args = String::new();
770 for arg in cmd2.take_args() {
771 args.push_str(&Escape {
772 arg: arg.to_str().unwrap(),
773 is_like_msvc: sess.target.target.options.is_like_msvc,
774 }.to_string());
775 args.push_str("\n");
776 }
777 let file = tmpdir.join("linker-arguments");
778 let bytes = if sess.target.target.options.is_like_msvc {
779 let mut out = vec![];
780 // start the stream with a UTF-16 BOM
781 for c in vec![0xFEFF].into_iter().chain(args.encode_utf16()) {
782 // encode in little endian
783 out.push(c as u8);
784 out.push((c >> 8) as u8);
785 }
786 out
787 } else {
788 args.into_bytes()
789 };
790 fs::write(&file, &bytes)?;
791 cmd2.arg(format!("@{}", file.display()));
792 return cmd2.output();
793
794 #[cfg(unix)]
795 fn command_line_too_big(err: &io::Error) -> bool {
796 err.raw_os_error() == Some(::libc::E2BIG)
797 }
798
799 #[cfg(windows)]
800 fn command_line_too_big(err: &io::Error) -> bool {
801 const ERROR_FILENAME_EXCED_RANGE: i32 = 206;
802 err.raw_os_error() == Some(ERROR_FILENAME_EXCED_RANGE)
803 }
804
805 struct Escape<'a> {
806 arg: &'a str,
807 is_like_msvc: bool,
808 }
809
810 impl<'a> fmt::Display for Escape<'a> {
811 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
812 if self.is_like_msvc {
813 // This is "documented" at
814 // https://msdn.microsoft.com/en-us/library/4xdcbak7.aspx
815 //
816 // Unfortunately there's not a great specification of the
817 // syntax I could find online (at least) but some local
818 // testing showed that this seemed sufficient-ish to catch
819 // at least a few edge cases.
820 write!(f, "\"")?;
821 for c in self.arg.chars() {
822 match c {
823 '"' => write!(f, "\\{}", c)?,
824 c => write!(f, "{}", c)?,
825 }
826 }
827 write!(f, "\"")?;
828 } else {
829 // This is documented at https://linux.die.net/man/1/ld, namely:
830 //
831 // > Options in file are separated by whitespace. A whitespace
832 // > character may be included in an option by surrounding the
833 // > entire option in either single or double quotes. Any
834 // > character (including a backslash) may be included by
835 // > prefixing the character to be included with a backslash.
836 //
837 // We put an argument on each line, so all we need to do is
838 // ensure the line is interpreted as one whole argument.
839 for c in self.arg.chars() {
840 match c {
841 '\\' |
842 ' ' => write!(f, "\\{}", c)?,
843 c => write!(f, "{}", c)?,
844 }
845 }
846 }
847 Ok(())
848 }
849 }
850 }
851
852 fn link_args(cmd: &mut Linker,
853 sess: &Session,
854 crate_type: config::CrateType,
855 tmpdir: &Path,
856 out_filename: &Path,
857 trans: &CrateTranslation) {
858
859 // The default library location, we need this to find the runtime.
860 // The location of crates will be determined as needed.
861 let lib_path = sess.target_filesearch(PathKind::All).get_lib_path();
862
863 // target descriptor
864 let t = &sess.target.target;
865
866 cmd.include_path(&fix_windows_verbatim_for_gcc(&lib_path));
867 for obj in trans.modules.iter().filter_map(|m| m.object.as_ref()) {
868 cmd.add_object(obj);
869 }
870 cmd.output_filename(out_filename);
871
872 if crate_type == config::CrateTypeExecutable &&
873 sess.target.target.options.is_like_windows {
874 if let Some(ref s) = trans.windows_subsystem {
875 cmd.subsystem(s);
876 }
877 }
878
879 // If we're building a dynamic library then some platforms need to make sure
880 // that all symbols are exported correctly from the dynamic library.
