]> git.proxmox.com Git - rustc.git/blob - src/librustc_trans/back/write.rs
New upstream version 1.27.1+dfsg1
[rustc.git] / src / librustc_trans / back / write.rs
1 // Copyright 2013-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 use attributes;
12 use back::bytecode::{self, RLIB_BYTECODE_EXTENSION};
13 use back::lto::{self, ModuleBuffer, ThinBuffer};
14 use back::link::{self, get_linker, remove};
15 use back::command::Command;
16 use back::linker::LinkerInfo;
17 use back::symbol_export::ExportedSymbols;
18 use base;
19 use consts;
20 use rustc_incremental::{save_trans_partition, in_incr_comp_dir};
21 use rustc::dep_graph::{DepGraph, WorkProductFileKind};
22 use rustc::middle::cstore::{LinkMeta, EncodedMetadata};
23 use rustc::session::config::{self, OutputFilenames, OutputType, Passes, SomePasses,
24 AllPasses, Sanitizer, Lto};
25 use rustc::session::Session;
26 use rustc::util::nodemap::FxHashMap;
27 use time_graph::{self, TimeGraph, Timeline};
28 use llvm;
29 use llvm::{ModuleRef, TargetMachineRef, PassManagerRef, DiagnosticInfoRef};
30 use llvm::{SMDiagnosticRef, ContextRef};
31 use {CrateTranslation, ModuleSource, ModuleTranslation, CompiledModule, ModuleKind};
32 use CrateInfo;
33 use rustc::hir::def_id::{CrateNum, LOCAL_CRATE};
34 use rustc::ty::TyCtxt;
35 use rustc::util::common::{time_ext, time_depth, set_time_depth, print_time_passes_entry};
36 use rustc::util::common::path2cstr;
37 use rustc::util::fs::{link_or_copy};
38 use errors::{self, Handler, Level, DiagnosticBuilder, FatalError, DiagnosticId};
39 use errors::emitter::{Emitter};
40 use syntax::attr;
41 use syntax::ext::hygiene::Mark;
42 use syntax_pos::MultiSpan;
43 use syntax_pos::symbol::Symbol;
44 use type_::Type;
45 use context::{is_pie_binary, get_reloc_model};
46 use common::{C_bytes_in_context, val_ty};
47 use jobserver::{Client, Acquired};
48 use rustc_demangle;
49
50 use std::any::Any;
51 use std::ffi::{CString, CStr};
52 use std::fs;
53 use std::io::{self, Write};
54 use std::mem;
55 use std::path::{Path, PathBuf};
56 use std::str;
57 use std::sync::Arc;
58 use std::sync::mpsc::{channel, Sender, Receiver};
59 use std::slice;
60 use std::time::Instant;
61 use std::thread;
62 use libc::{c_uint, c_void, c_char, size_t};
63
64 pub const RELOC_MODEL_ARGS : [(&'static str, llvm::RelocMode); 7] = [
65 ("pic", llvm::RelocMode::PIC),
66 ("static", llvm::RelocMode::Static),
67 ("default", llvm::RelocMode::Default),
68 ("dynamic-no-pic", llvm::RelocMode::DynamicNoPic),
69 ("ropi", llvm::RelocMode::ROPI),
70 ("rwpi", llvm::RelocMode::RWPI),
71 ("ropi-rwpi", llvm::RelocMode::ROPI_RWPI),
72 ];
73
74 pub const CODE_GEN_MODEL_ARGS: &[(&str, llvm::CodeModel)] = &[
75 ("small", llvm::CodeModel::Small),
76 ("kernel", llvm::CodeModel::Kernel),
77 ("medium", llvm::CodeModel::Medium),
78 ("large", llvm::CodeModel::Large),
79 ];
80
81 pub const TLS_MODEL_ARGS : [(&'static str, llvm::ThreadLocalMode); 4] = [
82 ("global-dynamic", llvm::ThreadLocalMode::GeneralDynamic),
83 ("local-dynamic", llvm::ThreadLocalMode::LocalDynamic),
84 ("initial-exec", llvm::ThreadLocalMode::InitialExec),
85 ("local-exec", llvm::ThreadLocalMode::LocalExec),
86 ];
87
88 pub fn llvm_err(handler: &errors::Handler, msg: String) -> FatalError {
89 match llvm::last_error() {
90 Some(err) => handler.fatal(&format!("{}: {}", msg, err)),
91 None => handler.fatal(&msg),
92 }
93 }
94
95 pub fn write_output_file(
96 handler: &errors::Handler,
97 target: llvm::TargetMachineRef,
98 pm: llvm::PassManagerRef,
99 m: ModuleRef,
100 output: &Path,
101 file_type: llvm::FileType) -> Result<(), FatalError> {
102 unsafe {
103 let output_c = path2cstr(output);
104 let result = llvm::LLVMRustWriteOutputFile(
105 target, pm, m, output_c.as_ptr(), file_type);
106 if result.into_result().is_err() {
107 let msg = format!("could not write output to {}", output.display());
108 Err(llvm_err(handler, msg))
109 } else {
110 Ok(())
111 }
112 }
113 }
114
115 fn get_llvm_opt_level(optimize: config::OptLevel) -> llvm::CodeGenOptLevel {
116 match optimize {
117 config::OptLevel::No => llvm::CodeGenOptLevel::None,
118 config::OptLevel::Less => llvm::CodeGenOptLevel::Less,
119 config::OptLevel::Default => llvm::CodeGenOptLevel::Default,
120 config::OptLevel::Aggressive => llvm::CodeGenOptLevel::Aggressive,
121 _ => llvm::CodeGenOptLevel::Default,
122 }
123 }
124
125 fn get_llvm_opt_size(optimize: config::OptLevel) -> llvm::CodeGenOptSize {
126 match optimize {
127 config::OptLevel::Size => llvm::CodeGenOptSizeDefault,
128 config::OptLevel::SizeMin => llvm::CodeGenOptSizeAggressive,
129 _ => llvm::CodeGenOptSizeNone,
130 }
131 }
132
133 pub fn create_target_machine(sess: &Session, find_features: bool) -> TargetMachineRef {
134 target_machine_factory(sess, find_features)().unwrap_or_else(|err| {
135 llvm_err(sess.diagnostic(), err).raise()
136 })
137 }
138
139 // If find_features is true this won't access `sess.crate_types` by assuming
140 // that `is_pie_binary` is false. When we discover LLVM target features
141 // `sess.crate_types` is uninitialized so we cannot access it.
142 pub fn target_machine_factory(sess: &Session, find_features: bool)
143 -> Arc<Fn() -> Result<TargetMachineRef, String> + Send + Sync>
144 {
145 let reloc_model = get_reloc_model(sess);
146
147 let opt_level = get_llvm_opt_level(sess.opts.optimize);
148 let use_softfp = sess.opts.cg.soft_float;
149
150 let ffunction_sections = sess.target.target.options.function_sections;
151 let fdata_sections = ffunction_sections;
152
153 let code_model_arg = sess.opts.cg.code_model.as_ref().or(
154 sess.target.target.options.code_model.as_ref(),
155 );
156
157 let code_model = match code_model_arg {
158 Some(s) => {
159 match CODE_GEN_MODEL_ARGS.iter().find(|arg| arg.0 == s) {
160 Some(x) => x.1,
161 _ => {
162 sess.err(&format!("{:?} is not a valid code model",
163 code_model_arg));
164 sess.abort_if_errors();
165 bug!();
166 }
167 }
168 }
169 None => llvm::CodeModel::None,
170 };
171
172 let singlethread = sess.target.target.options.singlethread;
173
174 let triple = &sess.target.target.llvm_target;
175
176 let triple = CString::new(triple.as_bytes()).unwrap();
177 let cpu = match sess.opts.cg.target_cpu {
178 Some(ref s) => &**s,
179 None => &*sess.target.target.options.cpu
180 };
181 let cpu = CString::new(cpu.as_bytes()).unwrap();
182 let features = attributes::llvm_target_features(sess)
183 .collect::<Vec<_>>()
184 .join(",");
185 let features = CString::new(features).unwrap();
186 let is_pie_binary = !find_features && is_pie_binary(sess);
187 let trap_unreachable = sess.target.target.options.trap_unreachable;
188
189 Arc::new(move || {
190 let tm = unsafe {
191 llvm::LLVMRustCreateTargetMachine(
192 triple.as_ptr(), cpu.as_ptr(), features.as_ptr(),
193 code_model,
194 reloc_model,
195 opt_level,
196 use_softfp,
197 is_pie_binary,
198 ffunction_sections,
199 fdata_sections,
200 trap_unreachable,
201 singlethread,
202 )
203 };
204
205 if tm.is_null() {
206 Err(format!("Could not create LLVM TargetMachine for triple: {}",
207 triple.to_str().unwrap()))
208 } else {
209 Ok(tm)
210 }
211 })
212 }
213
214 /// Module-specific configuration for `optimize_and_codegen`.
215 pub struct ModuleConfig {
216 /// Names of additional optimization passes to run.
217 passes: Vec<String>,
218 /// Some(level) to optimize at a certain level, or None to run
219 /// absolutely no optimizations (used for the metadata module).
220 pub opt_level: Option<llvm::CodeGenOptLevel>,
221
222 /// Some(level) to optimize binary size, or None to not affect program size.
223 opt_size: Option<llvm::CodeGenOptSize>,
224
225 pgo_gen: Option<String>,
226 pgo_use: String,
227
228 // Flags indicating which outputs to produce.
229 emit_no_opt_bc: bool,
230 emit_bc: bool,
231 emit_bc_compressed: bool,
232 emit_lto_bc: bool,
233 emit_ir: bool,
234 emit_asm: bool,
235 emit_obj: bool,
236 // Miscellaneous flags. These are mostly copied from command-line
237 // options.
238 no_verify: bool,
239 no_prepopulate_passes: bool,
240 no_builtins: bool,
241 time_passes: bool,
242 vectorize_loop: bool,
243 vectorize_slp: bool,
244 merge_functions: bool,
245 inline_threshold: Option<usize>,
246 // Instead of creating an object file by doing LLVM codegen, just
247 // make the object file bitcode. Provides easy compatibility with
248 // emscripten's ecc compiler, when used as the linker.
249 obj_is_bitcode: bool,
250 no_integrated_as: bool,
251 embed_bitcode: bool,
252 embed_bitcode_marker: bool,
253 }
254
255 impl ModuleConfig {
256 fn new(passes: Vec<String>) -> ModuleConfig {
257 ModuleConfig {
258 passes,
259 opt_level: None,
260 opt_size: None,
261
262 pgo_gen: None,
263 pgo_use: String::new(),
264
265 emit_no_opt_bc: false,
266 emit_bc: false,
267 emit_bc_compressed: false,
268 emit_lto_bc: false,
269 emit_ir: false,
270 emit_asm: false,
271 emit_obj: false,
272 obj_is_bitcode: false,
273 embed_bitcode: false,
274 embed_bitcode_marker: false,
275 no_integrated_as: false,
276
277 no_verify: false,
278 no_prepopulate_passes: false,
279 no_builtins: false,
280 time_passes: false,
281 vectorize_loop: false,
282 vectorize_slp: false,
283 merge_functions: false,
284 inline_threshold: None
285 }
286 }
287
288 fn set_flags(&mut self, sess: &Session, no_builtins: bool) {
289 self.no_verify = sess.no_verify();
290 self.no_prepopulate_passes = sess.opts.cg.no_prepopulate_passes;
291 self.no_builtins = no_builtins || sess.target.target.options.no_builtins;
292 self.time_passes = sess.time_passes();
293 self.inline_threshold = sess.opts.cg.inline_threshold;
294 self.obj_is_bitcode = sess.target.target.options.obj_is_bitcode;
295 let embed_bitcode = sess.target.target.options.embed_bitcode ||
296 sess.opts.debugging_opts.embed_bitcode ||
297 sess.opts.debugging_opts.cross_lang_lto;
298 if embed_bitcode {
299 match sess.opts.optimize {
300 config::OptLevel::No |
301 config::OptLevel::Less => {
302 self.embed_bitcode_marker = embed_bitcode;
303 }
304 _ => self.embed_bitcode = embed_bitcode,
305 }
306 }
307
308 // Copy what clang does by turning on loop vectorization at O2 and
309 // slp vectorization at O3. Otherwise configure other optimization aspects
310 // of this pass manager builder.
