]> git.proxmox.com Git - rustc.git/blob - src/librustc_trans/base.rs
New upstream version 1.27.1+dfsg1
[rustc.git] / src / librustc_trans / base.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Translate the completed AST to the LLVM IR.
12 //!
13 //! Some functions here, such as trans_block and trans_expr, return a value --
14 //! the result of the translation to LLVM -- while others, such as trans_fn
15 //! and trans_item, are called only for the side effect of adding a
16 //! particular definition to the LLVM IR output we're producing.
17 //!
18 //! Hopefully useful general knowledge about trans:
19 //!
20 //! * There's no way to find out the Ty type of a ValueRef. Doing so
21 //! would be "trying to get the eggs out of an omelette" (credit:
22 //! pcwalton). You can, instead, find out its TypeRef by calling val_ty,
23 //! but one TypeRef corresponds to many `Ty`s; for instance, tup(int, int,
24 //! int) and rec(x=int, y=int, z=int) will have the same TypeRef.
25
26 use super::ModuleLlvm;
27 use super::ModuleSource;
28 use super::ModuleTranslation;
29 use super::ModuleKind;
30
31 use abi;
32 use back::link;
33 use back::write::{self, OngoingCrateTranslation, create_target_machine};
34 use llvm::{ContextRef, ModuleRef, ValueRef, Vector, get_param};
35 use llvm;
36 use metadata;
37 use rustc::hir::def_id::{CrateNum, DefId, LOCAL_CRATE};
38 use rustc::middle::lang_items::StartFnLangItem;
39 use rustc::middle::weak_lang_items;
40 use rustc::mir::mono::{Linkage, Visibility, Stats};
41 use rustc::middle::cstore::{EncodedMetadata};
42 use rustc::ty::{self, Ty, TyCtxt};
43 use rustc::ty::layout::{self, Align, TyLayout, LayoutOf};
44 use rustc::ty::maps::Providers;
45 use rustc::dep_graph::{DepNode, DepConstructor};
46 use rustc::ty::subst::Kind;
47 use rustc::middle::cstore::{self, LinkMeta, LinkagePreference};
48 use rustc::middle::exported_symbols;
49 use rustc::util::common::{time, print_time_passes_entry};
50 use rustc::session::config::{self, NoDebugInfo};
51 use rustc::session::Session;
52 use rustc_incremental;
53 use allocator;
54 use mir::place::PlaceRef;
55 use attributes;
56 use builder::{Builder, MemFlags};
57 use callee;
58 use common::{C_bool, C_bytes_in_context, C_i32, C_usize};
59 use rustc_mir::monomorphize::collector::{self, MonoItemCollectionMode};
60 use common::{self, C_struct_in_context, C_array, val_ty};
61 use consts;
62 use context::{self, CodegenCx};
63 use debuginfo;
64 use declare;
65 use meth;
66 use mir;
67 use monomorphize::Instance;
68 use monomorphize::partitioning::{self, PartitioningStrategy, CodegenUnit, CodegenUnitExt};
69 use rustc_trans_utils::symbol_names_test;
70 use time_graph;
71 use trans_item::{MonoItem, BaseMonoItemExt, MonoItemExt, DefPathBasedNames};
72 use type_::Type;
73 use type_of::LayoutLlvmExt;
74 use rustc::util::nodemap::{FxHashMap, FxHashSet, DefIdSet};
75 use CrateInfo;
76 use rustc_data_structures::sync::Lrc;
77 use rustc_target::spec::TargetTriple;
78
79 use std::any::Any;
80 use std::collections::BTreeMap;
81 use std::ffi::CString;
82 use std::str;
83 use std::sync::Arc;
84 use std::time::{Instant, Duration};
85 use std::i32;
86 use std::cmp;
87 use std::sync::mpsc;
88 use syntax_pos::Span;
89 use syntax_pos::symbol::InternedString;
90 use syntax::attr;
91 use rustc::hir;
92 use syntax::ast;
93
94 use mir::operand::OperandValue;
95
96 pub use rustc_trans_utils::check_for_rustc_errors_attr;
97
98 pub struct StatRecorder<'a, 'tcx: 'a> {
99 cx: &'a CodegenCx<'a, 'tcx>,
100 name: Option<String>,
101 istart: usize,
102 }
103
104 impl<'a, 'tcx> StatRecorder<'a, 'tcx> {
105 pub fn new(cx: &'a CodegenCx<'a, 'tcx>, name: String) -> StatRecorder<'a, 'tcx> {
106 let istart = cx.stats.borrow().n_llvm_insns;
107 StatRecorder {
108 cx,
109 name: Some(name),
110 istart,
111 }
112 }
113 }
114
115 impl<'a, 'tcx> Drop for StatRecorder<'a, 'tcx> {
116 fn drop(&mut self) {
117 if self.cx.sess().trans_stats() {
118 let mut stats = self.cx.stats.borrow_mut();
119 let iend = stats.n_llvm_insns;
120 stats.fn_stats.push((self.name.take().unwrap(), iend - self.istart));
121 stats.n_fns += 1;
122 // Reset LLVM insn count to avoid compound costs.
123 stats.n_llvm_insns = self.istart;
124 }
125 }
126 }
127
128 pub fn bin_op_to_icmp_predicate(op: hir::BinOp_,
129 signed: bool)
130 -> llvm::IntPredicate {
131 match op {
132 hir::BiEq => llvm::IntEQ,
133 hir::BiNe => llvm::IntNE,
134 hir::BiLt => if signed { llvm::IntSLT } else { llvm::IntULT },
135 hir::BiLe => if signed { llvm::IntSLE } else { llvm::IntULE },
136 hir::BiGt => if signed { llvm::IntSGT } else { llvm::IntUGT },
137 hir::BiGe => if signed { llvm::IntSGE } else { llvm::IntUGE },
138 op => {
139 bug!("comparison_op_to_icmp_predicate: expected comparison operator, \
140 found {:?}",
141 op)
142 }
143 }
144 }
145
146 pub fn bin_op_to_fcmp_predicate(op: hir::BinOp_) -> llvm::RealPredicate {
147 match op {
148 hir::BiEq => llvm::RealOEQ,
149 hir::BiNe => llvm::RealUNE,
150 hir::BiLt => llvm::RealOLT,
151 hir::BiLe => llvm::RealOLE,
152 hir::BiGt => llvm::RealOGT,
153 hir::BiGe => llvm::RealOGE,
154 op => {
155 bug!("comparison_op_to_fcmp_predicate: expected comparison operator, \
156 found {:?}",
157 op);
158 }
159 }
160 }
161
162 pub fn compare_simd_types<'a, 'tcx>(
163 bx: &Builder<'a, 'tcx>,
164 lhs: ValueRef,
165 rhs: ValueRef,
166 t: Ty<'tcx>,
167 ret_ty: Type,
168 op: hir::BinOp_
169 ) -> ValueRef {
170 let signed = match t.sty {
171 ty::TyFloat(_) => {
172 let cmp = bin_op_to_fcmp_predicate(op);
173 return bx.sext(bx.fcmp(cmp, lhs, rhs), ret_ty);
174 },
175 ty::TyUint(_) => false,
176 ty::TyInt(_) => true,
177 _ => bug!("compare_simd_types: invalid SIMD type"),
178 };
179
180 let cmp = bin_op_to_icmp_predicate(op, signed);
181 // LLVM outputs an `< size x i1 >`, so we need to perform a sign extension
182 // to get the correctly sized type. This will compile to a single instruction
183 // once the IR is converted to assembly if the SIMD instruction is supported
184 // by the target architecture.