881 if crate_type != config::CrateTypeExecutable ||
882 sess.target.target.options.is_like_emscripten {
883 cmd.export_symbols(tmpdir, crate_type);
884 }
885
886 // When linking a dynamic library, we put the metadata into a section of the
887 // executable. This metadata is in a separate object file from the main
888 // object file, so we link that in here.
889 if crate_type == config::CrateTypeDylib ||
890 crate_type == config::CrateTypeProcMacro {
891 if let Some(obj) = trans.metadata_module.object.as_ref() {
892 cmd.add_object(obj);
893 }
894 }
895
896 let obj = trans.allocator_module
897 .as_ref()
898 .and_then(|m| m.object.as_ref());
899 if let Some(obj) = obj {
900 cmd.add_object(obj);
901 }
902
903 // Try to strip as much out of the generated object by removing unused
904 // sections if possible. See more comments in linker.rs
905 if !sess.opts.cg.link_dead_code {
906 let keep_metadata = crate_type == config::CrateTypeDylib;
907 cmd.gc_sections(keep_metadata);
908 }
909
910 let used_link_args = &trans.crate_info.link_args;
911
912 if crate_type == config::CrateTypeExecutable &&
913 t.options.position_independent_executables {
914 let empty_vec = Vec::new();
915 let args = sess.opts.cg.link_args.as_ref().unwrap_or(&empty_vec);
916 let more_args = &sess.opts.cg.link_arg;
917 let mut args = args.iter().chain(more_args.iter()).chain(used_link_args.iter());
918
919 if get_reloc_model(sess) == llvm::RelocMode::PIC
920 && !sess.crt_static() && !args.any(|x| *x == "-static") {
921 cmd.position_independent_executable();
922 }
923 }
924
925 let relro_level = match sess.opts.debugging_opts.relro_level {
926 Some(level) => level,
927 None => t.options.relro_level,
928 };
929 match relro_level {
930 RelroLevel::Full => {
931 cmd.full_relro();
932 },
933 RelroLevel::Partial => {
934 cmd.partial_relro();
935 },
936 RelroLevel::Off => {},
937 }
938
939 // Pass optimization flags down to the linker.
940 cmd.optimize();
941
942 // Pass debuginfo flags down to the linker.
943 cmd.debuginfo();
944
945 // We want to prevent the compiler from accidentally leaking in any system
946 // libraries, so we explicitly ask gcc to not link to any libraries by
947 // default. Note that this does not happen for windows because windows pulls
948 // in some large number of libraries and I couldn't quite figure out which
949 // subset we wanted.
950 if t.options.no_default_libraries {
951 cmd.no_default_libraries();
952 }
953
954 // Take careful note of the ordering of the arguments we pass to the linker
955 // here. Linkers will assume that things on the left depend on things to the
956 // right. Things on the right cannot depend on things on the left. This is
957 // all formally implemented in terms of resolving symbols (libs on the right
958 // resolve unknown symbols of libs on the left, but not vice versa).
959 //
960 // For this reason, we have organized the arguments we pass to the linker as
961 // such:
962 //
963 // 1. The local object that LLVM just generated
964 // 2. Local native libraries
965 // 3. Upstream rust libraries
966 // 4. Upstream native libraries
967 //
968 // The rationale behind this ordering is that those items lower down in the
969 // list can't depend on items higher up in the list. For example nothing can
970 // depend on what we just generated (e.g. that'd be a circular dependency).
971 // Upstream rust libraries are not allowed to depend on our local native
972 // libraries as that would violate the structure of the DAG, in that
973 // scenario they are required to link to them as well in a shared fashion.
974 //
975 // Note that upstream rust libraries may contain native dependencies as
976 // well, but they also can't depend on what we just started to add to the
977 // link line. And finally upstream native libraries can't depend on anything
978 // in this DAG so far because they're only dylibs and dylibs can only depend
979 // on other dylibs (e.g. other native deps).
980 add_local_native_libraries(cmd, sess, trans);
981 add_upstream_rust_crates(cmd, sess, trans, crate_type, tmpdir);
982 add_upstream_native_libraries(cmd, sess, trans, crate_type);
983
984 // Tell the linker what we're doing.