311 // Turn off vectorization for emscripten, as it's not very well supported.
312 self.vectorize_loop = !sess.opts.cg.no_vectorize_loops &&
313 (sess.opts.optimize == config::OptLevel::Default ||
314 sess.opts.optimize == config::OptLevel::Aggressive) &&
315 !sess.target.target.options.is_like_emscripten;
316
317 self.vectorize_slp = !sess.opts.cg.no_vectorize_slp &&
318 sess.opts.optimize == config::OptLevel::Aggressive &&
319 !sess.target.target.options.is_like_emscripten;
320
321 self.merge_functions = sess.opts.optimize == config::OptLevel::Default ||
322 sess.opts.optimize == config::OptLevel::Aggressive;
323 }
324 }
325
326 /// Assembler name and command used by codegen when no_integrated_as is enabled
327 struct AssemblerCommand {
328 name: PathBuf,
329 cmd: Command,
330 }
331
332 /// Additional resources used by optimize_and_codegen (not module specific)
333 #[derive(Clone)]
334 pub struct CodegenContext {
335 // Resouces needed when running LTO
336 pub time_passes: bool,
337 pub lto: Lto,
338 pub no_landing_pads: bool,
339 pub save_temps: bool,
340 pub fewer_names: bool,
341 pub exported_symbols: Option<Arc<ExportedSymbols>>,
342 pub opts: Arc<config::Options>,
343 pub crate_types: Vec<config::CrateType>,
344 pub each_linked_rlib_for_lto: Vec<(CrateNum, PathBuf)>,
345 output_filenames: Arc<OutputFilenames>,
346 regular_module_config: Arc<ModuleConfig>,
347 metadata_module_config: Arc<ModuleConfig>,
348 allocator_module_config: Arc<ModuleConfig>,
349 pub tm_factory: Arc<Fn() -> Result<TargetMachineRef, String> + Send + Sync>,
350 pub msvc_imps_needed: bool,
351 pub target_pointer_width: String,
352 debuginfo: config::DebugInfoLevel,
353
354 // Number of cgus excluding the allocator/metadata modules
355 pub total_cgus: usize,
356 // Handler to use for diagnostics produced during codegen.
357 pub diag_emitter: SharedEmitter,
358 // LLVM passes added by plugins.
359 pub plugin_passes: Vec<String>,
360 // LLVM optimizations for which we want to print remarks.
361 pub remark: Passes,
362 // Worker thread number
363 pub worker: usize,
364 // The incremental compilation session directory, or None if we are not
365 // compiling incrementally
366 pub incr_comp_session_dir: Option<PathBuf>,
367 // Channel back to the main control thread to send messages to
368 coordinator_send: Sender<Box<Any + Send>>,
369 // A reference to the TimeGraph so we can register timings. None means that
370 // measuring is disabled.
371 time_graph: Option<TimeGraph>,
372 // The assembler command if no_integrated_as option is enabled, None otherwise
373 assembler_cmd: Option<Arc<AssemblerCommand>>,
374 }
375
376 impl CodegenContext {
377 pub fn create_diag_handler(&self) -> Handler {
378 Handler::with_emitter(true, false, Box::new(self.diag_emitter.clone()))
379 }
380
381 pub(crate) fn config(&self, kind: ModuleKind) -> &ModuleConfig {
382 match kind {
383 ModuleKind::Regular => &self.regular_module_config,
384 ModuleKind::Metadata => &self.metadata_module_config,
385 ModuleKind::Allocator => &self.allocator_module_config,
386 }
387 }
388
389 pub(crate) fn save_temp_bitcode(&self, trans: &ModuleTranslation, name: &str) {
390 if !self.save_temps {
391 return
392 }
393 unsafe {
394 let ext = format!("{}.bc", name);
395 let cgu = Some(&trans.name[..]);
396 let path = self.output_filenames.temp_path_ext(&ext, cgu);
397 let cstr = path2cstr(&path);
398 let llmod = trans.llvm().unwrap().llmod;
399 llvm::LLVMWriteBitcodeToFile(llmod, cstr.as_ptr());
400 }
401 }
402 }
403
404 struct DiagnosticHandlers<'a> {
405 inner: Box<(&'a CodegenContext, &'a Handler)>,
406 llcx: ContextRef,
407 }
408
409 impl<'a> DiagnosticHandlers<'a> {
410 fn new(cgcx: &'a CodegenContext,
411 handler: &'a Handler,
412 llcx: ContextRef) -> DiagnosticHandlers<'a> {
413 let data = Box::new((cgcx, handler));
414 unsafe {
415 let arg = &*data as &(_, _) as *const _ as *mut _;
416 llvm::LLVMRustSetInlineAsmDiagnosticHandler(llcx, inline_asm_handler, arg);
417 llvm::LLVMContextSetDiagnosticHandler(llcx, diagnostic_handler, arg);
418 }
419 DiagnosticHandlers {
420 inner: data,
421 llcx: llcx,
422 }
423 }
424 }
425
426 impl<'a> Drop for DiagnosticHandlers<'a> {
427 fn drop(&mut self) {
428 unsafe {
429 llvm::LLVMRustSetInlineAsmDiagnosticHandler(self.llcx, inline_asm_handler, 0 as *mut _);
430 llvm::LLVMContextSetDiagnosticHandler(self.llcx, diagnostic_handler, 0 as *mut _);
431 }
432 }
433 }
434
435 unsafe extern "C" fn report_inline_asm<'a, 'b>(cgcx: &'a CodegenContext,
436 msg: &'b str,
437 cookie: c_uint) {
438 cgcx.diag_emitter.inline_asm_error(cookie as u32, msg.to_string());
439 }
440
441 unsafe extern "C" fn inline_asm_handler(diag: SMDiagnosticRef,
442 user: *const c_void,
443 cookie: c_uint) {
444 if user.is_null() {
445 return
446 }
447 let (cgcx, _) = *(user as *const (&CodegenContext, &Handler));
448
449 let msg = llvm::build_string(|s| llvm::LLVMRustWriteSMDiagnosticToString(diag, s))
450 .expect("non-UTF8 SMDiagnostic");
451
452 report_inline_asm(cgcx, &msg, cookie);
453 }
454
455 unsafe extern "C" fn diagnostic_handler(info: DiagnosticInfoRef, user: *mut c_void) {
456 if user.is_null() {
457 return
458 }
459 let (cgcx, diag_handler) = *(user as *const (&CodegenContext, &Handler));
460
461 match llvm::diagnostic::Diagnostic::unpack(info) {
462 llvm::diagnostic::InlineAsm(inline) => {
463 report_inline_asm(cgcx,
464 &llvm::twine_to_string(inline.message),
465 inline.cookie);
466 }
467
468 llvm::diagnostic::Optimization(opt) => {
469 let enabled = match cgcx.remark {
470 AllPasses => true,
471 SomePasses(ref v) => v.iter().any(|s| *s == opt.pass_name),
472 };
473
474 if enabled {
475 diag_handler.note_without_error(&format!("optimization {} for {} at {}:{}:{}: {}",
476 opt.kind.describe(),
477 opt.pass_name,
478 opt.filename,
479 opt.line,
480 opt.column,
481 opt.message));
482 }
483 }
484 llvm::diagnostic::PGO(diagnostic_ref) => {
485 let msg = llvm::build_string(|s| {
486 llvm::LLVMRustWriteDiagnosticInfoToString(diagnostic_ref, s)
487 }).expect("non-UTF8 PGO diagnostic");
488 diag_handler.warn(&msg);
489 }
490 llvm::diagnostic::UnknownDiagnostic(..) => {},
491 }
492 }
493
494 // Unsafe due to LLVM calls.
495 unsafe fn optimize(cgcx: &CodegenContext,
496 diag_handler: &Handler,
497 mtrans: &ModuleTranslation,
498 config: &ModuleConfig,
499 timeline: &mut Timeline)
500 -> Result<(), FatalError>
501 {
502 let (llmod, llcx, tm) = match mtrans.source {
503 ModuleSource::Translated(ref llvm) => (llvm.llmod, llvm.llcx, llvm.tm),
504 ModuleSource::Preexisting(_) => {
505 bug!("optimize_and_codegen: called with ModuleSource::Preexisting")
506 }
507 };
508
509 let _handlers = DiagnosticHandlers::new(cgcx, diag_handler, llcx);
510
511 let module_name = mtrans.name.clone();
512 let module_name = Some(&module_name[..]);
513
514 if config.emit_no_opt_bc {
515 let out = cgcx.output_filenames.temp_path_ext("no-opt.bc", module_name);
516 let out = path2cstr(&out);
517 llvm::LLVMWriteBitcodeToFile(llmod, out.as_ptr());
518 }
519
520 if config.opt_level.is_some() {
521 // Create the two optimizing pass managers. These mirror what clang
522 // does, and are by populated by LLVM's default PassManagerBuilder.
523 // Each manager has a different set of passes, but they also share
524 // some common passes.
525 let fpm = llvm::LLVMCreateFunctionPassManagerForModule(llmod);
526 let mpm = llvm::LLVMCreatePassManager();
527
528 // If we're verifying or linting, add them to the function pass
529 // manager.
530 let addpass = |pass_name: &str| {
531 let pass_name = CString::new(pass_name).unwrap();
532 let pass = llvm::LLVMRustFindAndCreatePass(pass_name.as_ptr());
533 if pass.is_null() {
534 return false;
535 }
536 let pass_manager = match llvm::LLVMRustPassKind(pass) {
537 llvm::PassKind::Function => fpm,
538 llvm::PassKind::Module => mpm,
539 llvm::PassKind::Other => {
540 diag_handler.err("Encountered LLVM pass kind we can't handle");
541 return true
542 },
543 };
544 llvm::LLVMRustAddPass(pass_manager, pass);
545 true
546 };
547
548 if !config.no_verify { assert!(addpass("verify")); }
549 if !config.no_prepopulate_passes {
550 llvm::LLVMRustAddAnalysisPasses(tm, fpm, llmod);
551 llvm::LLVMRustAddAnalysisPasses(tm, mpm, llmod);
552 let opt_level = config.opt_level.unwrap_or(llvm::CodeGenOptLevel::None);
553 with_llvm_pmb(llmod, &config, opt_level, &mut |b| {
554 llvm::LLVMPassManagerBuilderPopulateFunctionPassManager(b, fpm);
555 llvm::LLVMPassManagerBuilderPopulateModulePassManager(b, mpm);
556 })
557 }
558
559 for pass in &config.passes {
560 if !addpass(pass) {
561 diag_handler.warn(&format!("unknown pass `{}`, ignoring",
562 pass));
563 }
564 }
565
566 for pass in &cgcx.plugin_passes {
567 if !addpass(pass) {
568 diag_handler.err(&format!("a plugin asked for LLVM pass \
569 `{}` but LLVM does not \
570 recognize it", pass));
571 }
572 }
573
574 diag_handler.abort_if_errors();
575
576 // Finally, run the actual optimization passes
577 time_ext(config.time_passes,
578 None,
579 &format!("llvm function passes [{}]", module_name.unwrap()),
580 || {
581 llvm::LLVMRustRunFunctionPassManager(fpm, llmod)
582 });
583 timeline.record("fpm");
584 time_ext(config.time_passes,
585 None,
586 &format!("llvm module passes [{}]", module_name.unwrap()),
587 || {
588 llvm::LLVMRunPassManager(mpm, llmod)
589 });
590
591 // Deallocate managers that we're now done with
592 llvm::LLVMDisposePassManager(fpm);
593 llvm::LLVMDisposePassManager(mpm);
594 }
595 Ok(())
596 }
597
598 fn generate_lto_work(cgcx: &CodegenContext,
599 modules: Vec<ModuleTranslation>)
600 -> Vec<(WorkItem, u64)>
601 {
602 let mut timeline = cgcx.time_graph.as_ref().map(|tg| {
603 tg.start(TRANS_WORKER_TIMELINE,
604 TRANS_WORK_PACKAGE_KIND,
605 "generate lto")
606 }).unwrap_or(Timeline::noop());
607 let lto_modules = lto::run(cgcx, modules, &mut timeline)
608 .unwrap_or_else(|e| e.raise());
609
610 lto_modules.into_iter().map(|module| {
611 let cost = module.cost();
612 (WorkItem::LTO(module), cost)
613 }).collect()
614 }
615
616 unsafe fn codegen(cgcx: &CodegenContext,
617 diag_handler: &Handler,
618 mtrans: ModuleTranslation,
619 config: &ModuleConfig,
620 timeline: &mut Timeline)
621 -> Result<CompiledModule, FatalError>
622 {
623 timeline.record("codegen");
624 let (llmod, llcx, tm) = match mtrans.source {
625 ModuleSource::Translated(ref llvm) => (llvm.llmod, llvm.llcx, llvm.tm),
626 ModuleSource::Preexisting(_) => {
627 bug!("codegen: called with ModuleSource::Preexisting")
628 }
629 };
630 let module_name = mtrans.name.clone();
631 let module_name = Some(&module_name[..]);
632 let handlers = DiagnosticHandlers::new(cgcx, diag_handler, llcx);
633
634 if cgcx.msvc_imps_needed {
635 create_msvc_imps(cgcx, llcx, llmod);
636 }
637
638 // A codegen-specific pass manager is used to generate object
639 // files for an LLVM module.
