]> git.proxmox.com Git - rustc.git/blob - src/librustc_trans/consts.rs
Imported Upstream version 1.9.0+dfsg1
[rustc.git] / src / librustc_trans / consts.rs
1 // Copyright 2012 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11
12 use llvm;
13 use llvm::{ConstFCmp, ConstICmp, SetLinkage, SetUnnamedAddr};
14 use llvm::{InternalLinkage, ValueRef, Bool, True};
15 use middle::const_qualif::ConstQualif;
16 use rustc_const_eval::{ConstEvalErr, lookup_const_fn_by_id, lookup_const_by_id, ErrKind};
17 use rustc_const_eval::eval_repeat_count;
18 use rustc::hir::def::Def;
19 use rustc::hir::def_id::DefId;
20 use rustc::hir::map as hir_map;
21 use {abi, adt, closure, debuginfo, expr, machine};
22 use base::{self, exported_name, imported_name, push_ctxt};
23 use callee::Callee;
24 use collector::{self, TransItem};
25 use common::{type_is_sized, C_nil, const_get_elt};
26 use common::{CrateContext, C_integral, C_floating, C_bool, C_str_slice, C_bytes, val_ty};
27 use common::{C_struct, C_undef, const_to_opt_int, const_to_opt_uint, VariantInfo, C_uint};
28 use common::{type_is_fat_ptr, Field, C_vector, C_array, C_null};
29 use datum::{Datum, Lvalue};
30 use declare;
31 use monomorphize::{self, Instance};
32 use type_::Type;
33 use type_of;
34 use value::Value;
35 use Disr;
36 use rustc::ty::subst::Substs;
37 use rustc::ty::adjustment::{AdjustDerefRef, AdjustReifyFnPointer};
38 use rustc::ty::adjustment::{AdjustUnsafeFnPointer, AdjustMutToConstPointer};
39 use rustc::ty::{self, Ty, TyCtxt};
40 use rustc::ty::cast::{CastTy,IntTy};
41 use util::nodemap::NodeMap;
42 use rustc_const_math::{ConstInt, ConstMathErr, ConstUsize, ConstIsize};
43
44 use rustc::hir;
45
46 use std::ffi::{CStr, CString};
47 use std::borrow::Cow;
48 use libc::c_uint;
49 use syntax::ast::{self, LitKind};
50 use syntax::attr::{self, AttrMetaMethods};
51 use syntax::parse::token;
52 use syntax::ptr::P;
53
54 pub type FnArgMap<'a> = Option<&'a NodeMap<ValueRef>>;
55
56 pub fn const_lit(cx: &CrateContext, e: &hir::Expr, lit: &ast::Lit)
57 -> ValueRef {
58 let _icx = push_ctxt("trans_lit");
59 debug!("const_lit: {:?}", lit);
60 match lit.node {
61 LitKind::Byte(b) => C_integral(Type::uint_from_ty(cx, ast::UintTy::U8), b as u64, false),
62 LitKind::Char(i) => C_integral(Type::char(cx), i as u64, false),
63 LitKind::Int(i, ast::LitIntType::Signed(t)) => {
64 C_integral(Type::int_from_ty(cx, t), i, true)
65 }
66 LitKind::Int(u, ast::LitIntType::Unsigned(t)) => {
67 C_integral(Type::uint_from_ty(cx, t), u, false)
68 }
69 LitKind::Int(i, ast::LitIntType::Unsuffixed) => {
70 let lit_int_ty = cx.tcx().node_id_to_type(e.id);
71 match lit_int_ty.sty {
72 ty::TyInt(t) => {
73 C_integral(Type::int_from_ty(cx, t), i as u64, true)
74 }
75 ty::TyUint(t) => {
76 C_integral(Type::uint_from_ty(cx, t), i as u64, false)
77 }
78 _ => span_bug!(lit.span,
79 "integer literal has type {:?} (expected int \
80 or usize)",
81 lit_int_ty)
82 }
83 }
84 LitKind::Float(ref fs, t) => {
85 C_floating(&fs, Type::float_from_ty(cx, t))
86 }
87 LitKind::FloatUnsuffixed(ref fs) => {
88 let lit_float_ty = cx.tcx().node_id_to_type(e.id);
89 match lit_float_ty.sty {
90 ty::TyFloat(t) => {
91 C_floating(&fs, Type::float_from_ty(cx, t))
92 }
93 _ => {
94 span_bug!(lit.span,
95 "floating point literal doesn't have the right type");
96 }
97 }
98 }
99 LitKind::Bool(b) => C_bool(cx, b),
100 LitKind::Str(ref s, _) => C_str_slice(cx, (*s).clone()),
101 LitKind::ByteStr(ref data) => {
102 addr_of(cx, C_bytes(cx, &data[..]), 1, "byte_str")
103 }
104 }
105 }
106
107 pub fn ptrcast(val: ValueRef, ty: Type) -> ValueRef {
108 unsafe {
109 llvm::LLVMConstPointerCast(val, ty.to_ref())
110 }
111 }
112
113 fn addr_of_mut(ccx: &CrateContext,
114 cv: ValueRef,
115 align: machine::llalign,
116 kind: &str)
117 -> ValueRef {
118 unsafe {
119 // FIXME: this totally needs a better name generation scheme, perhaps a simple global
120 // counter? Also most other uses of gensym in trans.