985 if crate_type != config::CrateTypeExecutable {
986 cmd.build_dylib(out_filename);
987 }
988 if crate_type == config::CrateTypeExecutable && sess.crt_static() {
989 cmd.build_static_executable();
990 }
991
992 // FIXME (#2397): At some point we want to rpath our guesses as to
993 // where extern libraries might live, based on the
994 // addl_lib_search_paths
995 if sess.opts.cg.rpath {
996 let sysroot = sess.sysroot();
997 let target_triple = &sess.opts.target_triple;
998 let mut get_install_prefix_lib_path = || {
999 let install_prefix = option_env!("CFG_PREFIX").expect("CFG_PREFIX");
1000 let tlib = filesearch::relative_target_lib_path(sysroot, target_triple);
1001 let mut path = PathBuf::from(install_prefix);
1002 path.push(&tlib);
1003
1004 path
1005 };
1006 let mut rpath_config = RPathConfig {
1007 used_crates: &trans.crate_info.used_crates_dynamic,
1008 out_filename: out_filename.to_path_buf(),
1009 has_rpath: sess.target.target.options.has_rpath,
1010 is_like_osx: sess.target.target.options.is_like_osx,
1011 linker_is_gnu: sess.target.target.options.linker_is_gnu,
1012 get_install_prefix_lib_path: &mut get_install_prefix_lib_path,
1013 };
1014 cmd.args(&rpath::get_rpath_flags(&mut rpath_config));
1015 }
1016
1017 // Finally add all the linker arguments provided on the command line along
1018 // with any #[link_args] attributes found inside the crate
1019 if let Some(ref args) = sess.opts.cg.link_args {
1020 cmd.args(args);
1021 }
1022 cmd.args(&sess.opts.cg.link_arg);
1023 cmd.args(&used_link_args);
1024 }
1025
1026 // # Native library linking
1027 //
1028 // User-supplied library search paths (-L on the command line). These are
1029 // the same paths used to find Rust crates, so some of them may have been
1030 // added already by the previous crate linking code. This only allows them
1031 // to be found at compile time so it is still entirely up to outside
1032 // forces to make sure that library can be found at runtime.
1033 //
1034 // Also note that the native libraries linked here are only the ones located
1035 // in the current crate. Upstream crates with native library dependencies
1036 // may have their native library pulled in above.
1037 fn add_local_native_libraries(cmd: &mut Linker,
1038 sess: &Session,
1039 trans: &CrateTranslation) {
1040 sess.target_filesearch(PathKind::All).for_each_lib_search_path(|path, k| {
1041 match k {
1042 PathKind::Framework => { cmd.framework_path(path); }
1043 _ => { cmd.include_path(&fix_windows_verbatim_for_gcc(path)); }
1044 }
1045 });
1046
1047 let relevant_libs = trans.crate_info.used_libraries.iter().filter(|l| {
1048 relevant_lib(sess, l)
1049 });
1050
1051 let search_path = archive_search_paths(sess);
1052 for lib in relevant_libs {
1053 match lib.kind {
1054 NativeLibraryKind::NativeUnknown => cmd.link_dylib(&lib.name.as_str()),
1055 NativeLibraryKind::NativeFramework => cmd.link_framework(&lib.name.as_str()),
1056 NativeLibraryKind::NativeStaticNobundle => cmd.link_staticlib(&lib.name.as_str()),
1057 NativeLibraryKind::NativeStatic => cmd.link_whole_staticlib(&lib.name.as_str(),
1058 &search_path)
1059 }
1060 }
1061 }
1062
1063 // # Rust Crate linking
1064 //
1065 // Rust crates are not considered at all when creating an rlib output. All
1066 // dependencies will be linked when producing the final output (instead of
1067 // the intermediate rlib version)
1068 fn add_upstream_rust_crates(cmd: &mut Linker,
1069 sess: &Session,
1070 trans: &CrateTranslation,
1071 crate_type: config::CrateType,
1072 tmpdir: &Path) {
1073 // All of the heavy lifting has previously been accomplished by the
1074 // dependency_format module of the compiler. This is just crawling the
1075 // output of that module, adding crates as necessary.