185 bx.sext(bx.icmp(cmp, lhs, rhs), ret_ty)
186 }
187
188 /// Retrieve the information we are losing (making dynamic) in an unsizing
189 /// adjustment.
190 ///
191 /// The `old_info` argument is a bit funny. It is intended for use
192 /// in an upcast, where the new vtable for an object will be derived
193 /// from the old one.
194 pub fn unsized_info<'cx, 'tcx>(cx: &CodegenCx<'cx, 'tcx>,
195 source: Ty<'tcx>,
196 target: Ty<'tcx>,
197 old_info: Option<ValueRef>)
198 -> ValueRef {
199 let (source, target) = cx.tcx.struct_lockstep_tails(source, target);
200 match (&source.sty, &target.sty) {
201 (&ty::TyArray(_, len), &ty::TySlice(_)) => {
202 C_usize(cx, len.val.unwrap_u64())
203 }
204 (&ty::TyDynamic(..), &ty::TyDynamic(..)) => {
205 // For now, upcasts are limited to changes in marker
206 // traits, and hence never actually require an actual
207 // change to the vtable.
208 old_info.expect("unsized_info: missing old info for trait upcast")
209 }
210 (_, &ty::TyDynamic(ref data, ..)) => {
211 let vtable_ptr = cx.layout_of(cx.tcx.mk_mut_ptr(target))
212 .field(cx, abi::FAT_PTR_EXTRA);
213 consts::ptrcast(meth::get_vtable(cx, source, data.principal()),
214 vtable_ptr.llvm_type(cx))
215 }
216 _ => bug!("unsized_info: invalid unsizing {:?} -> {:?}",
217 source,
218 target),
219 }
220 }
221
222 /// Coerce `src` to `dst_ty`. `src_ty` must be a thin pointer.
223 pub fn unsize_thin_ptr<'a, 'tcx>(
224 bx: &Builder<'a, 'tcx>,
225 src: ValueRef,
226 src_ty: Ty<'tcx>,
227 dst_ty: Ty<'tcx>
228 ) -> (ValueRef, ValueRef) {
229 debug!("unsize_thin_ptr: {:?} => {:?}", src_ty, dst_ty);
230 match (&src_ty.sty, &dst_ty.sty) {
231 (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
232 &ty::TyRef(_, ty::TypeAndMut { ty: b, .. })) |
233 (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
234 &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) |
235 (&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }),
236 &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => {
237 assert!(bx.cx.type_is_sized(a));
238 let ptr_ty = bx.cx.layout_of(b).llvm_type(bx.cx).ptr_to();
239 (bx.pointercast(src, ptr_ty), unsized_info(bx.cx, a, b, None))
240 }
241 (&ty::TyAdt(def_a, _), &ty::TyAdt(def_b, _)) if def_a.is_box() && def_b.is_box() => {
242 let (a, b) = (src_ty.boxed_ty(), dst_ty.boxed_ty());
243 assert!(bx.cx.type_is_sized(a));
244 let ptr_ty = bx.cx.layout_of(b).llvm_type(bx.cx).ptr_to();
245 (bx.pointercast(src, ptr_ty), unsized_info(bx.cx, a, b, None))
246 }
247 (&ty::TyAdt(def_a, _), &ty::TyAdt(def_b, _)) => {
248 assert_eq!(def_a, def_b);
249
250 let src_layout = bx.cx.layout_of(src_ty);
251 let dst_layout = bx.cx.layout_of(dst_ty);
252 let mut result = None;
253 for i in 0..src_layout.fields.count() {
254 let src_f = src_layout.field(bx.cx, i);
255 assert_eq!(src_layout.fields.offset(i).bytes(), 0);
256 assert_eq!(dst_layout.fields.offset(i).bytes(), 0);
257 if src_f.is_zst() {
258 continue;
259 }
260 assert_eq!(src_layout.size, src_f.size);
261
262 let dst_f = dst_layout.field(bx.cx, i);
263 assert_ne!(src_f.ty, dst_f.ty);
264 assert_eq!(result, None);
265 result = Some(unsize_thin_ptr(bx, src, src_f.ty, dst_f.ty));
266 }
267 let (lldata, llextra) = result.unwrap();
268 // HACK(eddyb) have to bitcast pointers until LLVM removes pointee types.
269 (bx.bitcast(lldata, dst_layout.scalar_pair_element_llvm_type(bx.cx, 0)),
270 bx.bitcast(llextra, dst_layout.scalar_pair_element_llvm_type(bx.cx, 1)))
271 }
272 _ => bug!("unsize_thin_ptr: called on bad types"),
273 }
274 }
275
276 /// Coerce `src`, which is a reference to a value of type `src_ty`,
277 /// to a value of type `dst_ty` and store the result in `dst`
278 pub fn coerce_unsized_into<'a, 'tcx>(bx: &Builder<'a, 'tcx>,
279 src: PlaceRef<'tcx>,
280 dst: PlaceRef<'tcx>) {
281 let src_ty = src.layout.ty;
282 let dst_ty = dst.layout.ty;
283 let coerce_ptr = || {
284 let (base, info) = match src.load(bx).val {
285 OperandValue::Pair(base, info) => {
286 // fat-ptr to fat-ptr unsize preserves the vtable
287 // i.e. &'a fmt::Debug+Send => &'a fmt::Debug
288 // So we need to pointercast the base to ensure
289 // the types match up.
290 let thin_ptr = dst.layout.field(bx.cx, abi::FAT_PTR_ADDR);
291 (bx.pointercast(base, thin_ptr.llvm_type(bx.cx)), info)
292 }
293 OperandValue::Immediate(base) => {
294 unsize_thin_ptr(bx, base, src_ty, dst_ty)
295 }
296 OperandValue::Ref(..) => bug!()
297 };
298 OperandValue::Pair(base, info).store(bx, dst);
299 };
300 match (&src_ty.sty, &dst_ty.sty) {
301 (&ty::TyRef(..), &ty::TyRef(..)) |
302 (&ty::TyRef(..), &ty::TyRawPtr(..)) |
303 (&ty::TyRawPtr(..), &ty::TyRawPtr(..)) => {
304 coerce_ptr()
305 }
306 (&ty::TyAdt(def_a, _), &ty::TyAdt(def_b, _)) if def_a.is_box() && def_b.is_box() => {
307 coerce_ptr()
308 }
309
310 (&ty::TyAdt(def_a, _), &ty::TyAdt(def_b, _)) => {
311 assert_eq!(def_a, def_b);
312
313 for i in 0..def_a.variants[0].fields.len() {
314 let src_f = src.project_field(bx, i);
315 let dst_f = dst.project_field(bx, i);
316
317 if dst_f.layout.is_zst() {
318 continue;
319 }
320
321 if src_f.layout.ty == dst_f.layout.ty {
322 memcpy_ty(bx, dst_f.llval, src_f.llval, src_f.layout,
323 src_f.align.min(dst_f.align), MemFlags::empty());
324 } else {
325 coerce_unsized_into(bx, src_f, dst_f);
326 }
327 }
328 }
329 _ => bug!("coerce_unsized_into: invalid coercion {:?} -> {:?}",
330 src_ty,
331 dst_ty),
332 }
333 }
334
335 pub fn cast_shift_expr_rhs(
336 cx: &Builder, op: hir::BinOp_, lhs: ValueRef, rhs: ValueRef
337 ) -> ValueRef {
338 cast_shift_rhs(op, lhs, rhs, |a, b| cx.trunc(a, b), |a, b| cx.zext(a, b))
339 }
340
341 fn cast_shift_rhs<F, G>(op: hir::BinOp_,
342 lhs: ValueRef,
343 rhs: ValueRef,
344 trunc: F,
345 zext: G)
346 -> ValueRef
347 where F: FnOnce(ValueRef, Type) -> ValueRef,
348 G: FnOnce(ValueRef, Type) -> ValueRef
349 {
350 // Shifts may have any size int on the rhs
351 if op.is_shift() {
352 let mut rhs_llty = val_ty(rhs);
353 let mut lhs_llty = val_ty(lhs);
354 if rhs_llty.kind() == Vector {
355 rhs_llty = rhs_llty.element_type()
356 }
357 if lhs_llty.kind() == Vector {
358 lhs_llty = lhs_llty.element_type()
359 }
360 let rhs_sz = rhs_llty.int_width();
361 let lhs_sz = lhs_llty.int_width();
362 if lhs_sz < rhs_sz {
363 trunc(rhs, lhs_llty)
364 } else if lhs_sz > rhs_sz {
365 // FIXME (#1877: If shifting by negative
366 // values becomes not undefined then this is wrong.