640 //
641 // Apparently each of these pass managers is a one-shot kind of
642 // thing, so we create a new one for each type of output. The
643 // pass manager passed to the closure should be ensured to not
644 // escape the closure itself, and the manager should only be
645 // used once.
646 unsafe fn with_codegen<F, R>(tm: TargetMachineRef,
647 llmod: ModuleRef,
648 no_builtins: bool,
649 f: F) -> R
650 where F: FnOnce(PassManagerRef) -> R,
651 {
652 let cpm = llvm::LLVMCreatePassManager();
653 llvm::LLVMRustAddAnalysisPasses(tm, cpm, llmod);
654 llvm::LLVMRustAddLibraryInfo(cpm, llmod, no_builtins);
655 f(cpm)
656 }
657
658 // If we don't have the integrated assembler, then we need to emit asm
659 // from LLVM and use `gcc` to create the object file.
660 let asm_to_obj = config.emit_obj && config.no_integrated_as;
661
662 // Change what we write and cleanup based on whether obj files are
663 // just llvm bitcode. In that case write bitcode, and possibly
664 // delete the bitcode if it wasn't requested. Don't generate the
665 // machine code, instead copy the .o file from the .bc
666 let write_bc = config.emit_bc || config.obj_is_bitcode;
667 let rm_bc = !config.emit_bc && config.obj_is_bitcode;
668 let write_obj = config.emit_obj && !config.obj_is_bitcode && !asm_to_obj;
669 let copy_bc_to_obj = config.emit_obj && config.obj_is_bitcode;
670
671 let bc_out = cgcx.output_filenames.temp_path(OutputType::Bitcode, module_name);
672 let obj_out = cgcx.output_filenames.temp_path(OutputType::Object, module_name);
673
674
675 if write_bc || config.emit_bc_compressed || config.embed_bitcode {
676 let thin;
677 let old;
678 let data = if llvm::LLVMRustThinLTOAvailable() {
679 thin = ThinBuffer::new(llmod);
680 thin.data()
681 } else {
682 old = ModuleBuffer::new(llmod);
683 old.data()
684 };
685 timeline.record("make-bc");
686
687 if write_bc {
688 if let Err(e) = fs::write(&bc_out, data) {
689 diag_handler.err(&format!("failed to write bytecode: {}", e));
690 }
691 timeline.record("write-bc");
692 }
693
694 if config.embed_bitcode {
695 embed_bitcode(cgcx, llcx, llmod, Some(data));
696 timeline.record("embed-bc");
697 }
698
699 if config.emit_bc_compressed {
700 let dst = bc_out.with_extension(RLIB_BYTECODE_EXTENSION);
701 let data = bytecode::encode(&mtrans.llmod_id, data);
702 if let Err(e) = fs::write(&dst, data) {
703 diag_handler.err(&format!("failed to write bytecode: {}", e));
704 }
705 timeline.record("compress-bc");
706 }
707 } else if config.embed_bitcode_marker {
708 embed_bitcode(cgcx, llcx, llmod, None);
709 }
710
711 time_ext(config.time_passes, None, &format!("codegen passes [{}]", module_name.unwrap()),
712 || -> Result<(), FatalError> {
713 if config.emit_ir {
714 let out = cgcx.output_filenames.temp_path(OutputType::LlvmAssembly, module_name);
715 let out = path2cstr(&out);
716
717 extern "C" fn demangle_callback(input_ptr: *const c_char,
718 input_len: size_t,
719 output_ptr: *mut c_char,
720 output_len: size_t) -> size_t {
721 let input = unsafe {
722 slice::from_raw_parts(input_ptr as *const u8, input_len as usize)
723 };
724
725 let input = match str::from_utf8(input) {
726 Ok(s) => s,
727 Err(_) => return 0,
728 };
729
730 let output = unsafe {
731 slice::from_raw_parts_mut(output_ptr as *mut u8, output_len as usize)
732 };
733 let mut cursor = io::Cursor::new(output);
734
735 let demangled = match rustc_demangle::try_demangle(input) {
736 Ok(d) => d,
737 Err(_) => return 0,
738 };
739
740 if let Err(_) = write!(cursor, "{:#}", demangled) {
741 // Possible only if provided buffer is not big enough
742 return 0;
743 }
744
745 cursor.position() as size_t
746 }
747
748 with_codegen(tm, llmod, config.no_builtins, |cpm| {
749 llvm::LLVMRustPrintModule(cpm, llmod, out.as_ptr(), demangle_callback);
750 llvm::LLVMDisposePassManager(cpm);
751 });
752 timeline.record("ir");
753 }
754
755 if config.emit_asm || asm_to_obj {
756 let path = cgcx.output_filenames.temp_path(OutputType::Assembly, module_name);
757
758 // We can't use the same module for asm and binary output, because that triggers
759 // various errors like invalid IR or broken binaries, so we might have to clone the
760 // module to produce the asm output
761 let llmod = if config.emit_obj {
762 llvm::LLVMCloneModule(llmod)
763 } else {
764 llmod
765 };
766 with_codegen(tm, llmod, config.no_builtins, |cpm| {
767 write_output_file(diag_handler, tm, cpm, llmod, &path,
768 llvm::FileType::AssemblyFile)
769 })?;
770 if config.emit_obj {
771 llvm::LLVMDisposeModule(llmod);
772 }
773 timeline.record("asm");
774 }
775
776 if write_obj {
777 with_codegen(tm, llmod, config.no_builtins, |cpm| {
778 write_output_file(diag_handler, tm, cpm, llmod, &obj_out,
779 llvm::FileType::ObjectFile)
780 })?;
781 timeline.record("obj");
782 } else if asm_to_obj {
783 let assembly = cgcx.output_filenames.temp_path(OutputType::Assembly, module_name);
784 run_assembler(cgcx, diag_handler, &assembly, &obj_out);
785 timeline.record("asm_to_obj");
786
787 if !config.emit_asm && !cgcx.save_temps {
788 drop(fs::remove_file(&assembly));
789 }
790 }
791
792 Ok(())
793 })?;
794
795 if copy_bc_to_obj {
796 debug!("copying bitcode {:?} to obj {:?}", bc_out, obj_out);
797 if let Err(e) = link_or_copy(&bc_out, &obj_out) {
798 diag_handler.err(&format!("failed to copy bitcode to object file: {}", e));
799 }
800 }
801
802 if rm_bc {
803 debug!("removing_bitcode {:?}", bc_out);
804 if let Err(e) = fs::remove_file(&bc_out) {
805 diag_handler.err(&format!("failed to remove bitcode: {}", e));
806 }
807 }
808
809 drop(handlers);
810 Ok(mtrans.into_compiled_module(config.emit_obj,
811 config.emit_bc,
812 config.emit_bc_compressed,
813 &cgcx.output_filenames))
814 }
815
816 /// Embed the bitcode of an LLVM module in the LLVM module itself.
817 ///
818 /// This is done primarily for iOS where it appears to be standard to compile C
819 /// code at least with `-fembed-bitcode` which creates two sections in the
820 /// executable:
821 ///
822 /// * __LLVM,__bitcode
823 /// * __LLVM,__cmdline
824 ///
825 /// It appears *both* of these sections are necessary to get the linker to
826 /// recognize what's going on. For us though we just always throw in an empty
827 /// cmdline section.
828 ///
829 /// Furthermore debug/O1 builds don't actually embed bitcode but rather just
830 /// embed an empty section.
831 ///
832 /// Basically all of this is us attempting to follow in the footsteps of clang
833 /// on iOS. See #35968 for lots more info.
834 unsafe fn embed_bitcode(cgcx: &CodegenContext,
835 llcx: ContextRef,
836 llmod: ModuleRef,
837 bitcode: Option<&[u8]>) {
838 let llconst = C_bytes_in_context(llcx, bitcode.unwrap_or(&[]));
839 let llglobal = llvm::LLVMAddGlobal(
840 llmod,
841 val_ty(llconst).to_ref(),
842 "rustc.embedded.module\0".as_ptr() as *const _,
843 );
844 llvm::LLVMSetInitializer(llglobal, llconst);
845
846 let is_apple = cgcx.opts.target_triple.triple().contains("-ios") ||
847 cgcx.opts.target_triple.triple().contains("-darwin");
848
849 let section = if is_apple {
850 "__LLVM,__bitcode\0"
851 } else {
852 ".llvmbc\0"
853 };
854 llvm::LLVMSetSection(llglobal, section.as_ptr() as *const _);
855 llvm::LLVMRustSetLinkage(llglobal, llvm::Linkage::PrivateLinkage);
856 llvm::LLVMSetGlobalConstant(llglobal, llvm::True);
857
858 let llconst = C_bytes_in_context(llcx, &[]);
859 let llglobal = llvm::LLVMAddGlobal(
860 llmod,
861 val_ty(llconst).to_ref(),
862 "rustc.embedded.cmdline\0".as_ptr() as *const _,
863 );
864 llvm::LLVMSetInitializer(llglobal, llconst);
865 let section = if is_apple {
866 "__LLVM,__cmdline\0"
867 } else {
868 ".llvmcmd\0"
869 };
870 llvm::LLVMSetSection(llglobal, section.as_ptr() as *const _);
871 llvm::LLVMRustSetLinkage(llglobal, llvm::Linkage::PrivateLinkage);
872 }
873
874 pub(crate) struct CompiledModules {
875 pub modules: Vec<CompiledModule>,
876 pub metadata_module: CompiledModule,
877 pub allocator_module: Option<CompiledModule>,
878 }
879
880 fn need_crate_bitcode_for_rlib(sess: &Session) -> bool {
881 sess.crate_types.borrow().contains(&config::CrateTypeRlib) &&
882 sess.opts.output_types.contains_key(&OutputType::Exe)
883 }
884
885 pub fn start_async_translation(tcx: TyCtxt,
886 time_graph: Option<TimeGraph>,
887 link: LinkMeta,
888 metadata: EncodedMetadata,
889 coordinator_receive: Receiver<Box<Any + Send>>,
890 total_cgus: usize)
891 -> OngoingCrateTranslation {
892 let sess = tcx.sess;
893 let crate_name = tcx.crate_name(LOCAL_CRATE);
894 let no_builtins = attr::contains_name(&tcx.hir.krate().attrs, "no_builtins");
895 let subsystem = attr::first_attr_value_str_by_name(&tcx.hir.krate().attrs,
896 "windows_subsystem");
897 let windows_subsystem = subsystem.map(|subsystem| {
898 if subsystem != "windows" && subsystem != "console" {
899 tcx.sess.fatal(&format!("invalid windows subsystem `{}`, only \
900 `windows` and `console` are allowed",
901 subsystem));
902 }
903 subsystem.to_string()
904 });
905
906 let linker_info = LinkerInfo::new(tcx);
907 let crate_info = CrateInfo::new(tcx);
908
909 // Figure out what we actually need to build.