1076 //
1077 // Linking to a rlib involves just passing it to the linker (the linker
1078 // will slurp up the object files inside), and linking to a dynamic library
1079 // involves just passing the right -l flag.
1080
1081 let formats = sess.dependency_formats.borrow();
1082 let data = formats.get(&crate_type).unwrap();
1083
1084 // Invoke get_used_crates to ensure that we get a topological sorting of
1085 // crates.
1086 let deps = &trans.crate_info.used_crates_dynamic;
1087
1088 let mut compiler_builtins = None;
1089
1090 for &(cnum, _) in deps.iter() {
1091 // We may not pass all crates through to the linker. Some crates may
1092 // appear statically in an existing dylib, meaning we'll pick up all the
1093 // symbols from the dylib.
1094 let src = &trans.crate_info.used_crate_source[&cnum];
1095 match data[cnum.as_usize() - 1] {
1096 _ if trans.crate_info.profiler_runtime == Some(cnum) => {
1097 add_static_crate(cmd, sess, trans, tmpdir, crate_type, cnum);
1098 }
1099 _ if trans.crate_info.sanitizer_runtime == Some(cnum) => {
1100 link_sanitizer_runtime(cmd, sess, trans, tmpdir, cnum);
1101 }
1102 // compiler-builtins are always placed last to ensure that they're
1103 // linked correctly.
1104 _ if trans.crate_info.compiler_builtins == Some(cnum) => {
1105 assert!(compiler_builtins.is_none());
1106 compiler_builtins = Some(cnum);
1107 }
1108 Linkage::NotLinked |
1109 Linkage::IncludedFromDylib => {}
1110 Linkage::Static => {
1111 add_static_crate(cmd, sess, trans, tmpdir, crate_type, cnum);
1112 }
1113 Linkage::Dynamic => {
1114 add_dynamic_crate(cmd, sess, &src.dylib.as_ref().unwrap().0)
1115 }
1116 }
1117 }
1118
1119 // compiler-builtins are always placed last to ensure that they're
1120 // linked correctly.
1121 // We must always link the `compiler_builtins` crate statically. Even if it
1122 // was already "included" in a dylib (e.g. `libstd` when `-C prefer-dynamic`
1123 // is used)
1124 if let Some(cnum) = compiler_builtins {
1125 add_static_crate(cmd, sess, trans, tmpdir, crate_type, cnum);
1126 }
1127
1128 // Converts a library file-stem into a cc -l argument
1129 fn unlib<'a>(config: &config::Config, stem: &'a str) -> &'a str {
1130 if stem.starts_with("lib") && !config.target.options.is_like_windows {
1131 &stem[3..]
1132 } else {
1133 stem
1134 }
1135 }
1136
1137 // We must link the sanitizer runtime using -Wl,--whole-archive but since
1138 // it's packed in a .rlib, it contains stuff that are not objects that will
1139 // make the linker error. So we must remove those bits from the .rlib before
1140 // linking it.
1141 fn link_sanitizer_runtime(cmd: &mut Linker,
1142 sess: &Session,
1143 trans: &CrateTranslation,
1144 tmpdir: &Path,
1145 cnum: CrateNum) {
1146 let src = &trans.crate_info.used_crate_source[&cnum];
1147 let cratepath = &src.rlib.as_ref().unwrap().0;
1148
1149 if sess.target.target.options.is_like_osx {
1150 // On Apple platforms, the sanitizer is always built as a dylib, and
1151 // LLVM will link to `@rpath/*.dylib`, so we need to specify an
1152 // rpath to the library as well (the rpath should be absolute, see
1153 // PR #41352 for details).