121 let gsym = token::gensym("_");
122 let name = format!("{}{}", kind, gsym.0);
123 let gv = declare::define_global(ccx, &name[..], val_ty(cv)).unwrap_or_else(||{
124 bug!("symbol `{}` is already defined", name);
125 });
126 llvm::LLVMSetInitializer(gv, cv);
127 llvm::LLVMSetAlignment(gv, align);
128 SetLinkage(gv, InternalLinkage);
129 SetUnnamedAddr(gv, true);
130 gv
131 }
132 }
133
134 pub fn addr_of(ccx: &CrateContext,
135 cv: ValueRef,
136 align: machine::llalign,
137 kind: &str)
138 -> ValueRef {
139 match ccx.const_globals().borrow().get(&cv) {
140 Some(&gv) => {
141 unsafe {
142 // Upgrade the alignment in cases where the same constant is used with different
143 // alignment requirements
144 if align > llvm::LLVMGetAlignment(gv) {
145 llvm::LLVMSetAlignment(gv, align);
146 }
147 }
148 return gv;
149 }
150 None => {}
151 }
152 let gv = addr_of_mut(ccx, cv, align, kind);
153 unsafe {
154 llvm::LLVMSetGlobalConstant(gv, True);
155 }
156 ccx.const_globals().borrow_mut().insert(cv, gv);
157 gv
158 }
159
160 /// Deref a constant pointer
161 fn load_const(cx: &CrateContext, v: ValueRef, t: Ty) -> ValueRef {
162 let v = match cx.const_unsized().borrow().get(&v) {
163 Some(&v) => v,
164 None => v
165 };
166 let d = unsafe { llvm::LLVMGetInitializer(v) };
167 if t.is_bool() {
168 unsafe { llvm::LLVMConstTrunc(d, Type::i1(cx).to_ref()) }
169 } else {
170 d
171 }
172 }
173
174 fn const_deref<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
175 v: ValueRef,
176 ty: Ty<'tcx>)
177 -> (ValueRef, Ty<'tcx>) {
178 match ty.builtin_deref(true, ty::NoPreference) {
179 Some(mt) => {
180 if type_is_sized(cx.tcx(), mt.ty) {
181 (load_const(cx, v, mt.ty), mt.ty)
182 } else {
183 // Derefing a fat pointer does not change the representation,
184 // just the type to the unsized contents.