910 let mut modules_config = ModuleConfig::new(sess.opts.cg.passes.clone());
911 let mut metadata_config = ModuleConfig::new(vec![]);
912 let mut allocator_config = ModuleConfig::new(vec![]);
913
914 if let Some(ref sanitizer) = sess.opts.debugging_opts.sanitizer {
915 match *sanitizer {
916 Sanitizer::Address => {
917 modules_config.passes.push("asan".to_owned());
918 modules_config.passes.push("asan-module".to_owned());
919 }
920 Sanitizer::Memory => {
921 modules_config.passes.push("msan".to_owned())
922 }
923 Sanitizer::Thread => {
924 modules_config.passes.push("tsan".to_owned())
925 }
926 _ => {}
927 }
928 }
929
930 if sess.opts.debugging_opts.profile {
931 modules_config.passes.push("insert-gcov-profiling".to_owned())
932 }
933
934 modules_config.pgo_gen = sess.opts.debugging_opts.pgo_gen.clone();
935 modules_config.pgo_use = sess.opts.debugging_opts.pgo_use.clone();
936
937 modules_config.opt_level = Some(get_llvm_opt_level(sess.opts.optimize));
938 modules_config.opt_size = Some(get_llvm_opt_size(sess.opts.optimize));
939
940 // Save all versions of the bytecode if we're saving our temporaries.
941 if sess.opts.cg.save_temps {
942 modules_config.emit_no_opt_bc = true;
943 modules_config.emit_bc = true;
944 modules_config.emit_lto_bc = true;
945 metadata_config.emit_bc = true;
946 allocator_config.emit_bc = true;
947 }
948
949 // Emit compressed bitcode files for the crate if we're emitting an rlib.
950 // Whenever an rlib is created, the bitcode is inserted into the archive in
951 // order to allow LTO against it.
952 if need_crate_bitcode_for_rlib(sess) {
953 modules_config.emit_bc_compressed = true;
954 allocator_config.emit_bc_compressed = true;
955 }
956
957 modules_config.no_integrated_as = tcx.sess.opts.cg.no_integrated_as ||
958 tcx.sess.target.target.options.no_integrated_as;
959
960 for output_type in sess.opts.output_types.keys() {
961 match *output_type {
962 OutputType::Bitcode => { modules_config.emit_bc = true; }
963 OutputType::LlvmAssembly => { modules_config.emit_ir = true; }
964 OutputType::Assembly => {
965 modules_config.emit_asm = true;
966 // If we're not using the LLVM assembler, this function
967 // could be invoked specially with output_type_assembly, so
968 // in this case we still want the metadata object file.
969 if !sess.opts.output_types.contains_key(&OutputType::Assembly) {
970 metadata_config.emit_obj = true;
971 allocator_config.emit_obj = true;
972 }
973 }
974 OutputType::Object => { modules_config.emit_obj = true; }
975 OutputType::Metadata => { metadata_config.emit_obj = true; }
976 OutputType::Exe => {
977 modules_config.emit_obj = true;
978 metadata_config.emit_obj = true;
979 allocator_config.emit_obj = true;
980 },
981 OutputType::Mir => {}
982 OutputType::DepInfo => {}
983 }
984 }
985
986 modules_config.set_flags(sess, no_builtins);
987 metadata_config.set_flags(sess, no_builtins);
988 allocator_config.set_flags(sess, no_builtins);
989
990 // Exclude metadata and allocator modules from time_passes output, since
991 // they throw off the "LLVM passes" measurement.
992 metadata_config.time_passes = false;
993 allocator_config.time_passes = false;
994
995 let (shared_emitter, shared_emitter_main) = SharedEmitter::new();
996 let (trans_worker_send, trans_worker_receive) = channel();
997
998 let coordinator_thread = start_executing_work(tcx,
999 &crate_info,
1000 shared_emitter,
1001 trans_worker_send,
1002 coordinator_receive,
1003 total_cgus,
1004 sess.jobserver.clone(),
1005 time_graph.clone(),
1006 Arc::new(modules_config),
1007 Arc::new(metadata_config),
1008 Arc::new(allocator_config));
1009
1010 OngoingCrateTranslation {
1011 crate_name,
1012 link,
1013 metadata,
1014 windows_subsystem,
1015 linker_info,
1016 crate_info,
1017
1018 time_graph,
1019 coordinator_send: tcx.tx_to_llvm_workers.lock().clone(),
1020 trans_worker_receive,
1021 shared_emitter_main,
1022 future: coordinator_thread,
1023 output_filenames: tcx.output_filenames(LOCAL_CRATE),
1024 }
1025 }
1026
1027 fn copy_module_artifacts_into_incr_comp_cache(sess: &Session,
1028 dep_graph: &DepGraph,
1029 compiled_modules: &CompiledModules) {
1030 if sess.opts.incremental.is_none() {
1031 return;
1032 }
1033
1034 for module in compiled_modules.modules.iter() {
1035 let mut files = vec![];
1036
1037 if let Some(ref path) = module.object {
1038 files.push((WorkProductFileKind::Object, path.clone()));
1039 }
1040 if let Some(ref path) = module.bytecode {
1041 files.push((WorkProductFileKind::Bytecode, path.clone()));
1042 }
1043 if let Some(ref path) = module.bytecode_compressed {
1044 files.push((WorkProductFileKind::BytecodeCompressed, path.clone()));
1045 }
1046
1047 save_trans_partition(sess, dep_graph, &module.name, &files);
1048 }
1049 }
1050
1051 fn produce_final_output_artifacts(sess: &Session,
1052 compiled_modules: &CompiledModules,
1053 crate_output: &OutputFilenames) {
1054 let mut user_wants_bitcode = false;
1055 let mut user_wants_objects = false;
1056
1057 // Produce final compile outputs.
1058 let copy_gracefully = |from: &Path, to: &Path| {
1059 if let Err(e) = fs::copy(from, to) {
1060 sess.err(&format!("could not copy {:?} to {:?}: {}", from, to, e));
1061 }
1062 };
1063
1064 let copy_if_one_unit = |output_type: OutputType,
1065 keep_numbered: bool| {
1066 if compiled_modules.modules.len() == 1 {
1067 // 1) Only one codegen unit. In this case it's no difficulty
1068 // to copy `foo.0.x` to `foo.x`.
1069 let module_name = Some(&compiled_modules.modules[0].name[..]);
1070 let path = crate_output.temp_path(output_type, module_name);
1071 copy_gracefully(&path,
1072 &crate_output.path(output_type));
1073 if !sess.opts.cg.save_temps && !keep_numbered {
1074 // The user just wants `foo.x`, not `foo.#module-name#.x`.
1075 remove(sess, &path);
1076 }
1077 } else {
1078 let ext = crate_output.temp_path(output_type, None)
1079 .extension()
1080 .unwrap()
1081 .to_str()
1082 .unwrap()
1083 .to_owned();
1084
1085 if crate_output.outputs.contains_key(&output_type) {
1086 // 2) Multiple codegen units, with `--emit foo=some_name`. We have
1087 // no good solution for this case, so warn the user.
1088 sess.warn(&format!("ignoring emit path because multiple .{} files \
1089 were produced", ext));
1090 } else if crate_output.single_output_file.is_some() {
1091 // 3) Multiple codegen units, with `-o some_name`. We have
1092 // no good solution for this case, so warn the user.
1093 sess.warn(&format!("ignoring -o because multiple .{} files \
1094 were produced", ext));
1095 } else {
1096 // 4) Multiple codegen units, but no explicit name. We
1097 // just leave the `foo.0.x` files in place.
1098 // (We don't have to do any work in this case.)
1099 }
1100 }
1101 };
1102
1103 // Flag to indicate whether the user explicitly requested bitcode.
1104 // Otherwise, we produced it only as a temporary output, and will need
1105 // to get rid of it.
1106 for output_type in crate_output.outputs.keys() {
1107 match *output_type {
1108 OutputType::Bitcode => {
1109 user_wants_bitcode = true;
1110 // Copy to .bc, but always keep the .0.bc. There is a later
1111 // check to figure out if we should delete .0.bc files, or keep
1112 // them for making an rlib.
1113 copy_if_one_unit(OutputType::Bitcode, true);
1114 }
1115 OutputType::LlvmAssembly => {
1116 copy_if_one_unit(OutputType::LlvmAssembly, false);
1117 }
1118 OutputType::Assembly => {
1119 copy_if_one_unit(OutputType::Assembly, false);
1120 }
1121 OutputType::Object => {
1122 user_wants_objects = true;
1123 copy_if_one_unit(OutputType::Object, true);
1124 }
1125 OutputType::Mir |
1126 OutputType::Metadata |
1127 OutputType::Exe |
1128 OutputType::DepInfo => {}
1129 }
1130 }
1131
1132 // Clean up unwanted temporary files.
1133
1134 // We create the following files by default:
1135 // - #crate#.#module-name#.bc
1136 // - #crate#.#module-name#.o
1137 // - #crate#.crate.metadata.bc
1138 // - #crate#.crate.metadata.o
1139 // - #crate#.o (linked from crate.##.o)
1140 // - #crate#.bc (copied from crate.##.bc)
1141 // We may create additional files if requested by the user (through
1142 // `-C save-temps` or `--emit=` flags).
1143
1144 if !sess.opts.cg.save_temps {
1145 // Remove the temporary .#module-name#.o objects. If the user didn't
1146 // explicitly request bitcode (with --emit=bc), and the bitcode is not
1147 // needed for building an rlib, then we must remove .#module-name#.bc as
1148 // well.
1149
1150 // Specific rules for keeping .#module-name#.bc:
1151 // - If the user requested bitcode (`user_wants_bitcode`), and
1152 // codegen_units > 1, then keep it.
1153 // - If the user requested bitcode but codegen_units == 1, then we
1154 // can toss .#module-name#.bc because we copied it to .bc earlier.
1155 // - If we're not building an rlib and the user didn't request
1156 // bitcode, then delete .#module-name#.bc.
1157 // If you change how this works, also update back::link::link_rlib,
1158 // where .#module-name#.bc files are (maybe) deleted after making an
1159 // rlib.
1160 let needs_crate_object = crate_output.outputs.contains_key(&OutputType::Exe);
1161
1162 let keep_numbered_bitcode = user_wants_bitcode && sess.codegen_units() > 1;
1163
1164 let keep_numbered_objects = needs_crate_object ||
1165 (user_wants_objects && sess.codegen_units() > 1);
1166
1167 for module in compiled_modules.modules.iter() {
1168 if let Some(ref path) = module.object {
1169 if !keep_numbered_objects {
1170 remove(sess, path);
1171 }
1172 }
1173
1174 if let Some(ref path) = module.bytecode {
1175 if !keep_numbered_bitcode {
1176 remove(sess, path);
1177 }
1178 }
1179 }
1180
1181 if !user_wants_bitcode {
1182 if let Some(ref path) = compiled_modules.metadata_module.bytecode {
1183 remove(sess, &path);
1184 }
1185
1186 if let Some(ref allocator_module) = compiled_modules.allocator_module {
1187 if let Some(ref path) = allocator_module.bytecode {
1188 remove(sess, path);
1189 }
1190 }
1191 }
1192 }
1193
1194 // We leave the following files around by default:
1195 // - #crate#.o
1196 // - #crate#.crate.metadata.o
1197 // - #crate#.bc
1198 // These are used in linking steps and will be cleaned up afterward.