1154 //
1155 // FIXME: Remove this logic into librustc_*san once Cargo supports it
1156 let rpath = cratepath.parent().unwrap();
1157 let rpath = rpath.to_str().expect("non-utf8 component in path");
1158 cmd.args(&["-Wl,-rpath".into(), "-Xlinker".into(), rpath.into()]);
1159 }
1160
1161 let dst = tmpdir.join(cratepath.file_name().unwrap());
1162 let cfg = archive_config(sess, &dst, Some(cratepath));
1163 let mut archive = ArchiveBuilder::new(cfg);
1164 archive.update_symbols();
1165
1166 for f in archive.src_files() {
1167 if f.ends_with(RLIB_BYTECODE_EXTENSION) || f == METADATA_FILENAME {
1168 archive.remove_file(&f);
1169 continue
1170 }
1171 }
1172
1173 archive.build();
1174
1175 cmd.link_whole_rlib(&dst);
1176 }
1177
1178 // Adds the static "rlib" versions of all crates to the command line.
1179 // There's a bit of magic which happens here specifically related to LTO and
1180 // dynamic libraries. Specifically:
1181 //
1182 // * For LTO, we remove upstream object files.
1183 // * For dylibs we remove metadata and bytecode from upstream rlibs
1184 //
1185 // When performing LTO, almost(*) all of the bytecode from the upstream
1186 // libraries has already been included in our object file output. As a
1187 // result we need to remove the object files in the upstream libraries so
1188 // the linker doesn't try to include them twice (or whine about duplicate
1189 // symbols). We must continue to include the rest of the rlib, however, as
1190 // it may contain static native libraries which must be linked in.
1191 //
1192 // (*) Crates marked with `#![no_builtins]` don't participate in LTO and
1193 // their bytecode wasn't included. The object files in those libraries must
1194 // still be passed to the linker.
1195 //
1196 // When making a dynamic library, linkers by default don't include any
1197 // object files in an archive if they're not necessary to resolve the link.
1198 // We basically want to convert the archive (rlib) to a dylib, though, so we
1199 // *do* want everything included in the output, regardless of whether the
1200 // linker thinks it's needed or not. As a result we must use the
1201 // --whole-archive option (or the platform equivalent). When using this
1202 // option the linker will fail if there are non-objects in the archive (such
1203 // as our own metadata and/or bytecode). All in all, for rlibs to be
1204 // entirely included in dylibs, we need to remove all non-object files.
1205 //
1206 // Note, however, that if we're not doing LTO or we're not producing a dylib
1207 // (aka we're making an executable), we can just pass the rlib blindly to
1208 // the linker (fast) because it's fine if it's not actually included as
1209 // we're at the end of the dependency chain.
1210 fn add_static_crate(cmd: &mut Linker,
1211 sess: &Session,
1212 trans: &CrateTranslation,
1213 tmpdir: &Path,
1214 crate_type: config::CrateType,
1215 cnum: CrateNum) {
1216 let src = &trans.crate_info.used_crate_source[&cnum];
1217 let cratepath = &src.rlib.as_ref().unwrap().0;
1218
1219 // See the comment above in `link_staticlib` and `link_rlib` for why if
1220 // there's a static library that's not relevant we skip all object
1221 // files.
1222 let native_libs = &trans.crate_info.native_libraries[&cnum];
1223 let skip_native = native_libs.iter().any(|lib| {
1224 lib.kind == NativeLibraryKind::NativeStatic && !relevant_lib(sess, lib)
1225 });
1226
1227 if (!is_full_lto_enabled(sess) ||
1228 ignored_for_lto(sess, &trans.crate_info, cnum)) &&
1229 crate_type != config::CrateTypeDylib &&
1230 !skip_native {
1231 cmd.link_rlib(&fix_windows_verbatim_for_gcc(cratepath));
1232 return
1233 }
1234
1235 let dst = tmpdir.join(cratepath.file_name().unwrap());
1236 let name = cratepath.file_name().unwrap().to_str().unwrap();
1237 let name = &name[3..name.len() - 5]; // chop off lib/.rlib
1238
1239 time(sess.time_passes(), &format!("altering {}.rlib", name), || {
1240 let cfg = archive_config(sess, &dst, Some(cratepath));
1241 let mut archive = ArchiveBuilder::new(cfg);
1242 archive.update_symbols();
1243
1244 let mut any_objects = false;
1245 for f in archive.src_files() {
1246 if f.ends_with(RLIB_BYTECODE_EXTENSION) || f == METADATA_FILENAME {
1247 archive.remove_file(&f);
1248 continue
1249 }
1250
1251 let canonical = f.replace("-", "_");
1252 let canonical_name = name.replace("-", "_");
1253
1254 // Look for `.rcgu.o` at the end of the filename to conclude
1255 // that this is a Rust-related object file.