185 (v, mt.ty)
186 }
187 }
188 None => {
189 bug!("unexpected dereferenceable type {:?}", ty)
190 }
191 }
192 }
193
194 fn const_fn_call<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
195 def_id: DefId,
196 substs: Substs<'tcx>,
197 arg_vals: &[ValueRef],
198 param_substs: &'tcx Substs<'tcx>,
199 trueconst: TrueConst) -> Result<ValueRef, ConstEvalFailure> {
200 let fn_like = lookup_const_fn_by_id(ccx.tcx(), def_id);
201 let fn_like = fn_like.expect("lookup_const_fn_by_id failed in const_fn_call");
202
203 let body = match fn_like.body().expr {
204 Some(ref expr) => expr,
205 None => return Ok(C_nil(ccx))
206 };
207
208 let args = &fn_like.decl().inputs;
209 assert_eq!(args.len(), arg_vals.len());
210
211 let arg_ids = args.iter().map(|arg| arg.pat.id);
212 let fn_args = arg_ids.zip(arg_vals.iter().cloned()).collect();
213
214 let substs = monomorphize::apply_param_substs(ccx.tcx(),
215 param_substs,
216 &substs.erase_regions());
217 let substs = ccx.tcx().mk_substs(substs);
218
219 const_expr(ccx, body, substs, Some(&fn_args), trueconst).map(|(res, _)| res)
220 }
221
222 pub fn get_const_expr<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
223 def_id: DefId,
224 ref_expr: &hir::Expr,
225 param_substs: &'tcx Substs<'tcx>)
226 -> &'tcx hir::Expr {
227 let substs = ccx.tcx().node_id_item_substs(ref_expr.id).substs;
228 let substs = monomorphize::apply_param_substs(ccx.tcx(),
229 param_substs,
230 &substs.erase_regions());
231 match lookup_const_by_id(ccx.tcx(), def_id, Some(substs)) {
232 Some((ref expr, _ty)) => expr,
233 None => {
234 span_bug!(ref_expr.span, "constant item not found")
235 }
236 }
237 }
238
239 pub enum ConstEvalFailure {
240 /// in case the const evaluator failed on something that panic at runtime
241 /// as defined in RFC 1229
242 Runtime(ConstEvalErr),
243 // in case we found a true constant
244 Compiletime(ConstEvalErr),
245 }
246
247 impl ConstEvalFailure {
248 fn into_inner(self) -> ConstEvalErr {
249 match self {
250 Runtime(e) => e,
251 Compiletime(e) => e,
252 }
253 }
254 pub fn description(&self) -> Cow<str> {
255 match self {
256 &Runtime(ref e) => e.description(),
257 &Compiletime(ref e) => e.description(),
258 }
259 }
260 }
261
262 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
263 pub enum TrueConst {
264 Yes, No
265 }
266
267 use self::ConstEvalFailure::*;
268
269 fn get_const_val<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
270 def_id: DefId,
271 ref_expr: &hir::Expr,
272 param_substs: &'tcx Substs<'tcx>)
273 -> Result<ValueRef, ConstEvalFailure> {
274 let expr = get_const_expr(ccx, def_id, ref_expr, param_substs);
275 let empty_substs = ccx.tcx().mk_substs(Substs::empty());
276 match get_const_expr_as_global(ccx, expr, ConstQualif::empty(), empty_substs, TrueConst::Yes) {
277 Err(Runtime(err)) => {
278 ccx.tcx().sess.span_err(expr.span, &err.description());
279 Err(Compiletime(err))
280 },
281 other => other,
282 }
283 }
284
285 pub fn get_const_expr_as_global<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
286 expr: &hir::Expr,
287 qualif: ConstQualif,
288 param_substs: &'tcx Substs<'tcx>,
289 trueconst: TrueConst)
290 -> Result<ValueRef, ConstEvalFailure> {
291 debug!("get_const_expr_as_global: {:?}", expr.id);
292 // Special-case constants to cache a common global for all uses.
293 if let hir::ExprPath(..) = expr.node {
294 // `def` must be its own statement and cannot be in the `match`
295 // otherwise the `def_map` will be borrowed for the entire match instead
296 // of just to get the `def` value
297 let def = ccx.tcx().def_map.borrow().get(&expr.id).unwrap().full_def();
298 match def {
299 Def::Const(def_id) | Def::AssociatedConst(def_id) => {
300 if !ccx.tcx().tables.borrow().adjustments.contains_key(&expr.id) {
301 debug!("get_const_expr_as_global ({:?}): found const {:?}",
302 expr.id, def_id);
303 return get_const_val(ccx, def_id, expr, param_substs);
304 }
305 },
306 _ => {},
307 }
308 }
309
310 let key = (expr.id, param_substs);
311 if let Some(&val) = ccx.const_values().borrow().get(&key) {
312 return Ok(val);
313 }
314 let ty = monomorphize::apply_param_substs(ccx.tcx(), param_substs,
315 &ccx.tcx().expr_ty(expr));
316 let val = if qualif.intersects(ConstQualif::NON_STATIC_BORROWS) {
317 // Avoid autorefs as they would create global instead of stack
318 // references, even when only the latter are correct.
319 const_expr_unadjusted(ccx, expr, ty, param_substs, None, trueconst)?