1199 }
1200
1201 pub(crate) fn dump_incremental_data(trans: &CrateTranslation) {
1202 println!("[incremental] Re-using {} out of {} modules",
1203 trans.modules.iter().filter(|m| m.pre_existing).count(),
1204 trans.modules.len());
1205 }
1206
1207 enum WorkItem {
1208 Optimize(ModuleTranslation),
1209 LTO(lto::LtoModuleTranslation),
1210 }
1211
1212 impl WorkItem {
1213 fn kind(&self) -> ModuleKind {
1214 match *self {
1215 WorkItem::Optimize(ref m) => m.kind,
1216 WorkItem::LTO(_) => ModuleKind::Regular,
1217 }
1218 }
1219
1220 fn name(&self) -> String {
1221 match *self {
1222 WorkItem::Optimize(ref m) => format!("optimize: {}", m.name),
1223 WorkItem::LTO(ref m) => format!("lto: {}", m.name()),
1224 }
1225 }
1226 }
1227
1228 enum WorkItemResult {
1229 Compiled(CompiledModule),
1230 NeedsLTO(ModuleTranslation),
1231 }
1232
1233 fn execute_work_item(cgcx: &CodegenContext,
1234 work_item: WorkItem,
1235 timeline: &mut Timeline)
1236 -> Result<WorkItemResult, FatalError>
1237 {
1238 let diag_handler = cgcx.create_diag_handler();
1239 let config = cgcx.config(work_item.kind());
1240 let mtrans = match work_item {
1241 WorkItem::Optimize(mtrans) => mtrans,
1242 WorkItem::LTO(mut lto) => {
1243 unsafe {
1244 let module = lto.optimize(cgcx, timeline)?;
1245 let module = codegen(cgcx, &diag_handler, module, config, timeline)?;
1246 return Ok(WorkItemResult::Compiled(module))
1247 }
1248 }
1249 };
1250 let module_name = mtrans.name.clone();
1251
1252 let pre_existing = match mtrans.source {
1253 ModuleSource::Translated(_) => None,
1254 ModuleSource::Preexisting(ref wp) => Some(wp.clone()),
1255 };
1256
1257 if let Some(wp) = pre_existing {
1258 let incr_comp_session_dir = cgcx.incr_comp_session_dir
1259 .as_ref()
1260 .unwrap();
1261 let name = &mtrans.name;
1262 let mut object = None;
1263 let mut bytecode = None;
1264 let mut bytecode_compressed = None;
1265 for (kind, saved_file) in wp.saved_files {
1266 let obj_out = match kind {
1267 WorkProductFileKind::Object => {
1268 let path = cgcx.output_filenames.temp_path(OutputType::Object, Some(name));
1269 object = Some(path.clone());
1270 path
1271 }
1272 WorkProductFileKind::Bytecode => {
1273 let path = cgcx.output_filenames.temp_path(OutputType::Bitcode, Some(name));
1274 bytecode = Some(path.clone());
1275 path
1276 }
1277 WorkProductFileKind::BytecodeCompressed => {
1278 let path = cgcx.output_filenames.temp_path(OutputType::Bitcode, Some(name))
1279 .with_extension(RLIB_BYTECODE_EXTENSION);
1280 bytecode_compressed = Some(path.clone());
1281 path
1282 }
1283 };
1284 let source_file = in_incr_comp_dir(&incr_comp_session_dir,
1285 &saved_file);
1286 debug!("copying pre-existing module `{}` from {:?} to {}",
1287 mtrans.name,
1288 source_file,
1289 obj_out.display());
1290 match link_or_copy(&source_file, &obj_out) {
1291 Ok(_) => { }
1292 Err(err) => {
1293 diag_handler.err(&format!("unable to copy {} to {}: {}",
1294 source_file.display(),
1295 obj_out.display(),
1296 err));
1297 }
1298 }
1299 }
1300 assert_eq!(object.is_some(), config.emit_obj);
1301 assert_eq!(bytecode.is_some(), config.emit_bc);
1302 assert_eq!(bytecode_compressed.is_some(), config.emit_bc_compressed);
1303
1304 Ok(WorkItemResult::Compiled(CompiledModule {
1305 llmod_id: mtrans.llmod_id.clone(),
1306 name: module_name,
1307 kind: ModuleKind::Regular,
1308 pre_existing: true,
1309 object,
1310 bytecode,
1311 bytecode_compressed,
1312 }))
1313 } else {
1314 debug!("llvm-optimizing {:?}", module_name);
1315
1316 unsafe {
1317 optimize(cgcx, &diag_handler, &mtrans, config, timeline)?;
1318
1319 // After we've done the initial round of optimizations we need to
1320 // decide whether to synchronously codegen this module or ship it
1321 // back to the coordinator thread for further LTO processing (which
1322 // has to wait for all the initial modules to be optimized).
1323 //
1324 // Here we dispatch based on the `cgcx.lto` and kind of module we're
1325 // translating...
1326 let needs_lto = match cgcx.lto {
1327 Lto::No => false,
1328
1329 // Here we've got a full crate graph LTO requested. We ignore
1330 // this, however, if the crate type is only an rlib as there's
1331 // no full crate graph to process, that'll happen later.
1332 //
1333 // This use case currently comes up primarily for targets that
1334 // require LTO so the request for LTO is always unconditionally
1335 // passed down to the backend, but we don't actually want to do
1336 // anything about it yet until we've got a final product.
1337 Lto::Yes | Lto::Fat | Lto::Thin => {
1338 cgcx.crate_types.len() != 1 ||
1339 cgcx.crate_types[0] != config::CrateTypeRlib
1340 }
1341
1342 // When we're automatically doing ThinLTO for multi-codegen-unit
1343 // builds we don't actually want to LTO the allocator modules if
1344 // it shows up. This is due to various linker shenanigans that
1345 // we'll encounter later.
1346 //
1347 // Additionally here's where we also factor in the current LLVM
1348 // version. If it doesn't support ThinLTO we skip this.
1349 Lto::ThinLocal => {
1350 mtrans.kind != ModuleKind::Allocator &&
1351 llvm::LLVMRustThinLTOAvailable()
1352 }
1353 };
1354
1355 // Metadata modules never participate in LTO regardless of the lto
1356 // settings.
1357 let needs_lto = needs_lto && mtrans.kind != ModuleKind::Metadata;
1358
1359 // Don't run LTO passes when cross-lang LTO is enabled. The linker
1360 // will do that for us in this case.
1361 let needs_lto = needs_lto && !cgcx.opts.debugging_opts.cross_lang_lto;
1362
1363 if needs_lto {
1364 Ok(WorkItemResult::NeedsLTO(mtrans))
1365 } else {
1366 let module = codegen(cgcx, &diag_handler, mtrans, config, timeline)?;
1367 Ok(WorkItemResult::Compiled(module))
1368 }
1369 }
1370 }
1371 }
1372
1373 enum Message {
1374 Token(io::Result<Acquired>),
1375 NeedsLTO {
1376 result: ModuleTranslation,
1377 worker_id: usize,
1378 },
1379 Done {
1380 result: Result<CompiledModule, ()>,
1381 worker_id: usize,
1382 },
1383 TranslationDone {
1384 llvm_work_item: WorkItem,
1385 cost: u64,
1386 },
1387 TranslationComplete,
1388 TranslateItem,
1389 }
1390
1391 struct Diagnostic {
1392 msg: String,
1393 code: Option<DiagnosticId>,
1394 lvl: Level,
1395 }
1396
1397 #[derive(PartialEq, Clone, Copy, Debug)]
1398 enum MainThreadWorkerState {
1399 Idle,
1400 Translating,
1401 LLVMing,
1402 }
1403
1404 fn start_executing_work(tcx: TyCtxt,
1405 crate_info: &CrateInfo,
1406 shared_emitter: SharedEmitter,
1407 trans_worker_send: Sender<Message>,
1408 coordinator_receive: Receiver<Box<Any + Send>>,
1409 total_cgus: usize,
1410 jobserver: Client,
1411 time_graph: Option<TimeGraph>,
1412 modules_config: Arc<ModuleConfig>,
1413 metadata_config: Arc<ModuleConfig>,
1414 allocator_config: Arc<ModuleConfig>)
1415 -> thread::JoinHandle<Result<CompiledModules, ()>> {
1416 let coordinator_send = tcx.tx_to_llvm_workers.lock().clone();
1417 let sess = tcx.sess;
1418
1419 // Compute the set of symbols we need to retain when doing LTO (if we need to)
1420 let exported_symbols = {
1421 let mut exported_symbols = FxHashMap();
1422
1423 let copy_symbols = |cnum| {
1424 let symbols = tcx.exported_symbols(cnum)
1425 .iter()
1426 .map(|&(s, lvl)| (s.symbol_name(tcx).to_string(), lvl))
1427 .collect();
1428 Arc::new(symbols)
1429 };
1430
1431 match sess.lto() {
1432 Lto::No => None,
1433 Lto::ThinLocal => {
1434 exported_symbols.insert(LOCAL_CRATE, copy_symbols(LOCAL_CRATE));
1435 Some(Arc::new(exported_symbols))
1436 }
1437 Lto::Yes | Lto::Fat | Lto::Thin => {
1438 exported_symbols.insert(LOCAL_CRATE, copy_symbols(LOCAL_CRATE));
1439 for &cnum in tcx.crates().iter() {
1440 exported_symbols.insert(cnum, copy_symbols(cnum));
1441 }
1442 Some(Arc::new(exported_symbols))
1443 }
1444 }
1445 };
1446
1447 // First up, convert our jobserver into a helper thread so we can use normal
1448 // mpsc channels to manage our messages and such.
1449 // After we've requested tokens then we'll, when we can,
1450 // get tokens on `coordinator_receive` which will
1451 // get managed in the main loop below.
1452 let coordinator_send2 = coordinator_send.clone();
1453 let helper = jobserver.into_helper_thread(move |token| {
1454 drop(coordinator_send2.send(Box::new(Message::Token(token))));
1455 }).expect("failed to spawn helper thread");
1456
1457 let mut each_linked_rlib_for_lto = Vec::new();
1458 drop(link::each_linked_rlib(sess, crate_info, &mut |cnum, path| {
1459 if link::ignored_for_lto(sess, crate_info, cnum) {
1460 return
1461 }
1462 each_linked_rlib_for_lto.push((cnum, path.to_path_buf()));
1463 }));
1464
1465 let assembler_cmd = if modules_config.no_integrated_as {
1466 // HACK: currently we use linker (gcc) as our assembler
1467 let (name, mut cmd) = get_linker(sess);
1468 cmd.args(&sess.target.target.options.asm_args);
1469 Some(Arc::new(AssemblerCommand {
1470 name,
1471 cmd,
1472 }))
1473 } else {
1474 None
1475 };
1476
1477 let cgcx = CodegenContext {
1478 crate_types: sess.crate_types.borrow().clone(),
1479 each_linked_rlib_for_lto,
1480 lto: sess.lto(),
1481 no_landing_pads: sess.no_landing_pads(),
1482 fewer_names: sess.fewer_names(),
1483 save_temps: sess.opts.cg.save_temps,
1484 opts: Arc::new(sess.opts.clone()),
1485 time_passes: sess.time_passes(),
1486 exported_symbols,
1487 plugin_passes: sess.plugin_llvm_passes.borrow().clone(),
1488 remark: sess.opts.cg.remark.clone(),
1489 worker: 0,
1490 incr_comp_session_dir: sess.incr_comp_session_dir_opt().map(|r| r.clone()),
1491 coordinator_send,
1492 diag_emitter: shared_emitter.clone(),
1493 time_graph,
1494 output_filenames: tcx.output_filenames(LOCAL_CRATE),
1495 regular_module_config: modules_config,
1496 metadata_module_config: metadata_config,
1497 allocator_module_config: allocator_config,
1498 tm_factory: target_machine_factory(tcx.sess, false),
1499 total_cgus,
1500 msvc_imps_needed: msvc_imps_needed(tcx),
1501 target_pointer_width: tcx.sess.target.target.target_pointer_width.clone(),
1502 debuginfo: tcx.sess.opts.debuginfo,
1503 assembler_cmd,
1504 };
1505
1506 // This is the "main loop" of parallel work happening for parallel codegen.