367 zext(rhs, lhs_llty)
368 } else {
369 rhs
370 }
371 } else {
372 rhs
373 }
374 }
375
376 /// Returns whether this session's target will use SEH-based unwinding.
377 ///
378 /// This is only true for MSVC targets, and even then the 64-bit MSVC target
379 /// currently uses SEH-ish unwinding with DWARF info tables to the side (same as
380 /// 64-bit MinGW) instead of "full SEH".
381 pub fn wants_msvc_seh(sess: &Session) -> bool {
382 sess.target.target.options.is_like_msvc
383 }
384
385 pub fn call_assume<'a, 'tcx>(bx: &Builder<'a, 'tcx>, val: ValueRef) {
386 let assume_intrinsic = bx.cx.get_intrinsic("llvm.assume");
387 bx.call(assume_intrinsic, &[val], None);
388 }
389
390 pub fn from_immediate(bx: &Builder, val: ValueRef) -> ValueRef {
391 if val_ty(val) == Type::i1(bx.cx) {
392 bx.zext(val, Type::i8(bx.cx))
393 } else {
394 val
395 }
396 }
397
398 pub fn to_immediate(bx: &Builder, val: ValueRef, layout: layout::TyLayout) -> ValueRef {
399 if let layout::Abi::Scalar(ref scalar) = layout.abi {
400 if scalar.is_bool() {
401 return bx.trunc(val, Type::i1(bx.cx));
402 }
403 }
404 val
405 }
406
407 pub fn call_memcpy(bx: &Builder,
408 dst: ValueRef,
409 src: ValueRef,
410 n_bytes: ValueRef,
411 align: Align,
412 flags: MemFlags) {
413 if flags.contains(MemFlags::NONTEMPORAL) {
414 // HACK(nox): This is inefficient but there is no nontemporal memcpy.
415 let val = bx.load(src, align);
416 let ptr = bx.pointercast(dst, val_ty(val).ptr_to());
417 bx.store_with_flags(val, ptr, align, flags);
418 return;
419 }
420 let cx = bx.cx;
421 let ptr_width = &cx.sess().target.target.target_pointer_width;
422 let key = format!("llvm.memcpy.p0i8.p0i8.i{}", ptr_width);
423 let memcpy = cx.get_intrinsic(&key);
424 let src_ptr = bx.pointercast(src, Type::i8p(cx));
425 let dst_ptr = bx.pointercast(dst, Type::i8p(cx));
426 let size = bx.intcast(n_bytes, cx.isize_ty, false);
427 let align = C_i32(cx, align.abi() as i32);
428 let volatile = C_bool(cx, flags.contains(MemFlags::VOLATILE));
429 bx.call(memcpy, &[dst_ptr, src_ptr, size, align, volatile], None);
430 }
431
432 pub fn memcpy_ty<'a, 'tcx>(
433 bx: &Builder<'a, 'tcx>,
434 dst: ValueRef,
435 src: ValueRef,
436 layout: TyLayout<'tcx>,
437 align: Align,
438 flags: MemFlags,
439 ) {
440 let size = layout.size.bytes();
441 if size == 0 {
442 return;
443 }
444
445 call_memcpy(bx, dst, src, C_usize(bx.cx, size), align, flags);
446 }
447
448 pub fn call_memset<'a, 'tcx>(bx: &Builder<'a, 'tcx>,
449 ptr: ValueRef,
450 fill_byte: ValueRef,
451 size: ValueRef,
452 align: ValueRef,
453 volatile: bool) -> ValueRef {
454 let ptr_width = &bx.cx.sess().target.target.target_pointer_width;
455 let intrinsic_key = format!("llvm.memset.p0i8.i{}", ptr_width);
456 let llintrinsicfn = bx.cx.get_intrinsic(&intrinsic_key);
457 let volatile = C_bool(bx.cx, volatile);
458 bx.call(llintrinsicfn, &[ptr, fill_byte, size, align, volatile], None)
459 }
460
461 pub fn trans_instance<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, instance: Instance<'tcx>) {
462 let _s = if cx.sess().trans_stats() {
463 let mut instance_name = String::new();
464 DefPathBasedNames::new(cx.tcx, true, true)
465 .push_def_path(instance.def_id(), &mut instance_name);
466 Some(StatRecorder::new(cx, instance_name))
467 } else {
468 None
469 };
470
471 // this is an info! to allow collecting monomorphization statistics
472 // and to allow finding the last function before LLVM aborts from
473 // release builds.
474 info!("trans_instance({})", instance);
475
476 let fn_ty = instance.ty(cx.tcx);
477 let sig = common::ty_fn_sig(cx, fn_ty);
478 let sig = cx.tcx.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), &sig);
479
480 let lldecl = match cx.instances.borrow().get(&instance) {
481 Some(&val) => val,
482 None => bug!("Instance `{:?}` not already declared", instance)
483 };
484
485 cx.stats.borrow_mut().n_closures += 1;
486
487 // The `uwtable` attribute according to LLVM is:
488 //
489 // This attribute indicates that the ABI being targeted requires that an
490 // unwind table entry be produced for this function even if we can show
491 // that no exceptions passes by it. This is normally the case for the
492 // ELF x86-64 abi, but it can be disabled for some compilation units.
493 //
494 // Typically when we're compiling with `-C panic=abort` (which implies this
495 // `no_landing_pads` check) we don't need `uwtable` because we can't
496 // generate any exceptions! On Windows, however, exceptions include other
497 // events such as illegal instructions, segfaults, etc. This means that on
498 // Windows we end up still needing the `uwtable` attribute even if the `-C
499 // panic=abort` flag is passed.