320 } else {
321 const_expr(ccx, expr, param_substs, None, trueconst)?.0
322 };
323
324 // boolean SSA values are i1, but they have to be stored in i8 slots,
325 // otherwise some LLVM optimization passes don't work as expected
326 let val = unsafe {
327 if llvm::LLVMTypeOf(val) == Type::i1(ccx).to_ref() {
328 llvm::LLVMConstZExt(val, Type::i8(ccx).to_ref())
329 } else {
330 val
331 }
332 };
333
334 let lvalue = addr_of(ccx, val, type_of::align_of(ccx, ty), "const");
335 ccx.const_values().borrow_mut().insert(key, lvalue);
336 Ok(lvalue)
337 }
338
339 pub fn const_expr<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
340 e: &hir::Expr,
341 param_substs: &'tcx Substs<'tcx>,
342 fn_args: FnArgMap,
343 trueconst: TrueConst)
344 -> Result<(ValueRef, Ty<'tcx>), ConstEvalFailure> {
345 let ety = monomorphize::apply_param_substs(cx.tcx(), param_substs,
346 &cx.tcx().expr_ty(e));
347 let llconst = const_expr_unadjusted(cx, e, ety, param_substs, fn_args, trueconst)?;
348 let mut llconst = llconst;
349 let mut ety_adjusted = monomorphize::apply_param_substs(cx.tcx(), param_substs,
350 &cx.tcx().expr_ty_adjusted(e));
351 let opt_adj = cx.tcx().tables.borrow().adjustments.get(&e.id).cloned();
352 match opt_adj {
353 Some(AdjustReifyFnPointer) => {
354 match ety.sty {
355 ty::TyFnDef(def_id, substs, _) => {
356 llconst = Callee::def(cx, def_id, substs).reify(cx).val;
357 }
358 _ => {
359 bug!("{} cannot be reified to a fn ptr", ety)
360 }
361 }
362 }
363 Some(AdjustUnsafeFnPointer) | Some(AdjustMutToConstPointer) => {
364 // purely a type-level thing
365 }
366 Some(AdjustDerefRef(adj)) => {
367 let mut ty = ety;
368 // Save the last autoderef in case we can avoid it.
369 if adj.autoderefs > 0 {
370 for _ in 0..adj.autoderefs-1 {
371 let (dv, dt) = const_deref(cx, llconst, ty);
372 llconst = dv;
373 ty = dt;
374 }
375 }
376
377 if adj.autoref.is_some() {
378 if adj.autoderefs == 0 {
379 // Don't copy data to do a deref+ref
380 // (i.e., skip the last auto-deref).
381 llconst = addr_of(cx, llconst, type_of::align_of(cx, ty), "autoref");
382 ty = cx.tcx().mk_imm_ref(cx.tcx().mk_region(ty::ReStatic), ty);
383 }
384 } else if adj.autoderefs > 0 {
385 let (dv, dt) = const_deref(cx, llconst, ty);
386 llconst = dv;
387
388 // If we derefed a fat pointer then we will have an
389 // open type here. So we need to update the type with
390 // the one returned from const_deref.
391 ety_adjusted = dt;
392 }
393
394 if let Some(target) = adj.unsize {
395 let target = monomorphize::apply_param_substs(cx.tcx(),
396 param_substs,
397 &target);
398
399 let pointee_ty = ty.builtin_deref(true, ty::NoPreference)
400 .expect("consts: unsizing got non-pointer type").ty;
401 let (base, old_info) = if !type_is_sized(cx.tcx(), pointee_ty) {
402 // Normally, the source is a thin pointer and we are
403 // adding extra info to make a fat pointer. The exception
404 // is when we are upcasting an existing object fat pointer
405 // to use a different vtable. In that case, we want to
406 // load out the original data pointer so we can repackage
407 // it.