1256 fn looks_like_rust(s: &str) -> bool {
1257 let path = Path::new(s);
1258 let ext = path.extension().and_then(|s| s.to_str());
1259 if ext != Some(OutputType::Object.extension()) {
1260 return false
1261 }
1262 let ext2 = path.file_stem()
1263 .and_then(|s| Path::new(s).extension())
1264 .and_then(|s| s.to_str());
1265 ext2 == Some(RUST_CGU_EXT)
1266 }
1267
1268 let is_rust_object =
1269 canonical.starts_with(&canonical_name) &&
1270 looks_like_rust(&f);
1271
1272 // If we've been requested to skip all native object files
1273 // (those not generated by the rust compiler) then we can skip
1274 // this file. See above for why we may want to do this.
1275 let skip_because_cfg_say_so = skip_native && !is_rust_object;
1276
1277 // If we're performing LTO and this is a rust-generated object
1278 // file, then we don't need the object file as it's part of the
1279 // LTO module. Note that `#![no_builtins]` is excluded from LTO,
1280 // though, so we let that object file slide.
1281 let skip_because_lto = is_full_lto_enabled(sess) &&
1282 is_rust_object &&
1283 (sess.target.target.options.no_builtins ||
1284 !trans.crate_info.is_no_builtins.contains(&cnum));
1285
1286 if skip_because_cfg_say_so || skip_because_lto {
1287 archive.remove_file(&f);
1288 } else {
1289 any_objects = true;
1290 }
1291 }
1292
1293 if !any_objects {
1294 return
1295 }
1296 archive.build();
1297
1298 // If we're creating a dylib, then we need to include the
1299 // whole of each object in our archive into that artifact. This is
1300 // because a `dylib` can be reused as an intermediate artifact.
1301 //
1302 // Note, though, that we don't want to include the whole of a
1303 // compiler-builtins crate (e.g. compiler-rt) because it'll get
1304 // repeatedly linked anyway.
1305 if crate_type == config::CrateTypeDylib &&
1306 trans.crate_info.compiler_builtins != Some(cnum) {
1307 cmd.link_whole_rlib(&fix_windows_verbatim_for_gcc(&dst));
1308 } else {
1309 cmd.link_rlib(&fix_windows_verbatim_for_gcc(&dst));
1310 }
1311 });
1312 }
1313
1314 // Same thing as above, but for dynamic crates instead of static crates.
1315 fn add_dynamic_crate(cmd: &mut Linker, sess: &Session, cratepath: &Path) {
1316 // If we're performing LTO, then it should have been previously required
1317 // that all upstream rust dependencies were available in an rlib format.
1318 assert!(!is_full_lto_enabled(sess));
1319
1320 // Just need to tell the linker about where the library lives and
1321 // what its name is
1322 let parent = cratepath.parent();
1323 if let Some(dir) = parent {
1324 cmd.include_path(&fix_windows_verbatim_for_gcc(dir));
1325 }
1326 let filestem = cratepath.file_stem().unwrap().to_str().unwrap();
1327 cmd.link_rust_dylib(&unlib(&sess.target, filestem),
1328 parent.unwrap_or(Path::new("")));
1329 }
1330 }
1331
1332 // Link in all of our upstream crates' native dependencies. Remember that
1333 // all of these upstream native dependencies are all non-static
1334 // dependencies. We've got two cases then:
1335 //
1336 // 1. The upstream crate is an rlib. In this case we *must* link in the
1337 // native dependency because the rlib is just an archive.
1338 //
1339 // 2. The upstream crate is a dylib. In order to use the dylib, we have to
1340 // have the dependency present on the system somewhere. Thus, we don't
1341 // gain a whole lot from not linking in the dynamic dependency to this
1342 // crate as well.