500 //
501 // You can also find more info on why Windows is whitelisted here in:
502 // https://bugzilla.mozilla.org/show_bug.cgi?id=1302078
503 if !cx.sess().no_landing_pads() ||
504 cx.sess().target.target.options.requires_uwtable {
505 attributes::emit_uwtable(lldecl, true);
506 }
507
508 let mir = cx.tcx.instance_mir(instance.def);
509 mir::trans_mir(cx, lldecl, &mir, instance, sig);
510 }
511
512 pub fn set_link_section(cx: &CodegenCx,
513 llval: ValueRef,
514 attrs: &[ast::Attribute]) {
515 if let Some(sect) = attr::first_attr_value_str_by_name(attrs, "link_section") {
516 if contains_null(&sect.as_str()) {
517 cx.sess().fatal(&format!("Illegal null byte in link_section value: `{}`", &sect));
518 }
519 unsafe {
520 let buf = CString::new(sect.as_str().as_bytes()).unwrap();
521 llvm::LLVMSetSection(llval, buf.as_ptr());
522 }
523 }
524 }
525
526 /// Create the `main` function which will initialize the rust runtime and call
527 /// users main function.
528 fn maybe_create_entry_wrapper(cx: &CodegenCx) {
529 let (main_def_id, span) = match *cx.sess().entry_fn.borrow() {
530 Some((id, span, _)) => {
531 (cx.tcx.hir.local_def_id(id), span)
532 }
533 None => return,
534 };
535
536 let instance = Instance::mono(cx.tcx, main_def_id);
537
538 if !cx.codegen_unit.contains_item(&MonoItem::Fn(instance)) {
539 // We want to create the wrapper in the same codegen unit as Rust's main
540 // function.
541 return;
542 }
543
544 let main_llfn = callee::get_fn(cx, instance);
545
546 let et = cx.sess().entry_fn.get().map(|e| e.2);
547 match et {
548 Some(config::EntryMain) => create_entry_fn(cx, span, main_llfn, main_def_id, true),
549 Some(config::EntryStart) => create_entry_fn(cx, span, main_llfn, main_def_id, false),
550 None => {} // Do nothing.
551 }
552
553 fn create_entry_fn<'cx>(cx: &'cx CodegenCx,
554 sp: Span,
555 rust_main: ValueRef,
556 rust_main_def_id: DefId,
557 use_start_lang_item: bool) {
558 let llfty = Type::func(&[Type::c_int(cx), Type::i8p(cx).ptr_to()], &Type::c_int(cx));
559
560 let main_ret_ty = cx.tcx.fn_sig(rust_main_def_id).output();
561 // Given that `main()` has no arguments,
562 // then its return type cannot have
563 // late-bound regions, since late-bound
564 // regions must appear in the argument
565 // listing.
566 let main_ret_ty = cx.tcx.erase_regions(
567 &main_ret_ty.no_late_bound_regions().unwrap(),
568 );
569
570 if declare::get_defined_value(cx, "main").is_some() {
571 // FIXME: We should be smart and show a better diagnostic here.
572 cx.sess().struct_span_err(sp, "entry symbol `main` defined multiple times")
573 .help("did you use #[no_mangle] on `fn main`? Use #[start] instead")
574 .emit();
575 cx.sess().abort_if_errors();
576 bug!();
577 }
578 let llfn = declare::declare_cfn(cx, "main", llfty);
579
580 // `main` should respect same config for frame pointer elimination as rest of code
581 attributes::set_frame_pointer_elimination(cx, llfn);
582
583 let bx = Builder::new_block(cx, llfn, "top");
584
585 debuginfo::gdb::insert_reference_to_gdb_debug_scripts_section_global(&bx);
586
587 // Params from native main() used as args for rust start function
588 let param_argc = get_param(llfn, 0);
589 let param_argv = get_param(llfn, 1);
590 let arg_argc = bx.intcast(param_argc, cx.isize_ty, true);
591 let arg_argv = param_argv;
592
593 let (start_fn, args) = if use_start_lang_item {
594 let start_def_id = cx.tcx.require_lang_item(StartFnLangItem);
595 let start_fn = callee::resolve_and_get_fn(
596 cx,
597 start_def_id,
598 cx.tcx.intern_substs(&[Kind::from(main_ret_ty)]),
599 );
600 (start_fn, vec![bx.pointercast(rust_main, Type::i8p(cx).ptr_to()),
601 arg_argc, arg_argv])
602 } else {
603 debug!("using user-defined start fn");
604 (rust_main, vec![arg_argc, arg_argv])
605 };
606
607 let result = bx.call(start_fn, &args, None);
608 bx.ret(bx.intcast(result, Type::c_int(cx), true));
609 }
610 }
611
612 fn contains_null(s: &str) -> bool {
613 s.bytes().any(|b| b == 0)
614 }
615
616 fn write_metadata<'a, 'gcx>(tcx: TyCtxt<'a, 'gcx, 'gcx>,
617 llmod_id: &str,
618 link_meta: &LinkMeta)
619 -> (ContextRef, ModuleRef, EncodedMetadata) {
620 use std::io::Write;
621 use flate2::Compression;
622 use flate2::write::DeflateEncoder;
623
624 let (metadata_llcx, metadata_llmod) = unsafe {
625 context::create_context_and_module(tcx.sess, llmod_id)
626 };
627
628 #[derive(PartialEq, Eq, PartialOrd, Ord)]
629 enum MetadataKind {
630 None,
631 Uncompressed,
632 Compressed
633 }
634
635 let kind = tcx.sess.crate_types.borrow().iter().map(|ty| {
636 match *ty {
637 config::CrateTypeExecutable |
638 config::CrateTypeStaticlib |
639 config::CrateTypeCdylib => MetadataKind::None,
640
641 config::CrateTypeRlib => MetadataKind::Uncompressed,
642
643 config::CrateTypeDylib |
644 config::CrateTypeProcMacro => MetadataKind::Compressed,
645 }
646 }).max().unwrap();
647
648 if kind == MetadataKind::None {
649 return (metadata_llcx,
650 metadata_llmod,
651 EncodedMetadata::new());
652 }
653
654 let metadata = tcx.encode_metadata(link_meta);
655 if kind == MetadataKind::Uncompressed {
656 return (metadata_llcx, metadata_llmod, metadata);
657 }
658
659 assert!(kind == MetadataKind::Compressed);
660 let mut compressed = tcx.metadata_encoding_version();
661 DeflateEncoder::new(&mut compressed, Compression::fast())
662 .write_all(&metadata.raw_data).unwrap();
663
664 let llmeta = C_bytes_in_context(metadata_llcx, &compressed);
665 let llconst = C_struct_in_context(metadata_llcx, &[llmeta], false);
666 let name = exported_symbols::metadata_symbol_name(tcx);
667 let buf = CString::new(name).unwrap();
668 let llglobal = unsafe {
669 llvm::LLVMAddGlobal(metadata_llmod, val_ty(llconst).to_ref(), buf.as_ptr())
670 };
671 unsafe {
672 llvm::LLVMSetInitializer(llglobal, llconst);
673 let section_name = metadata::metadata_section_name(&tcx.sess.target.target);
674 let name = CString::new(section_name).unwrap();
675 llvm::LLVMSetSection(llglobal, name.as_ptr());
676
677 // Also generate a .section directive to force no
678 // flags, at least for ELF outputs, so that the
679 // metadata doesn't get loaded into memory.