1507 // It's here that we manage parallelism, schedule work, and work with
1508 // messages coming from clients.
1509 //
1510 // There are a few environmental pre-conditions that shape how the system
1511 // is set up:
1512 //
1513 // - Error reporting only can happen on the main thread because that's the
1514 // only place where we have access to the compiler `Session`.
1515 // - LLVM work can be done on any thread.
1516 // - Translation can only happen on the main thread.
1517 // - Each thread doing substantial work most be in possession of a `Token`
1518 // from the `Jobserver`.
1519 // - The compiler process always holds one `Token`. Any additional `Tokens`
1520 // have to be requested from the `Jobserver`.
1521 //
1522 // Error Reporting
1523 // ===============
1524 // The error reporting restriction is handled separately from the rest: We
1525 // set up a `SharedEmitter` the holds an open channel to the main thread.
1526 // When an error occurs on any thread, the shared emitter will send the
1527 // error message to the receiver main thread (`SharedEmitterMain`). The
1528 // main thread will periodically query this error message queue and emit
1529 // any error messages it has received. It might even abort compilation if
1530 // has received a fatal error. In this case we rely on all other threads
1531 // being torn down automatically with the main thread.
1532 // Since the main thread will often be busy doing translation work, error
1533 // reporting will be somewhat delayed, since the message queue can only be
1534 // checked in between to work packages.
1535 //
1536 // Work Processing Infrastructure
1537 // ==============================
1538 // The work processing infrastructure knows three major actors:
1539 //
1540 // - the coordinator thread,
1541 // - the main thread, and
1542 // - LLVM worker threads
1543 //
1544 // The coordinator thread is running a message loop. It instructs the main
1545 // thread about what work to do when, and it will spawn off LLVM worker
1546 // threads as open LLVM WorkItems become available.
1547 //
1548 // The job of the main thread is to translate CGUs into LLVM work package
1549 // (since the main thread is the only thread that can do this). The main
1550 // thread will block until it receives a message from the coordinator, upon
1551 // which it will translate one CGU, send it to the coordinator and block
1552 // again. This way the coordinator can control what the main thread is
1553 // doing.
1554 //
1555 // The coordinator keeps a queue of LLVM WorkItems, and when a `Token` is
1556 // available, it will spawn off a new LLVM worker thread and let it process
1557 // that a WorkItem. When a LLVM worker thread is done with its WorkItem,
1558 // it will just shut down, which also frees all resources associated with
1559 // the given LLVM module, and sends a message to the coordinator that the
1560 // has been completed.
1561 //
1562 // Work Scheduling
1563 // ===============
1564 // The scheduler's goal is to minimize the time it takes to complete all
1565 // work there is, however, we also want to keep memory consumption low
1566 // if possible. These two goals are at odds with each other: If memory
1567 // consumption were not an issue, we could just let the main thread produce
1568 // LLVM WorkItems at full speed, assuring maximal utilization of
1569 // Tokens/LLVM worker threads. However, since translation usual is faster
1570 // than LLVM processing, the queue of LLVM WorkItems would fill up and each
1571 // WorkItem potentially holds on to a substantial amount of memory.
1572 //
1573 // So the actual goal is to always produce just enough LLVM WorkItems as
1574 // not to starve our LLVM worker threads. That means, once we have enough
1575 // WorkItems in our queue, we can block the main thread, so it does not
1576 // produce more until we need them.
1577 //
1578 // Doing LLVM Work on the Main Thread
1579 // ----------------------------------
1580 // Since the main thread owns the compiler processes implicit `Token`, it is
1581 // wasteful to keep it blocked without doing any work. Therefore, what we do
1582 // in this case is: We spawn off an additional LLVM worker thread that helps
1583 // reduce the queue. The work it is doing corresponds to the implicit
1584 // `Token`. The coordinator will mark the main thread as being busy with
1585 // LLVM work. (The actual work happens on another OS thread but we just care
1586 // about `Tokens`, not actual threads).
1587 //
1588 // When any LLVM worker thread finishes while the main thread is marked as
1589 // "busy with LLVM work", we can do a little switcheroo: We give the Token
1590 // of the just finished thread to the LLVM worker thread that is working on
1591 // behalf of the main thread's implicit Token, thus freeing up the main
1592 // thread again. The coordinator can then again decide what the main thread
1593 // should do. This allows the coordinator to make decisions at more points
1594 // in time.
1595 //
1596 // Striking a Balance between Throughput and Memory Consumption
1597 // ------------------------------------------------------------
1598 // Since our two goals, (1) use as many Tokens as possible and (2) keep
1599 // memory consumption as low as possible, are in conflict with each other,
1600 // we have to find a trade off between them. Right now, the goal is to keep
1601 // all workers busy, which means that no worker should find the queue empty
1602 // when it is ready to start.
1603 // How do we do achieve this? Good question :) We actually never know how
1604 // many `Tokens` are potentially available so it's hard to say how much to
1605 // fill up the queue before switching the main thread to LLVM work. Also we
1606 // currently don't have a means to estimate how long a running LLVM worker
1607 // will still be busy with it's current WorkItem. However, we know the
1608 // maximal count of available Tokens that makes sense (=the number of CPU
1609 // cores), so we can take a conservative guess. The heuristic we use here
1610 // is implemented in the `queue_full_enough()` function.
1611 //
1612 // Some Background on Jobservers
1613 // -----------------------------
1614 // It's worth also touching on the management of parallelism here. We don't
1615 // want to just spawn a thread per work item because while that's optimal
1616 // parallelism it may overload a system with too many threads or violate our
1617 // configuration for the maximum amount of cpu to use for this process. To
1618 // manage this we use the `jobserver` crate.
1619 //
1620 // Job servers are an artifact of GNU make and are used to manage
1621 // parallelism between processes. A jobserver is a glorified IPC semaphore
1622 // basically. Whenever we want to run some work we acquire the semaphore,
1623 // and whenever we're done with that work we release the semaphore. In this
1624 // manner we can ensure that the maximum number of parallel workers is
1625 // capped at any one point in time.
1626 //
1627 // LTO and the coordinator thread
1628 // ------------------------------
1629 //
1630 // The final job the coordinator thread is responsible for is managing LTO
1631 // and how that works. When LTO is requested what we'll to is collect all
1632 // optimized LLVM modules into a local vector on the coordinator. Once all
1633 // modules have been translated and optimized we hand this to the `lto`
1634 // module for further optimization. The `lto` module will return back a list
1635 // of more modules to work on, which the coordinator will continue to spawn
1636 // work for.
1637 //
1638 // Each LLVM module is automatically sent back to the coordinator for LTO if
1639 // necessary. There's already optimizations in place to avoid sending work
1640 // back to the coordinator if LTO isn't requested.
1641 return thread::spawn(move || {
1642 // We pretend to be within the top-level LLVM time-passes task here:
1643 set_time_depth(1);
1644
1645 let max_workers = ::num_cpus::get();
1646 let mut worker_id_counter = 0;
1647 let mut free_worker_ids = Vec::new();
1648 let mut get_worker_id = |free_worker_ids: &mut Vec<usize>| {
1649 if let Some(id) = free_worker_ids.pop() {
1650 id
1651 } else {
1652 let id = worker_id_counter;
1653 worker_id_counter += 1;
1654 id
1655 }
1656 };
1657
1658 // This is where we collect codegen units that have gone all the way
1659 // through translation and LLVM.
1660 let mut compiled_modules = vec![];
1661 let mut compiled_metadata_module = None;
1662 let mut compiled_allocator_module = None;
1663 let mut needs_lto = Vec::new();
1664 let mut started_lto = false;
1665
1666 // This flag tracks whether all items have gone through translations
1667 let mut translation_done = false;
1668
1669 // This is the queue of LLVM work items that still need processing.
1670 let mut work_items = Vec::<(WorkItem, u64)>::new();
1671
1672 // This are the Jobserver Tokens we currently hold. Does not include
1673 // the implicit Token the compiler process owns no matter what.
1674 let mut tokens = Vec::new();
1675
1676 let mut main_thread_worker_state = MainThreadWorkerState::Idle;
1677 let mut running = 0;
1678
1679 let mut llvm_start_time = None;
1680
1681 // Run the message loop while there's still anything that needs message
1682 // processing:
1683 while !translation_done ||
1684 work_items.len() > 0 ||
1685 running > 0 ||
1686 needs_lto.len() > 0 ||
1687 main_thread_worker_state != MainThreadWorkerState::Idle {
1688
1689 // While there are still CGUs to be translated, the coordinator has
1690 // to decide how to utilize the compiler processes implicit Token:
1691 // For translating more CGU or for running them through LLVM.
1692 if !translation_done {
1693 if main_thread_worker_state == MainThreadWorkerState::Idle {
1694 if !queue_full_enough(work_items.len(), running, max_workers) {
1695 // The queue is not full enough, translate more items:
1696 if let Err(_) = trans_worker_send.send(Message::TranslateItem) {
1697 panic!("Could not send Message::TranslateItem to main thread")
1698 }
1699 main_thread_worker_state = MainThreadWorkerState::Translating;
1700 } else {
1701 // The queue is full enough to not let the worker
1702 // threads starve. Use the implicit Token to do some
1703 // LLVM work too.
1704 let (item, _) = work_items.pop()
1705 .expect("queue empty - queue_full_enough() broken?");
1706 let cgcx = CodegenContext {
1707 worker: get_worker_id(&mut free_worker_ids),
1708 .. cgcx.clone()
1709 };
1710 maybe_start_llvm_timer(cgcx.config(item.kind()),
1711 &mut llvm_start_time);
1712 main_thread_worker_state = MainThreadWorkerState::LLVMing;
1713 spawn_work(cgcx, item);
1714 }
1715 }
1716 } else {
1717 // If we've finished everything related to normal translation
1718 // then it must be the case that we've got some LTO work to do.
1719 // Perform the serial work here of figuring out what we're
1720 // going to LTO and then push a bunch of work items onto our
1721 // queue to do LTO
1722 if work_items.len() == 0 &&
1723 running == 0 &&
1724 main_thread_worker_state == MainThreadWorkerState::Idle {
1725 assert!(!started_lto);
1726 assert!(needs_lto.len() > 0);
1727 started_lto = true;
1728 let modules = mem::replace(&mut needs_lto, Vec::new());
1729 for (work, cost) in generate_lto_work(&cgcx, modules) {
1730 let insertion_index = work_items
1731 .binary_search_by_key(&cost, |&(_, cost)| cost)
1732 .unwrap_or_else(|e| e);
1733 work_items.insert(insertion_index, (work, cost));
1734 helper.request_token();
1735 }
1736 }
1737
1738 // In this branch, we know that everything has been translated,
1739 // so it's just a matter of determining whether the implicit
1740 // Token is free to use for LLVM work.
1741 match main_thread_worker_state {
1742 MainThreadWorkerState::Idle => {
1743 if let Some((item, _)) = work_items.pop() {
1744 let cgcx = CodegenContext {
1745 worker: get_worker_id(&mut free_worker_ids),
1746 .. cgcx.clone()
1747 };
1748 maybe_start_llvm_timer(cgcx.config(item.kind()),
1749 &mut llvm_start_time);
1750 main_thread_worker_state = MainThreadWorkerState::LLVMing;
1751 spawn_work(cgcx, item);
1752 } else {
1753 // There is no unstarted work, so let the main thread
1754 // take over for a running worker. Otherwise the
1755 // implicit token would just go to waste.
1756 // We reduce the `running` counter by one. The
1757 // `tokens.truncate()` below will take care of
1758 // giving the Token back.