1343 //
1344 // The use case for this is a little subtle. In theory the native
1345 // dependencies of a crate are purely an implementation detail of the crate
1346 // itself, but the problem arises with generic and inlined functions. If a
1347 // generic function calls a native function, then the generic function must
1348 // be instantiated in the target crate, meaning that the native symbol must
1349 // also be resolved in the target crate.
1350 fn add_upstream_native_libraries(cmd: &mut Linker,
1351 sess: &Session,
1352 trans: &CrateTranslation,
1353 crate_type: config::CrateType) {
1354 // Be sure to use a topological sorting of crates because there may be
1355 // interdependencies between native libraries. When passing -nodefaultlibs,
1356 // for example, almost all native libraries depend on libc, so we have to
1357 // make sure that's all the way at the right (liblibc is near the base of
1358 // the dependency chain).
1359 //
1360 // This passes RequireStatic, but the actual requirement doesn't matter,
1361 // we're just getting an ordering of crate numbers, we're not worried about
1362 // the paths.
1363 let formats = sess.dependency_formats.borrow();
1364 let data = formats.get(&crate_type).unwrap();
1365
1366 let crates = &trans.crate_info.used_crates_static;
1367 for &(cnum, _) in crates {
1368 for lib in trans.crate_info.native_libraries[&cnum].iter() {
1369 if !relevant_lib(sess, &lib) {
1370 continue
1371 }
1372 match lib.kind {
1373 NativeLibraryKind::NativeUnknown => cmd.link_dylib(&lib.name.as_str()),
1374 NativeLibraryKind::NativeFramework => cmd.link_framework(&lib.name.as_str()),
1375 NativeLibraryKind::NativeStaticNobundle => {
1376 // Link "static-nobundle" native libs only if the crate they originate from
1377 // is being linked statically to the current crate. If it's linked dynamically
1378 // or is an rlib already included via some other dylib crate, the symbols from
1379 // native libs will have already been included in that dylib.
1380 if data[cnum.as_usize() - 1] == Linkage::Static {
1381 cmd.link_staticlib(&lib.name.as_str())
1382 }
1383 },
1384 // ignore statically included native libraries here as we've
1385 // already included them when we included the rust library
1386 // previously
1387 NativeLibraryKind::NativeStatic => {}
1388 }
1389 }
1390 }
1391 }
1392
1393 fn relevant_lib(sess: &Session, lib: &NativeLibrary) -> bool {
1394 match lib.cfg {
1395 Some(ref cfg) => attr::cfg_matches(cfg, &sess.parse_sess, None),
1396 None => true,
1397 }
1398 }
1399
1400 /// For now "linking with binaryen" is just "move the one module we generated in
1401 /// the backend to the final output"
1402 ///
1403 /// That is, all the heavy lifting happens during the `back::write` phase. Here
1404 /// we just clean up after that.
1405 ///
1406 /// Note that this is super temporary and "will not survive the night", this is
1407 /// guaranteed to get removed as soon as a linker for wasm exists. This should
1408 /// not be used for anything other than wasm.
1409 fn link_binaryen(sess: &Session,
1410 _crate_type: config::CrateType,
1411 out_filename: &Path,
1412 trans: &CrateTranslation,
1413 _tmpdir: &Path) {
1414 assert!(trans.allocator_module.is_none());
1415 assert_eq!(trans.modules.len(), 1);
1416
1417 let object = trans.modules[0].object.as_ref().expect("object must exist");
1418 let res = fs::hard_link(object, out_filename)
1419 .or_else(|_| fs::copy(object, out_filename).map(|_| ()));
1420 if let Err(e) = res {
1421 sess.fatal(&format!("failed to create `{}`: {}",
1422 out_filename.display(),
1423 e));
1424 }
1425 }
1426
1427 fn is_full_lto_enabled(sess: &Session) -> bool {
1428 match sess.lto() {
1429 Lto::Yes |
1430 Lto::Thin |
1431 Lto::Fat => true,
1432 Lto::No |
1433 Lto::ThinLocal => false,
1434 }
1435 }