680 let directive = format!(".section {}", section_name);
681 let directive = CString::new(directive).unwrap();
682 llvm::LLVMSetModuleInlineAsm(metadata_llmod, directive.as_ptr())
683 }
684 return (metadata_llcx, metadata_llmod, metadata);
685 }
686
687 pub struct ValueIter {
688 cur: ValueRef,
689 step: unsafe extern "C" fn(ValueRef) -> ValueRef,
690 }
691
692 impl Iterator for ValueIter {
693 type Item = ValueRef;
694
695 fn next(&mut self) -> Option<ValueRef> {
696 let old = self.cur;
697 if !old.is_null() {
698 self.cur = unsafe { (self.step)(old) };
699 Some(old)
700 } else {
701 None
702 }
703 }
704 }
705
706 pub fn iter_globals(llmod: llvm::ModuleRef) -> ValueIter {
707 unsafe {
708 ValueIter {
709 cur: llvm::LLVMGetFirstGlobal(llmod),
710 step: llvm::LLVMGetNextGlobal,
711 }
712 }
713 }
714
715 pub fn trans_crate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
716 rx: mpsc::Receiver<Box<Any + Send>>)
717 -> OngoingCrateTranslation {
718
719 check_for_rustc_errors_attr(tcx);
720
721 if let Some(true) = tcx.sess.opts.debugging_opts.thinlto {
722 if unsafe { !llvm::LLVMRustThinLTOAvailable() } {
723 tcx.sess.fatal("this compiler's LLVM does not support ThinLTO");
724 }
725 }
726
727 if (tcx.sess.opts.debugging_opts.pgo_gen.is_some() ||
728 !tcx.sess.opts.debugging_opts.pgo_use.is_empty()) &&
729 unsafe { !llvm::LLVMRustPGOAvailable() }
730 {
731 tcx.sess.fatal("this compiler's LLVM does not support PGO");
732 }
733
734 let crate_hash = tcx.crate_hash(LOCAL_CRATE);
735 let link_meta = link::build_link_meta(crate_hash);
736
737 // Translate the metadata.
738 let llmod_id = "metadata";
739 let (metadata_llcx, metadata_llmod, metadata) =
740 time(tcx.sess, "write metadata", || {
741 write_metadata(tcx, llmod_id, &link_meta)
742 });
743
744 let metadata_module = ModuleTranslation {
745 name: link::METADATA_MODULE_NAME.to_string(),
746 llmod_id: llmod_id.to_string(),
747 source: ModuleSource::Translated(ModuleLlvm {
748 llcx: metadata_llcx,
749 llmod: metadata_llmod,
750 tm: create_target_machine(tcx.sess, false),
751 }),
752 kind: ModuleKind::Metadata,
753 };
754
755 let time_graph = if tcx.sess.opts.debugging_opts.trans_time_graph {
756 Some(time_graph::TimeGraph::new())
757 } else {
758 None
759 };
760
761 // Skip crate items and just output metadata in -Z no-trans mode.
762 if tcx.sess.opts.debugging_opts.no_trans ||
763 !tcx.sess.opts.output_types.should_trans() {
764 let ongoing_translation = write::start_async_translation(
765 tcx,
766 time_graph.clone(),
767 link_meta,
768 metadata,
769 rx,
770 1);
771
772 ongoing_translation.submit_pre_translated_module_to_llvm(tcx, metadata_module);
773 ongoing_translation.translation_finished(tcx);
774
775 assert_and_save_dep_graph(tcx);
776
777 ongoing_translation.check_for_errors(tcx.sess);
778
779 return ongoing_translation;
780 }
781
782 // Run the translation item collector and partition the collected items into
783 // codegen units.
784 let codegen_units =
785 tcx.collect_and_partition_translation_items(LOCAL_CRATE).1;
786 let codegen_units = (*codegen_units).clone();
787
788 // Force all codegen_unit queries so they are already either red or green
789 // when compile_codegen_unit accesses them. We are not able to re-execute
790 // the codegen_unit query from just the DepNode, so an unknown color would
791 // lead to having to re-execute compile_codegen_unit, possibly
792 // unnecessarily.
793 if tcx.dep_graph.is_fully_enabled() {
794 for cgu in &codegen_units {
795 tcx.codegen_unit(cgu.name().clone());
796 }
797 }
798
799 let ongoing_translation = write::start_async_translation(
800 tcx,
801 time_graph.clone(),
802 link_meta,
803 metadata,
804 rx,
805 codegen_units.len());
806
807 // Translate an allocator shim, if any
808 let allocator_module = if let Some(kind) = *tcx.sess.allocator_kind.get() {
809 unsafe {
810 let llmod_id = "allocator";
811 let (llcx, llmod) =
812 context::create_context_and_module(tcx.sess, llmod_id);
813 let modules = ModuleLlvm {
814 llmod,
815 llcx,
816 tm: create_target_machine(tcx.sess, false),
817 };
818 time(tcx.sess, "write allocator module", || {
819 allocator::trans(tcx, &modules, kind)
820 });
821
822 Some(ModuleTranslation {
823 name: link::ALLOCATOR_MODULE_NAME.to_string(),
824 llmod_id: llmod_id.to_string(),
825 source: ModuleSource::Translated(modules),
826 kind: ModuleKind::Allocator,
827 })
828 }
829 } else {
830 None
831 };
832
833 if let Some(allocator_module) = allocator_module {
834 ongoing_translation.submit_pre_translated_module_to_llvm(tcx, allocator_module);
835 }
836
837 ongoing_translation.submit_pre_translated_module_to_llvm(tcx, metadata_module);
838
839 // We sort the codegen units by size. This way we can schedule work for LLVM
840 // a bit more efficiently.
841 let codegen_units = {
842 let mut codegen_units = codegen_units;
843 codegen_units.sort_by_cached_key(|cgu| cmp::Reverse(cgu.size_estimate()));
844 codegen_units
845 };
846
847 let mut total_trans_time = Duration::new(0, 0);
848 let mut all_stats = Stats::default();
849
850 for cgu in codegen_units.into_iter() {
851 ongoing_translation.wait_for_signal_to_translate_item();
852 ongoing_translation.check_for_errors(tcx.sess);
853
854 // First, if incremental compilation is enabled, we try to re-use the
855 // codegen unit from the cache.
856 if tcx.dep_graph.is_fully_enabled() {
857 let cgu_id = cgu.work_product_id();
858
859 // Check whether there is a previous work-product we can
860 // re-use. Not only must the file exist, and the inputs not
861 // be dirty, but the hash of the symbols we will generate must
862 // be the same.
863 if let Some(buf) = tcx.dep_graph.previous_work_product(&cgu_id) {
864 let dep_node = &DepNode::new(tcx,
865 DepConstructor::CompileCodegenUnit(cgu.name().clone()));
866
867 // We try to mark the DepNode::CompileCodegenUnit green. If we
868 // succeed it means that none of the dependencies has changed
869 // and we can safely re-use.
870 if let Some(dep_node_index) = tcx.dep_graph.try_mark_green(tcx, dep_node) {
871 // Append ".rs" to LLVM module identifier.
872 //
873 // LLVM code generator emits a ".file filename" directive
874 // for ELF backends. Value of the "filename" is set as the
875 // LLVM module identifier. Due to a LLVM MC bug[1], LLVM
876 // crashes if the module identifier is same as other symbols
877 // such as a function name in the module.