1759 debug_assert!(running > 0);
1760 running -= 1;
1761 main_thread_worker_state = MainThreadWorkerState::LLVMing;
1762 }
1763 }
1764 MainThreadWorkerState::Translating => {
1765 bug!("trans worker should not be translating after \
1766 translation was already completed")
1767 }
1768 MainThreadWorkerState::LLVMing => {
1769 // Already making good use of that token
1770 }
1771 }
1772 }
1773
1774 // Spin up what work we can, only doing this while we've got available
1775 // parallelism slots and work left to spawn.
1776 while work_items.len() > 0 && running < tokens.len() {
1777 let (item, _) = work_items.pop().unwrap();
1778
1779 maybe_start_llvm_timer(cgcx.config(item.kind()),
1780 &mut llvm_start_time);
1781
1782 let cgcx = CodegenContext {
1783 worker: get_worker_id(&mut free_worker_ids),
1784 .. cgcx.clone()
1785 };
1786
1787 spawn_work(cgcx, item);
1788 running += 1;
1789 }
1790
1791 // Relinquish accidentally acquired extra tokens
1792 tokens.truncate(running);
1793
1794 let msg = coordinator_receive.recv().unwrap();
1795 match *msg.downcast::<Message>().ok().unwrap() {
1796 // Save the token locally and the next turn of the loop will use
1797 // this to spawn a new unit of work, or it may get dropped
1798 // immediately if we have no more work to spawn.
1799 Message::Token(token) => {
1800 match token {
1801 Ok(token) => {
1802 tokens.push(token);
1803
1804 if main_thread_worker_state == MainThreadWorkerState::LLVMing {
1805 // If the main thread token is used for LLVM work
1806 // at the moment, we turn that thread into a regular
1807 // LLVM worker thread, so the main thread is free
1808 // to react to translation demand.
1809 main_thread_worker_state = MainThreadWorkerState::Idle;
1810 running += 1;
1811 }
1812 }
1813 Err(e) => {
1814 let msg = &format!("failed to acquire jobserver token: {}", e);
1815 shared_emitter.fatal(msg);
1816 // Exit the coordinator thread
1817 panic!("{}", msg)
1818 }
1819 }
1820 }
1821
1822 Message::TranslationDone { llvm_work_item, cost } => {
1823 // We keep the queue sorted by estimated processing cost,
1824 // so that more expensive items are processed earlier. This
1825 // is good for throughput as it gives the main thread more
1826 // time to fill up the queue and it avoids scheduling
1827 // expensive items to the end.
1828 // Note, however, that this is not ideal for memory
1829 // consumption, as LLVM module sizes are not evenly
1830 // distributed.
1831 let insertion_index =
1832 work_items.binary_search_by_key(&cost, |&(_, cost)| cost);
1833 let insertion_index = match insertion_index {
1834 Ok(idx) | Err(idx) => idx
1835 };
1836 work_items.insert(insertion_index, (llvm_work_item, cost));
1837
1838 helper.request_token();
1839 assert_eq!(main_thread_worker_state,
1840 MainThreadWorkerState::Translating);
1841 main_thread_worker_state = MainThreadWorkerState::Idle;
1842 }
1843
1844 Message::TranslationComplete => {
1845 translation_done = true;
1846 assert_eq!(main_thread_worker_state,
1847 MainThreadWorkerState::Translating);
1848 main_thread_worker_state = MainThreadWorkerState::Idle;
1849 }
1850
1851 // If a thread exits successfully then we drop a token associated
1852 // with that worker and update our `running` count. We may later
1853 // re-acquire a token to continue running more work. We may also not
1854 // actually drop a token here if the worker was running with an
1855 // "ephemeral token"
1856 //
1857 // Note that if the thread failed that means it panicked, so we
1858 // abort immediately.
1859 Message::Done { result: Ok(compiled_module), worker_id } => {
1860 if main_thread_worker_state == MainThreadWorkerState::LLVMing {
1861 main_thread_worker_state = MainThreadWorkerState::Idle;
1862 } else {
1863 running -= 1;
1864 }
1865
1866 free_worker_ids.push(worker_id);
1867
1868 match compiled_module.kind {
1869 ModuleKind::Regular => {
1870 compiled_modules.push(compiled_module);
1871 }
1872 ModuleKind::Metadata => {
1873 assert!(compiled_metadata_module.is_none());
1874 compiled_metadata_module = Some(compiled_module);
1875 }
1876 ModuleKind::Allocator => {
1877 assert!(compiled_allocator_module.is_none());
1878 compiled_allocator_module = Some(compiled_module);
1879 }
1880 }
1881 }
1882 Message::NeedsLTO { result, worker_id } => {
1883 assert!(!started_lto);
1884 if main_thread_worker_state == MainThreadWorkerState::LLVMing {
1885 main_thread_worker_state = MainThreadWorkerState::Idle;
1886 } else {
1887 running -= 1;
1888 }
1889
1890 free_worker_ids.push(worker_id);
1891 needs_lto.push(result);
1892 }
1893 Message::Done { result: Err(()), worker_id: _ } => {
1894 shared_emitter.fatal("aborting due to worker thread failure");
1895 // Exit the coordinator thread
1896 return Err(())
1897 }
1898 Message::TranslateItem => {
1899 bug!("the coordinator should not receive translation requests")
1900 }
1901 }
1902 }
1903
1904 if let Some(llvm_start_time) = llvm_start_time {
1905 let total_llvm_time = Instant::now().duration_since(llvm_start_time);
1906 // This is the top-level timing for all of LLVM, set the time-depth
1907 // to zero.
1908 set_time_depth(0);
1909 print_time_passes_entry(cgcx.time_passes,
1910 "LLVM passes",
1911 total_llvm_time);
1912 }
1913
1914 // Regardless of what order these modules completed in, report them to
1915 // the backend in the same order every time to ensure that we're handing
1916 // out deterministic results.
1917 compiled_modules.sort_by(|a, b| a.name.cmp(&b.name));
1918
1919 let compiled_metadata_module = compiled_metadata_module
1920 .expect("Metadata module not compiled?");
1921
1922 Ok(CompiledModules {
1923 modules: compiled_modules,
1924 metadata_module: compiled_metadata_module,
1925 allocator_module: compiled_allocator_module,
1926 })
1927 });
1928
1929 // A heuristic that determines if we have enough LLVM WorkItems in the
1930 // queue so that the main thread can do LLVM work instead of translation
1931 fn queue_full_enough(items_in_queue: usize,
1932 workers_running: usize,
1933 max_workers: usize) -> bool {
1934 // Tune me, plz.
1935 items_in_queue > 0 &&
1936 items_in_queue >= max_workers.saturating_sub(workers_running / 2)
1937 }
1938
1939 fn maybe_start_llvm_timer(config: &ModuleConfig,
1940 llvm_start_time: &mut Option<Instant>) {
1941 // We keep track of the -Ztime-passes output manually,
1942 // since the closure-based interface does not fit well here.
1943 if config.time_passes {
1944 if llvm_start_time.is_none() {
1945 *llvm_start_time = Some(Instant::now());
1946 }
1947 }
1948 }
1949 }
1950
1951 pub const TRANS_WORKER_ID: usize = ::std::usize::MAX;
1952 pub const TRANS_WORKER_TIMELINE: time_graph::TimelineId =
1953 time_graph::TimelineId(TRANS_WORKER_ID);
1954 pub const TRANS_WORK_PACKAGE_KIND: time_graph::WorkPackageKind =
1955 time_graph::WorkPackageKind(&["#DE9597", "#FED1D3", "#FDC5C7", "#B46668", "#88494B"]);
1956 const LLVM_WORK_PACKAGE_KIND: time_graph::WorkPackageKind =
1957 time_graph::WorkPackageKind(&["#7DB67A", "#C6EEC4", "#ACDAAA", "#579354", "#3E6F3C"]);
1958
1959 fn spawn_work(cgcx: CodegenContext, work: WorkItem) {
1960 let depth = time_depth();
1961
1962 thread::spawn(move || {
1963 set_time_depth(depth);
1964
1965 // Set up a destructor which will fire off a message that we're done as
1966 // we exit.
1967 struct Bomb {
1968 coordinator_send: Sender<Box<Any + Send>>,
1969 result: Option<WorkItemResult>,
1970 worker_id: usize,
1971 }
1972 impl Drop for Bomb {
1973 fn drop(&mut self) {
1974 let worker_id = self.worker_id;
1975 let msg = match self.result.take() {
1976 Some(WorkItemResult::Compiled(m)) => {
1977 Message::Done { result: Ok(m), worker_id }
1978 }
1979 Some(WorkItemResult::NeedsLTO(m)) => {
1980 Message::NeedsLTO { result: m, worker_id }
1981 }
1982 None => Message::Done { result: Err(()), worker_id }
1983 };
1984 drop(self.coordinator_send.send(Box::new(msg)));
1985 }
1986 }
1987
1988 let mut bomb = Bomb {
1989 coordinator_send: cgcx.coordinator_send.clone(),
1990 result: None,
1991 worker_id: cgcx.worker,
1992 };
1993
1994 // Execute the work itself, and if it finishes successfully then flag
1995 // ourselves as a success as well.
1996 //
1997 // Note that we ignore any `FatalError` coming out of `execute_work_item`,
1998 // as a diagnostic was already sent off to the main thread - just
1999 // surface that there was an error in this worker.
2000 bomb.result = {
2001 let timeline = cgcx.time_graph.as_ref().map(|tg| {
2002 tg.start(time_graph::TimelineId(cgcx.worker),
2003 LLVM_WORK_PACKAGE_KIND,
2004 &work.name())
2005 });
2006 let mut timeline = timeline.unwrap_or(Timeline::noop());
2007 execute_work_item(&cgcx, work, &mut timeline).ok()
2008 };
2009 });
2010 }
2011
2012 pub fn run_assembler(cgcx: &CodegenContext, handler: &Handler, assembly: &Path, object: &Path) {
2013 let assembler = cgcx.assembler_cmd
2014 .as_ref()
2015 .expect("cgcx.assembler_cmd is missing?");
2016
2017 let pname = &assembler.name;
2018 let mut cmd = assembler.cmd.clone();
2019 cmd.arg("-c").arg("-o").arg(object).arg(assembly);
2020 debug!("{:?}", cmd);
2021
2022 match cmd.output() {
2023 Ok(prog) => {
2024 if !prog.status.success() {
2025 let mut note = prog.stderr.clone();
2026 note.extend_from_slice(&prog.stdout);
2027
2028 handler.struct_err(&format!("linking with `{}` failed: {}",
2029 pname.display(),
2030 prog.status))
2031 .note(&format!("{:?}", &cmd))
2032 .note(str::from_utf8(&note[..]).unwrap())
2033 .emit();
2034 handler.abort_if_errors();
2035 }
2036 },
2037 Err(e) => {
2038 handler.err(&format!("could not exec the linker `{}`: {}", pname.display(), e));
2039 handler.abort_if_errors();
2040 }
2041 }
2042 }
2043
2044 pub unsafe fn with_llvm_pmb(llmod: ModuleRef,
2045 config: &ModuleConfig,
2046 opt_level: llvm::CodeGenOptLevel,
2047 f: &mut FnMut(llvm::PassManagerBuilderRef)) {
2048 use std::ptr;
2049
2050 // Create the PassManagerBuilder for LLVM. We configure it with
2051 // reasonable defaults and prepare it to actually populate the pass
2052 // manager.