408 (const_get_elt(llconst, &[abi::FAT_PTR_ADDR as u32]),
409 Some(const_get_elt(llconst, &[abi::FAT_PTR_EXTRA as u32])))
410 } else {
411 (llconst, None)
412 };
413
414 let unsized_ty = target.builtin_deref(true, ty::NoPreference)
415 .expect("consts: unsizing got non-pointer target type").ty;
416 let ptr_ty = type_of::in_memory_type_of(cx, unsized_ty).ptr_to();
417 let base = ptrcast(base, ptr_ty);
418 let info = base::unsized_info(cx, pointee_ty, unsized_ty, old_info);
419
420 if old_info.is_none() {
421 let prev_const = cx.const_unsized().borrow_mut()
422 .insert(base, llconst);
423 assert!(prev_const.is_none() || prev_const == Some(llconst));
424 }
425 assert_eq!(abi::FAT_PTR_ADDR, 0);
426 assert_eq!(abi::FAT_PTR_EXTRA, 1);
427 llconst = C_struct(cx, &[base, info], false);
428 }
429 }
430 None => {}
431 };
432
433 let llty = type_of::sizing_type_of(cx, ety_adjusted);
434 let csize = machine::llsize_of_alloc(cx, val_ty(llconst));
435 let tsize = machine::llsize_of_alloc(cx, llty);
436 if csize != tsize {
437 cx.sess().abort_if_errors();
438 unsafe {
439 // FIXME these values could use some context
440 llvm::LLVMDumpValue(llconst);
441 llvm::LLVMDumpValue(C_undef(llty));
442 }
443 bug!("const {:?} of type {:?} has size {} instead of {}",
444 e, ety_adjusted,
445 csize, tsize);
446 }
447 Ok((llconst, ety_adjusted))
448 }
449
450 fn check_unary_expr_validity(cx: &CrateContext, e: &hir::Expr, t: Ty,
451 te: ValueRef, trueconst: TrueConst) -> Result<(), ConstEvalFailure> {
452 // The only kind of unary expression that we check for validity
453 // here is `-expr`, to check if it "overflows" (e.g. `-i32::MIN`).
454 if let hir::ExprUnary(hir::UnNeg, ref inner_e) = e.node {
455
456 // An unfortunate special case: we parse e.g. -128 as a
457 // negation of the literal 128, which means if we're expecting
458 // a i8 (or if it was already suffixed, e.g. `-128_i8`), then
459 // 128 will have already overflowed to -128, and so then the
460 // constant evaluator thinks we're trying to negate -128.
461 //
462 // Catch this up front by looking for ExprLit directly,
463 // and just accepting it.
464 if let hir::ExprLit(_) = inner_e.node { return Ok(()); }
465 let cval = match to_const_int(te, t, cx.tcx()) {
466 Some(v) => v,
467 None => return Ok(()),
468 };
469 match -cval {
470 Ok(_) => return Ok(()),
471 Err(err) => const_err(cx, e, Err(err), trueconst),
472 }
473 } else {
474 Ok(())
475 }
476 }
477
478 fn to_const_int(value: ValueRef, t: Ty, tcx: &TyCtxt) -> Option<ConstInt> {
479 match t.sty {
480 ty::TyInt(int_type) => const_to_opt_int(value).and_then(|input| match int_type {
481 ast::IntTy::I8 => {
482 assert_eq!(input as i8 as i64, input);
483 Some(ConstInt::I8(input as i8))
484 },
485 ast::IntTy::I16 => {
486 assert_eq!(input as i16 as i64, input);
487 Some(ConstInt::I16(input as i16))
488 },
489 ast::IntTy::I32 => {
490 assert_eq!(input as i32 as i64, input);
491 Some(ConstInt::I32(input as i32))
492 },
493 ast::IntTy::I64 => {
494 Some(ConstInt::I64(input))
495 },
496 ast::IntTy::Is => {
497 ConstIsize::new(input, tcx.sess.target.int_type)
498 .ok().map(ConstInt::Isize)
499 },
500 }),
501 ty::TyUint(uint_type) => const_to_opt_uint(value).and_then(|input| match uint_type {
502 ast::UintTy::U8 => {
503 assert_eq!(input as u8 as u64, input);
504 Some(ConstInt::U8(input as u8))
505 },
506 ast::UintTy::U16 => {
507 assert_eq!(input as u16 as u64, input);
508 Some(ConstInt::U16(input as u16))
509 },
510 ast::UintTy::U32 => {
511 assert_eq!(input as u32 as u64, input);
512 Some(ConstInt::U32(input as u32))
513 },
514 ast::UintTy::U64 => {
515 Some(ConstInt::U64(input))
516 },
517 ast::UintTy::Us => {
518 ConstUsize::new(input, tcx.sess.target.uint_type)
519 .ok().map(ConstInt::Usize)
520 },
521 }),
522 _ => None,
523 }
524 }
525
526 fn const_err(cx: &CrateContext,
527 e: &hir::Expr,
528 result: Result<ConstInt, ConstMathErr>,
529 trueconst: TrueConst)
530 -> Result<(), ConstEvalFailure> {
531 match (result, trueconst) {
532 (Ok(_), _) => {
533 // We do not actually care about a successful result.