878 // 1. http://llvm.org/bugs/show_bug.cgi?id=11479
879 let llmod_id = format!("{}.rs", cgu.name());
880
881 let module = ModuleTranslation {
882 name: cgu.name().to_string(),
883 source: ModuleSource::Preexisting(buf),
884 kind: ModuleKind::Regular,
885 llmod_id,
886 };
887 tcx.dep_graph.mark_loaded_from_cache(dep_node_index, true);
888 write::submit_translated_module_to_llvm(tcx, module, 0);
889 // Continue to next cgu, this one is done.
890 continue
891 }
892 } else {
893 // This can happen if files were deleted from the cache
894 // directory for some reason. We just re-compile then.
895 }
896 }
897
898 let _timing_guard = time_graph.as_ref().map(|time_graph| {
899 time_graph.start(write::TRANS_WORKER_TIMELINE,
900 write::TRANS_WORK_PACKAGE_KIND,
901 &format!("codegen {}", cgu.name()))
902 });
903 let start_time = Instant::now();
904 all_stats.extend(tcx.compile_codegen_unit(*cgu.name()));
905 total_trans_time += start_time.elapsed();
906 ongoing_translation.check_for_errors(tcx.sess);
907 }
908
909 ongoing_translation.translation_finished(tcx);
910
911 // Since the main thread is sometimes blocked during trans, we keep track
912 // -Ztime-passes output manually.
913 print_time_passes_entry(tcx.sess.time_passes(),
914 "translate to LLVM IR",
915 total_trans_time);
916
917 if tcx.sess.opts.incremental.is_some() {
918 ::rustc_incremental::assert_module_sources::assert_module_sources(tcx);
919 }
920
921 symbol_names_test::report_symbol_names(tcx);
922
923 if tcx.sess.trans_stats() {
924 println!("--- trans stats ---");
925 println!("n_glues_created: {}", all_stats.n_glues_created);
926 println!("n_null_glues: {}", all_stats.n_null_glues);
927 println!("n_real_glues: {}", all_stats.n_real_glues);
928
929 println!("n_fns: {}", all_stats.n_fns);
930 println!("n_inlines: {}", all_stats.n_inlines);
931 println!("n_closures: {}", all_stats.n_closures);
932 println!("fn stats:");
933 all_stats.fn_stats.sort_by_key(|&(_, insns)| insns);
934 for &(ref name, insns) in all_stats.fn_stats.iter() {
935 println!("{} insns, {}", insns, *name);
936 }
937 }
938
939 if tcx.sess.count_llvm_insns() {
940 for (k, v) in all_stats.llvm_insns.iter() {
941 println!("{:7} {}", *v, *k);
942 }
943 }
944
945 ongoing_translation.check_for_errors(tcx.sess);
946
947 assert_and_save_dep_graph(tcx);
948 ongoing_translation
949 }
950
951 fn assert_and_save_dep_graph<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) {
952 time(tcx.sess,
953 "assert dep graph",
954 || rustc_incremental::assert_dep_graph(tcx));
955
956 time(tcx.sess,
957 "serialize dep graph",
958 || rustc_incremental::save_dep_graph(tcx));
959 }
960
961 fn collect_and_partition_translation_items<'a, 'tcx>(
962 tcx: TyCtxt<'a, 'tcx, 'tcx>,
963 cnum: CrateNum,
964 ) -> (Arc<DefIdSet>, Arc<Vec<Arc<CodegenUnit<'tcx>>>>)
965 {
966 assert_eq!(cnum, LOCAL_CRATE);
967
968 let collection_mode = match tcx.sess.opts.debugging_opts.print_trans_items {
969 Some(ref s) => {
970 let mode_string = s.to_lowercase();
971 let mode_string = mode_string.trim();
972 if mode_string == "eager" {
973 MonoItemCollectionMode::Eager
974 } else {
975 if mode_string != "lazy" {
976 let message = format!("Unknown codegen-item collection mode '{}'. \
977 Falling back to 'lazy' mode.",
978 mode_string);
979 tcx.sess.warn(&message);
980 }
981
982 MonoItemCollectionMode::Lazy
983 }
984 }
985 None => {
986 if tcx.sess.opts.cg.link_dead_code {
987 MonoItemCollectionMode::Eager
988 } else {
989 MonoItemCollectionMode::Lazy
990 }
991 }
992 };
993
994 let (items, inlining_map) =
995 time(tcx.sess, "translation item collection", || {
996 collector::collect_crate_mono_items(tcx, collection_mode)
997 });
998
999 tcx.sess.abort_if_errors();
1000
1001 ::rustc_mir::monomorphize::assert_symbols_are_distinct(tcx, items.iter());
1002
1003 let strategy = if tcx.sess.opts.incremental.is_some() {
1004 PartitioningStrategy::PerModule
1005 } else {
1006 PartitioningStrategy::FixedUnitCount(tcx.sess.codegen_units())
1007 };
1008
1009 let codegen_units = time(tcx.sess, "codegen unit partitioning", || {
1010 partitioning::partition(tcx,
1011 items.iter().cloned(),
1012 strategy,
1013 &inlining_map)
1014 .into_iter()
1015 .map(Arc::new)
1016 .collect::<Vec<_>>()
1017 });
1018
1019 let translation_items: DefIdSet = items.iter().filter_map(|trans_item| {
1020 match *trans_item {
1021 MonoItem::Fn(ref instance) => Some(instance.def_id()),
1022 MonoItem::Static(def_id) => Some(def_id),
1023 _ => None,
1024 }
1025 }).collect();
1026
1027 if tcx.sess.opts.debugging_opts.print_trans_items.is_some() {
1028 let mut item_to_cgus = FxHashMap();
1029
1030 for cgu in &codegen_units {
1031 for (&trans_item, &linkage) in cgu.items() {
1032 item_to_cgus.entry(trans_item)
1033 .or_insert(Vec::new())
1034 .push((cgu.name().clone(), linkage));
1035 }
1036 }
1037
1038 let mut item_keys: Vec<_> = items
1039 .iter()
1040 .map(|i| {
1041 let mut output = i.to_string(tcx);
1042 output.push_str(" @@");
1043 let mut empty = Vec::new();
1044 let cgus = item_to_cgus.get_mut(i).unwrap_or(&mut empty);
1045 cgus.as_mut_slice().sort_by_key(|&(ref name, _)| name.clone());
1046 cgus.dedup();
1047 for &(ref cgu_name, (linkage, _)) in cgus.iter() {
1048 output.push_str(" ");
1049 output.push_str(&cgu_name.as_str());
1050
1051 let linkage_abbrev = match linkage {
1052 Linkage::External => "External",
1053 Linkage::AvailableExternally => "Available",
1054 Linkage::LinkOnceAny => "OnceAny",
1055 Linkage::LinkOnceODR => "OnceODR",
1056 Linkage::WeakAny => "WeakAny",
1057 Linkage::WeakODR => "WeakODR",
1058 Linkage::Appending => "Appending",
1059 Linkage::Internal => "Internal",
1060 Linkage::Private => "Private",