2053 let builder = llvm::LLVMPassManagerBuilderCreate();
2054 let opt_size = config.opt_size.unwrap_or(llvm::CodeGenOptSizeNone);
2055 let inline_threshold = config.inline_threshold;
2056
2057 let pgo_gen_path = config.pgo_gen.as_ref().map(|s| {
2058 let s = if s.is_empty() { "default_%m.profraw" } else { s };
2059 CString::new(s.as_bytes()).unwrap()
2060 });
2061
2062 let pgo_use_path = if config.pgo_use.is_empty() {
2063 None
2064 } else {
2065 Some(CString::new(config.pgo_use.as_bytes()).unwrap())
2066 };
2067
2068 llvm::LLVMRustConfigurePassManagerBuilder(
2069 builder,
2070 opt_level,
2071 config.merge_functions,
2072 config.vectorize_slp,
2073 config.vectorize_loop,
2074 pgo_gen_path.as_ref().map_or(ptr::null(), |s| s.as_ptr()),
2075 pgo_use_path.as_ref().map_or(ptr::null(), |s| s.as_ptr()),
2076 );
2077
2078 llvm::LLVMPassManagerBuilderSetSizeLevel(builder, opt_size as u32);
2079
2080 if opt_size != llvm::CodeGenOptSizeNone {
2081 llvm::LLVMPassManagerBuilderSetDisableUnrollLoops(builder, 1);
2082 }
2083
2084 llvm::LLVMRustAddBuilderLibraryInfo(builder, llmod, config.no_builtins);
2085
2086 // Here we match what clang does (kinda). For O0 we only inline
2087 // always-inline functions (but don't add lifetime intrinsics), at O1 we
2088 // inline with lifetime intrinsics, and O2+ we add an inliner with a
2089 // thresholds copied from clang.
2090 match (opt_level, opt_size, inline_threshold) {
2091 (.., Some(t)) => {
2092 llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, t as u32);
2093 }
2094 (llvm::CodeGenOptLevel::Aggressive, ..) => {
2095 llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 275);
2096 }
2097 (_, llvm::CodeGenOptSizeDefault, _) => {
2098 llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 75);
2099 }
2100 (_, llvm::CodeGenOptSizeAggressive, _) => {
2101 llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 25);
2102 }
2103 (llvm::CodeGenOptLevel::None, ..) => {
2104 llvm::LLVMRustAddAlwaysInlinePass(builder, false);
2105 }
2106 (llvm::CodeGenOptLevel::Less, ..) => {
2107 llvm::LLVMRustAddAlwaysInlinePass(builder, true);
2108 }
2109 (llvm::CodeGenOptLevel::Default, ..) => {
2110 llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 225);
2111 }
2112 (llvm::CodeGenOptLevel::Other, ..) => {
2113 bug!("CodeGenOptLevel::Other selected")
2114 }
2115 }
2116
2117 f(builder);
2118 llvm::LLVMPassManagerBuilderDispose(builder);
2119 }
2120
2121
2122 enum SharedEmitterMessage {
2123 Diagnostic(Diagnostic),
2124 InlineAsmError(u32, String),
2125 AbortIfErrors,
2126 Fatal(String),
2127 }
2128
2129 #[derive(Clone)]
2130 pub struct SharedEmitter {
2131 sender: Sender<SharedEmitterMessage>,
2132 }
2133
2134 pub struct SharedEmitterMain {
2135 receiver: Receiver<SharedEmitterMessage>,
2136 }
2137
2138 impl SharedEmitter {
2139 pub fn new() -> (SharedEmitter, SharedEmitterMain) {
2140 let (sender, receiver) = channel();
2141
2142 (SharedEmitter { sender }, SharedEmitterMain { receiver })
2143 }
2144
2145 fn inline_asm_error(&self, cookie: u32, msg: String) {
2146 drop(self.sender.send(SharedEmitterMessage::InlineAsmError(cookie, msg)));
2147 }
2148
2149 fn fatal(&self, msg: &str) {
2150 drop(self.sender.send(SharedEmitterMessage::Fatal(msg.to_string())));
2151 }
2152 }
2153
2154 impl Emitter for SharedEmitter {
2155 fn emit(&mut self, db: &DiagnosticBuilder) {
2156 drop(self.sender.send(SharedEmitterMessage::Diagnostic(Diagnostic {
2157 msg: db.message(),
2158 code: db.code.clone(),
2159 lvl: db.level,
2160 })));
2161 for child in &db.children {
2162 drop(self.sender.send(SharedEmitterMessage::Diagnostic(Diagnostic {
2163 msg: child.message(),
2164 code: None,
2165 lvl: child.level,
2166 })));
2167 }
2168 drop(self.sender.send(SharedEmitterMessage::AbortIfErrors));
2169 }
2170 }
2171
2172 impl SharedEmitterMain {
2173 pub fn check(&self, sess: &Session, blocking: bool) {
2174 loop {
2175 let message = if blocking {
2176 match self.receiver.recv() {
2177 Ok(message) => Ok(message),
2178 Err(_) => Err(()),
2179 }
2180 } else {
2181 match self.receiver.try_recv() {
2182 Ok(message) => Ok(message),
2183 Err(_) => Err(()),
2184 }
2185 };
2186
2187 match message {
2188 Ok(SharedEmitterMessage::Diagnostic(diag)) => {
2189 let handler = sess.diagnostic();
2190 match diag.code {
2191 Some(ref code) => {
2192 handler.emit_with_code(&MultiSpan::new(),
2193 &diag.msg,
2194 code.clone(),
2195 diag.lvl);
2196 }
2197 None => {
2198 handler.emit(&MultiSpan::new(),
2199 &diag.msg,
2200 diag.lvl);
2201 }
2202 }
2203 }
2204 Ok(SharedEmitterMessage::InlineAsmError(cookie, msg)) => {
2205 match Mark::from_u32(cookie).expn_info() {
2206 Some(ei) => sess.span_err(ei.call_site, &msg),
2207 None => sess.err(&msg),
2208 }
2209 }
2210 Ok(SharedEmitterMessage::AbortIfErrors) => {
2211 sess.abort_if_errors();
2212 }
2213 Ok(SharedEmitterMessage::Fatal(msg)) => {
2214 sess.fatal(&msg);
2215 }
2216 Err(_) => {
2217 break;
2218 }
2219 }
2220
2221 }
2222 }
2223 }
2224
2225 pub struct OngoingCrateTranslation {
2226 crate_name: Symbol,
2227 link: LinkMeta,
2228 metadata: EncodedMetadata,
2229 windows_subsystem: Option<String>,
2230 linker_info: LinkerInfo,
2231 crate_info: CrateInfo,
2232 time_graph: Option<TimeGraph>,
2233 coordinator_send: Sender<Box<Any + Send>>,
2234 trans_worker_receive: Receiver<Message>,
2235 shared_emitter_main: SharedEmitterMain,
2236 future: thread::JoinHandle<Result<CompiledModules, ()>>,
2237 output_filenames: Arc<OutputFilenames>,
2238 }
2239
2240 impl OngoingCrateTranslation {
2241 pub(crate) fn join(self, sess: &Session, dep_graph: &DepGraph) -> CrateTranslation {
2242 self.shared_emitter_main.check(sess, true);
2243 let compiled_modules = match self.future.join() {
2244 Ok(Ok(compiled_modules)) => compiled_modules,
2245 Ok(Err(())) => {
2246 sess.abort_if_errors();
2247 panic!("expected abort due to worker thread errors")
2248 },
2249 Err(_) => {
2250 sess.fatal("Error during translation/LLVM phase.");
2251 }
2252 };
2253
2254 sess.abort_if_errors();
2255
2256 if let Some(time_graph) = self.time_graph {
2257 time_graph.dump(&format!("{}-timings", self.crate_name));
2258 }
2259
2260 copy_module_artifacts_into_incr_comp_cache(sess,
2261 dep_graph,
2262 &compiled_modules);
2263 produce_final_output_artifacts(sess,
2264 &compiled_modules,
2265 &self.output_filenames);
2266
2267 // FIXME: time_llvm_passes support - does this use a global context or
2268 // something?
2269 if sess.codegen_units() == 1 && sess.time_llvm_passes() {
2270 unsafe { llvm::LLVMRustPrintPassTimings(); }
2271 }
2272
2273 let trans = CrateTranslation {
2274 crate_name: self.crate_name,
2275 link: self.link,
2276 metadata: self.metadata,
2277 windows_subsystem: self.windows_subsystem,
2278 linker_info: self.linker_info,
2279 crate_info: self.crate_info,
2280
2281 modules: compiled_modules.modules,
2282 allocator_module: compiled_modules.allocator_module,
2283 metadata_module: compiled_modules.metadata_module,
2284 };
2285
2286 trans
2287 }
2288
2289 pub(crate) fn submit_pre_translated_module_to_llvm(&self,
2290 tcx: TyCtxt,
2291 mtrans: ModuleTranslation) {
2292 self.wait_for_signal_to_translate_item();
2293 self.check_for_errors(tcx.sess);
2294
2295 // These are generally cheap and won't through off scheduling.
2296 let cost = 0;
2297 submit_translated_module_to_llvm(tcx, mtrans, cost);
2298 }
2299
2300 pub fn translation_finished(&self, tcx: TyCtxt) {
2301 self.wait_for_signal_to_translate_item();
2302 self.check_for_errors(tcx.sess);
2303 drop(self.coordinator_send.send(Box::new(Message::TranslationComplete)));
2304 }
2305
2306 pub fn check_for_errors(&self, sess: &Session) {
2307 self.shared_emitter_main.check(sess, false);
2308 }
2309
2310 pub fn wait_for_signal_to_translate_item(&self) {
2311 match self.trans_worker_receive.recv() {
2312 Ok(Message::TranslateItem) => {
2313 // Nothing to do
2314 }
2315 Ok(_) => panic!("unexpected message"),
2316 Err(_) => {
2317 // One of the LLVM threads must have panicked, fall through so
2318 // error handling can be reached.
2319 }
2320 }
2321 }
2322 }
2323
2324 pub(crate) fn submit_translated_module_to_llvm(tcx: TyCtxt,
2325 mtrans: ModuleTranslation,
2326 cost: u64) {
2327 let llvm_work_item = WorkItem::Optimize(mtrans);
2328 drop(tcx.tx_to_llvm_workers.lock().send(Box::new(Message::TranslationDone {
2329 llvm_work_item,
2330 cost,
2331 })));
2332 }
2333
2334 fn msvc_imps_needed(tcx: TyCtxt) -> bool {
2335 tcx.sess.target.target.options.is_like_msvc &&
2336 tcx.sess.crate_types.borrow().iter().any(|ct| *ct == config::CrateTypeRlib)
2337 }
2338
2339 // Create a `__imp_<symbol> = &symbol` global for every public static `symbol`.
2340 // This is required to satisfy `dllimport` references to static data in .rlibs
2341 // when using MSVC linker. We do this only for data, as linker can fix up
2342 // code references on its own.
2343 // See #26591, #27438
2344 fn create_msvc_imps(cgcx: &CodegenContext, llcx: ContextRef, llmod: ModuleRef) {
2345 if !cgcx.msvc_imps_needed {
2346 return
2347 }
2348 // The x86 ABI seems to require that leading underscores are added to symbol
2349 // names, so we need an extra underscore on 32-bit. There's also a leading
2350 // '\x01' here which disables LLVM's symbol mangling (e.g. no extra
2351 // underscores added in front).
2352 let prefix = if cgcx.target_pointer_width == "32" {
2353 "\x01__imp__"
2354 } else {
2355 "\x01__imp_"
2356 };
2357 unsafe {
2358 let i8p_ty = Type::i8p_llcx(llcx);
2359 let globals = base::iter_globals(llmod)
2360 .filter(|&val| {
2361 llvm::LLVMRustGetLinkage(val) == llvm::Linkage::ExternalLinkage &&
2362 llvm::LLVMIsDeclaration(val) == 0
2363 })
2364 .map(move |val| {
2365 let name = CStr::from_ptr(llvm::LLVMGetValueName(val));
2366 let mut imp_name = prefix.as_bytes().to_vec();
2367 imp_name.extend(name.to_bytes());
2368 let imp_name = CString::new(imp_name).unwrap();
2369 (imp_name, val)
2370 })
2371 .collect::<Vec<_>>();
2372 for (imp_name, val) in globals {
2373 let imp = llvm::LLVMAddGlobal(llmod,
2374 i8p_ty.to_ref(),
2375 imp_name.as_ptr() as *const _);
2376 llvm::LLVMSetInitializer(imp, consts::ptrcast(val, i8p_ty));
2377 llvm::LLVMRustSetLinkage(imp, llvm::Linkage::ExternalLinkage);
2378 }
2379 }
2380 }