534 Ok(())
535 },
536 (Err(err), TrueConst::Yes) => {
537 let err = ConstEvalErr{ span: e.span, kind: ErrKind::Math(err) };
538 cx.tcx().sess.span_err(e.span, &err.description());
539 Err(Compiletime(err))
540 },
541 (Err(err), TrueConst::No) => {
542 let err = ConstEvalErr{ span: e.span, kind: ErrKind::Math(err) };
543 cx.tcx().sess.span_warn(e.span, &err.description());
544 Err(Runtime(err))
545 },
546 }
547 }
548
549 fn check_binary_expr_validity(cx: &CrateContext, e: &hir::Expr, t: Ty,
550 te1: ValueRef, te2: ValueRef,
551 trueconst: TrueConst) -> Result<(), ConstEvalFailure> {
552 let b = if let hir::ExprBinary(b, _, _) = e.node { b } else { bug!() };
553 let (lhs, rhs) = match (to_const_int(te1, t, cx.tcx()), to_const_int(te2, t, cx.tcx())) {
554 (Some(v1), Some(v2)) => (v1, v2),
555 _ => return Ok(()),
556 };
557 let result = match b.node {
558 hir::BiAdd => lhs + rhs,
559 hir::BiSub => lhs - rhs,
560 hir::BiMul => lhs * rhs,
561 hir::BiDiv => lhs / rhs,
562 hir::BiRem => lhs % rhs,
563 hir::BiShl => lhs << rhs,
564 hir::BiShr => lhs >> rhs,
565 _ => return Ok(()),
566 };
567 const_err(cx, e, result, trueconst)
568 }
569
570 fn const_expr_unadjusted<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
571 e: &hir::Expr,
572 ety: Ty<'tcx>,
573 param_substs: &'tcx Substs<'tcx>,
574 fn_args: FnArgMap,
575 trueconst: TrueConst)
576 -> Result<ValueRef, ConstEvalFailure>
577 {
578 debug!("const_expr_unadjusted(e={:?}, ety={:?}, param_substs={:?})",
579 e,
580 ety,
581 param_substs);
582
583 let map_list = |exprs: &[P<hir::Expr>]| -> Result<Vec<ValueRef>, ConstEvalFailure> {
584 exprs.iter()
585 .map(|e| const_expr(cx, &e, param_substs, fn_args, trueconst).map(|(l, _)| l))
586 .collect::<Vec<Result<ValueRef, ConstEvalFailure>>>()
587 .into_iter()
588 .collect()
589 // this dance is necessary to eagerly run const_expr so all errors are reported
590 };
591 let _icx = push_ctxt("const_expr");
592 Ok(match e.node {
593 hir::ExprLit(ref lit) => const_lit(cx, e, &lit),
594 hir::ExprBinary(b, ref e1, ref e2) => {
595 /* Neither type is bottom, and we expect them to be unified
596 * already, so the following is safe. */
597 let (te1, ty) = const_expr(cx, &e1, param_substs, fn_args, trueconst)?;
598 debug!("const_expr_unadjusted: te1={:?}, ty={:?}",
599 Value(te1), ty);
600 assert!(!ty.is_simd());
601 let is_float = ty.is_fp();
602 let signed = ty.is_signed();
603
604 let (te2, ty2) = const_expr(cx, &e2, param_substs, fn_args, trueconst)?;
605 debug!("const_expr_unadjusted: te2={:?}, ty={:?}",
606 Value(te2), ty2);
607
608 check_binary_expr_validity(cx, e, ty, te1, te2, trueconst)?;
609
610 unsafe { match b.node {
611 hir::BiAdd if is_float => llvm::LLVMConstFAdd(te1, te2),
612 hir::BiAdd => llvm::LLVMConstAdd(te1, te2),
613
614 hir::BiSub if is_float => llvm::LLVMConstFSub(te1, te2),
615 hir::BiSub => llvm::LLVMConstSub(te1, te2),
616
617 hir::BiMul if is_float => llvm::LLVMConstFMul(te1, te2),