1061 Linkage::ExternalWeak => "ExternalWeak",
1062 Linkage::Common => "Common",
1063 };
1064
1065 output.push_str("[");
1066 output.push_str(linkage_abbrev);
1067 output.push_str("]");
1068 }
1069 output
1070 })
1071 .collect();
1072
1073 item_keys.sort();
1074
1075 for item in item_keys {
1076 println!("TRANS_ITEM {}", item);
1077 }
1078 }
1079
1080 (Arc::new(translation_items), Arc::new(codegen_units))
1081 }
1082
1083 impl CrateInfo {
1084 pub fn new(tcx: TyCtxt) -> CrateInfo {
1085 let mut info = CrateInfo {
1086 panic_runtime: None,
1087 compiler_builtins: None,
1088 profiler_runtime: None,
1089 sanitizer_runtime: None,
1090 is_no_builtins: FxHashSet(),
1091 native_libraries: FxHashMap(),
1092 used_libraries: tcx.native_libraries(LOCAL_CRATE),
1093 link_args: tcx.link_args(LOCAL_CRATE),
1094 crate_name: FxHashMap(),
1095 used_crates_dynamic: cstore::used_crates(tcx, LinkagePreference::RequireDynamic),
1096 used_crates_static: cstore::used_crates(tcx, LinkagePreference::RequireStatic),
1097 used_crate_source: FxHashMap(),
1098 wasm_custom_sections: BTreeMap::new(),
1099 wasm_imports: FxHashMap(),
1100 lang_item_to_crate: FxHashMap(),
1101 missing_lang_items: FxHashMap(),
1102 };
1103 let lang_items = tcx.lang_items();
1104
1105 let load_wasm_items = tcx.sess.crate_types.borrow()
1106 .iter()
1107 .any(|c| *c != config::CrateTypeRlib) &&
1108 tcx.sess.opts.target_triple == TargetTriple::from_triple("wasm32-unknown-unknown");
1109
1110 if load_wasm_items {
1111 info!("attempting to load all wasm sections");
1112 for &id in tcx.wasm_custom_sections(LOCAL_CRATE).iter() {
1113 let (name, contents) = fetch_wasm_section(tcx, id);
1114 info.wasm_custom_sections.entry(name)
1115 .or_insert(Vec::new())
1116 .extend(contents);
1117 }
1118 info.load_wasm_imports(tcx, LOCAL_CRATE);
1119 }
1120
1121 for &cnum in tcx.crates().iter() {
1122 info.native_libraries.insert(cnum, tcx.native_libraries(cnum));
1123 info.crate_name.insert(cnum, tcx.crate_name(cnum).to_string());
1124 info.used_crate_source.insert(cnum, tcx.used_crate_source(cnum));
1125 if tcx.is_panic_runtime(cnum) {
1126 info.panic_runtime = Some(cnum);
1127 }
1128 if tcx.is_compiler_builtins(cnum) {
1129 info.compiler_builtins = Some(cnum);
1130 }
1131 if tcx.is_profiler_runtime(cnum) {
1132 info.profiler_runtime = Some(cnum);
1133 }
1134 if tcx.is_sanitizer_runtime(cnum) {
1135 info.sanitizer_runtime = Some(cnum);
1136 }
1137 if tcx.is_no_builtins(cnum) {
1138 info.is_no_builtins.insert(cnum);
1139 }
1140 if load_wasm_items {
1141 for &id in tcx.wasm_custom_sections(cnum).iter() {
1142 let (name, contents) = fetch_wasm_section(tcx, id);
1143 info.wasm_custom_sections.entry(name)
1144 .or_insert(Vec::new())
1145 .extend(contents);
1146 }
1147 info.load_wasm_imports(tcx, cnum);
1148 }
1149 let missing = tcx.missing_lang_items(cnum);
1150 for &item in missing.iter() {
1151 if let Ok(id) = lang_items.require(item) {
1152 info.lang_item_to_crate.insert(item, id.krate);
1153 }
1154 }
1155
1156 // No need to look for lang items that are whitelisted and don't
1157 // actually need to exist.
1158 let missing = missing.iter()
1159 .cloned()
1160 .filter(|&l| !weak_lang_items::whitelisted(tcx, l))
1161 .collect();
1162 info.missing_lang_items.insert(cnum, missing);
1163 }
1164
1165 return info
1166 }
1167
1168 fn load_wasm_imports(&mut self, tcx: TyCtxt, cnum: CrateNum) {
1169 for (&id, module) in tcx.wasm_import_module_map(cnum).iter() {
1170 let instance = Instance::mono(tcx, id);
1171 let import_name = tcx.symbol_name(instance);
1172 self.wasm_imports.insert(import_name.to_string(), module.clone());
1173 }
1174 }
1175 }
1176
1177 fn is_translated_item(tcx: TyCtxt, id: DefId) -> bool {
1178 let (all_trans_items, _) =
1179 tcx.collect_and_partition_translation_items(LOCAL_CRATE);
1180 all_trans_items.contains(&id)
1181 }
1182
1183 fn compile_codegen_unit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1184 cgu: InternedString) -> Stats {
1185 let cgu = tcx.codegen_unit(cgu);
1186
1187 let start_time = Instant::now();
1188 let (stats, module) = module_translation(tcx, cgu);
1189 let time_to_translate = start_time.elapsed();
1190
1191 // We assume that the cost to run LLVM on a CGU is proportional to
1192 // the time we needed for translating it.
1193 let cost = time_to_translate.as_secs() * 1_000_000_000 +
1194 time_to_translate.subsec_nanos() as u64;
1195
1196 write::submit_translated_module_to_llvm(tcx,
1197 module,
1198 cost);
1199 return stats;
1200
1201 fn module_translation<'a, 'tcx>(
1202 tcx: TyCtxt<'a, 'tcx, 'tcx>,
1203 cgu: Arc<CodegenUnit<'tcx>>)
1204 -> (Stats, ModuleTranslation)
1205 {
1206 let cgu_name = cgu.name().to_string();
1207
1208 // Append ".rs" to LLVM module identifier.
1209 //
1210 // LLVM code generator emits a ".file filename" directive
1211 // for ELF backends. Value of the "filename" is set as the
1212 // LLVM module identifier. Due to a LLVM MC bug[1], LLVM
1213 // crashes if the module identifier is same as other symbols
1214 // such as a function name in the module.
1215 // 1. http://llvm.org/bugs/show_bug.cgi?id=11479
1216 let llmod_id = format!("{}-{}.rs",
1217 cgu.name(),
1218 tcx.crate_disambiguator(LOCAL_CRATE)
1219 .to_fingerprint().to_hex());
1220
1221 // Instantiate translation items without filling out definitions yet...
1222 let cx = CodegenCx::new(tcx, cgu, &llmod_id);
1223 let module = {
1224 let trans_items = cx.codegen_unit
1225 .items_in_deterministic_order(cx.tcx);
1226 for &(trans_item, (linkage, visibility)) in &trans_items {
1227 trans_item.predefine(&cx, linkage, visibility);
1228 }
1229
1230 // ... and now that we have everything pre-defined, fill out those definitions.
1231 for &(trans_item, _) in &trans_items {
1232 trans_item.define(&cx);
1233 }
1234
1235 // If this codegen unit contains the main function, also create the
1236 // wrapper here
1237 maybe_create_entry_wrapper(&cx);
1238
1239 // Run replace-all-uses-with for statics that need it
1240 for &(old_g, new_g) in cx.statics_to_rauw.borrow().iter() {
1241 unsafe {
1242 let bitcast = llvm::LLVMConstPointerCast(new_g, llvm::LLVMTypeOf(old_g));
1243 llvm::LLVMReplaceAllUsesWith(old_g, bitcast);
1244 llvm::LLVMDeleteGlobal(old_g);
1245 }
1246 }
1247
1248 // Create the llvm.used variable
1249 // This variable has type [N x i8*] and is stored in the llvm.metadata section
1250 if !cx.used_statics.borrow().is_empty() {
1251 let name = CString::new("llvm.used").unwrap();
1252 let section = CString::new("llvm.metadata").unwrap();
1253 let array = C_array(Type::i8(&cx).ptr_to(), &*cx.used_statics.borrow());
1254
1255 unsafe {
1256 let g = llvm::LLVMAddGlobal(cx.llmod,
1257 val_ty(array).to_ref(),
1258 name.as_ptr());
1259 llvm::LLVMSetInitializer(g, array);
1260 llvm::LLVMRustSetLinkage(g, llvm::Linkage::AppendingLinkage);
1261 llvm::LLVMSetSection(g, section.as_ptr());
1262 }
1263 }
1264
1265 // Finalize debuginfo
1266 if cx.sess().opts.debuginfo != NoDebugInfo {
1267 debuginfo::finalize(&cx);
1268 }
1269
1270 let llvm_module = ModuleLlvm {
1271 llcx: cx.llcx,
1272 llmod: cx.llmod,
1273 tm: create_target_machine(cx.sess(), false),
1274 };
1275
1276 ModuleTranslation {
1277 name: cgu_name,
1278 source: ModuleSource::Translated(llvm_module),
1279 kind: ModuleKind::Regular,
1280 llmod_id,
1281 }
1282 };
1283
1284 (cx.into_stats(), module)
1285 }
1286 }
1287
1288 pub fn provide(providers: &mut Providers) {
1289 providers.collect_and_partition_translation_items =
1290 collect_and_partition_translation_items;
1291
1292 providers.is_translated_item = is_translated_item;
1293
1294 providers.codegen_unit = |tcx, name| {
1295 let (_, all) = tcx.collect_and_partition_translation_items(LOCAL_CRATE);
1296 all.iter()
1297 .find(|cgu| *cgu.name() == name)
1298 .cloned()
1299 .expect(&format!("failed to find cgu with name {:?}", name))
1300 };
1301 providers.compile_codegen_unit = compile_codegen_unit;
1302
1303 provide_extern(providers);
1304 }
1305
1306 pub fn provide_extern(providers: &mut Providers) {
1307 providers.dllimport_foreign_items = |tcx, krate| {
1308 let module_map = tcx.foreign_modules(krate);
1309 let module_map = module_map.iter()
1310 .map(|lib| (lib.def_id, lib))
1311 .collect::<FxHashMap<_, _>>();
1312
1313 let dllimports = tcx.native_libraries(krate)
1314 .iter()
1315 .filter(|lib| {
1316 if lib.kind != cstore::NativeLibraryKind::NativeUnknown {
1317 return false
1318 }
1319 let cfg = match lib.cfg {
1320 Some(ref cfg) => cfg,
1321 None => return true,
1322 };
1323 attr::cfg_matches(cfg, &tcx.sess.parse_sess, None)
1324 })
1325 .filter_map(|lib| lib.foreign_module)
1326 .map(|id| &module_map[&id])
1327 .flat_map(|module| module.foreign_items.iter().cloned())
1328 .collect();
1329 Lrc::new(dllimports)
1330 };
1331
1332 providers.is_dllimport_foreign_item = |tcx, def_id| {
1333 tcx.dllimport_foreign_items(def_id.krate).contains(&def_id)
1334 };
1335 }
1336
1337 pub fn linkage_to_llvm(linkage: Linkage) -> llvm::Linkage {
1338 match linkage {
1339 Linkage::External => llvm::Linkage::ExternalLinkage,
1340 Linkage::AvailableExternally => llvm::Linkage::AvailableExternallyLinkage,
1341 Linkage::LinkOnceAny => llvm::Linkage::LinkOnceAnyLinkage,
1342 Linkage::LinkOnceODR => llvm::Linkage::LinkOnceODRLinkage,
1343 Linkage::WeakAny => llvm::Linkage::WeakAnyLinkage,
1344 Linkage::WeakODR => llvm::Linkage::WeakODRLinkage,
1345 Linkage::Appending => llvm::Linkage::AppendingLinkage,
1346 Linkage::Internal => llvm::Linkage::InternalLinkage,
1347 Linkage::Private => llvm::Linkage::PrivateLinkage,
1348 Linkage::ExternalWeak => llvm::Linkage::ExternalWeakLinkage,
1349 Linkage::Common => llvm::Linkage::CommonLinkage,
1350 }
1351 }
1352
1353 pub fn visibility_to_llvm(linkage: Visibility) -> llvm::Visibility {
1354 match linkage {
1355 Visibility::Default => llvm::Visibility::Default,
1356 Visibility::Hidden => llvm::Visibility::Hidden,
1357 Visibility::Protected => llvm::Visibility::Protected,
1358 }
1359 }
1360
1361 // FIXME(mw): Anything that is produced via DepGraph::with_task() must implement
1362 // the HashStable trait. Normally DepGraph::with_task() calls are
1363 // hidden behind queries, but CGU creation is a special case in two
1364 // ways: (1) it's not a query and (2) CGU are output nodes, so their
1365 // Fingerprints are not actually needed. It remains to be clarified
1366 // how exactly this case will be handled in the red/green system but
1367 // for now we content ourselves with providing a no-op HashStable
1368 // implementation for CGUs.
1369 mod temp_stable_hash_impls {
1370 use rustc_data_structures::stable_hasher::{StableHasherResult, StableHasher,
1371 HashStable};
1372 use ModuleTranslation;
1373
1374 impl<HCX> HashStable<HCX> for ModuleTranslation {
1375 fn hash_stable<W: StableHasherResult>(&self,
1376 _: &mut HCX,
1377 _: &mut StableHasher<W>) {
1378 // do nothing
1379 }
1380 }
1381 }
1382
1383 fn fetch_wasm_section(tcx: TyCtxt, id: DefId) -> (String, Vec<u8>) {
1384 use rustc::mir::interpret::{GlobalId, Value, PrimVal};
1385 use rustc::middle::const_val::ConstVal;
1386
1387 info!("loading wasm section {:?}", id);
1388
1389 let section = tcx.get_attrs(id)
1390 .iter()
1391 .find(|a| a.check_name("wasm_custom_section"))
1392 .expect("missing #[wasm_custom_section] attribute")
1393 .value_str()
1394 .expect("malformed #[wasm_custom_section] attribute");
1395
1396 let instance = ty::Instance::mono(tcx, id);
1397 let cid = GlobalId {
1398 instance,
1399 promoted: None
1400 };
1401 let param_env = ty::ParamEnv::reveal_all();
1402 let val = tcx.const_eval(param_env.and(cid)).unwrap();
1403
1404 let val = match val.val {
1405 ConstVal::Value(val) => val,
1406 ConstVal::Unevaluated(..) => bug!("should be evaluated"),
1407 };
1408 let val = match val {
1409 Value::ByRef(ptr, _align) => ptr.into_inner_primval(),
1410 ref v => bug!("should be ByRef, was {:?}", v),
1411 };
1412 let mem = match val {
1413 PrimVal::Ptr(mem) => mem,
1414 ref v => bug!("should be Ptr, was {:?}", v),
1415 };
1416 assert_eq!(mem.offset, 0);
1417 let alloc = tcx
1418 .interpret_interner
1419 .get_alloc(mem.alloc_id)
1420 .expect("miri allocation never successfully created");
1421 (section.to_string(), alloc.bytes.clone())
1422 }