618 hir::BiMul => llvm::LLVMConstMul(te1, te2),
619
620 hir::BiDiv if is_float => llvm::LLVMConstFDiv(te1, te2),
621 hir::BiDiv if signed => llvm::LLVMConstSDiv(te1, te2),
622 hir::BiDiv => llvm::LLVMConstUDiv(te1, te2),
623
624 hir::BiRem if is_float => llvm::LLVMConstFRem(te1, te2),
625 hir::BiRem if signed => llvm::LLVMConstSRem(te1, te2),
626 hir::BiRem => llvm::LLVMConstURem(te1, te2),
627
628 hir::BiAnd => llvm::LLVMConstAnd(te1, te2),
629 hir::BiOr => llvm::LLVMConstOr(te1, te2),
630 hir::BiBitXor => llvm::LLVMConstXor(te1, te2),
631 hir::BiBitAnd => llvm::LLVMConstAnd(te1, te2),
632 hir::BiBitOr => llvm::LLVMConstOr(te1, te2),
633 hir::BiShl => {
634 let te2 = base::cast_shift_const_rhs(b.node, te1, te2);
635 llvm::LLVMConstShl(te1, te2)
636 },
637 hir::BiShr => {
638 let te2 = base::cast_shift_const_rhs(b.node, te1, te2);
639 if signed { llvm::LLVMConstAShr(te1, te2) }
640 else { llvm::LLVMConstLShr(te1, te2) }
641 },
642 hir::BiEq | hir::BiNe | hir::BiLt | hir::BiLe | hir::BiGt | hir::BiGe => {
643 if is_float {
644 let cmp = base::bin_op_to_fcmp_predicate(b.node);
645 ConstFCmp(cmp, te1, te2)
646 } else {
647 let cmp = base::bin_op_to_icmp_predicate(b.node, signed);
648 ConstICmp(cmp, te1, te2)
649 }
650 },
651 } } // unsafe { match b.node {
652 },
653 hir::ExprUnary(u, ref inner_e) => {
654 let (te, ty) = const_expr(cx, &inner_e, param_substs, fn_args, trueconst)?;
655
656 check_unary_expr_validity(cx, e, ty, te, trueconst)?;
657
658 let is_float = ty.is_fp();
659 unsafe { match u {
660 hir::UnDeref => const_deref(cx, te, ty).0,
661 hir::UnNot => llvm::LLVMConstNot(te),
662 hir::UnNeg if is_float => llvm::LLVMConstFNeg(te),
663 hir::UnNeg => llvm::LLVMConstNeg(te),
664 } }
665 },
666 hir::ExprField(ref base, field) => {
667 let (bv, bt) = const_expr(cx, &base, param_substs, fn_args, trueconst)?;
668 let brepr = adt::represent_type(cx, bt);
669 let vinfo = VariantInfo::from_ty(cx.tcx(), bt, None);
670 let ix = vinfo.field_index(field.node);
671 adt::const_get_field(&brepr, bv, vinfo.discr, ix)
672 },
673 hir::ExprTupField(ref base, idx) => {
674 let (bv, bt) = const_expr(cx, &base, param_substs, fn_args, trueconst)?;
675 let brepr = adt::represent_type(cx, bt);
676 let vinfo = VariantInfo::from_ty(cx.tcx(), bt, None);
677 adt::const_get_field(&brepr, bv, vinfo.discr, idx.node)
678 },
679 hir::ExprIndex(ref base, ref index) => {
680 let (bv, bt) = const_expr(cx, &base, param_substs, fn_args, trueconst)?;
681 let iv = const_expr(cx, &index, param_substs, fn_args, TrueConst::Yes)?.0;
682 let iv = if let Some(iv) = const_to_opt_uint(iv) {
683 iv
684 } else {
685 span_bug!(index.span, "index is not an integer-constant expression");
686 };
687 let (arr, len) = match bt.sty {
688 ty::TyArray(_, u) => (bv, C_uint(cx, u)),
689 ty::TySlice(..) | ty::TyStr => {
690 let e1 = const_get_elt(bv, &[0]);
691 (load_const(cx, e1, bt), const_get_elt(bv, &[1]))
692 },
693 ty::TyRef(_, mt) => match mt.ty.sty {
694 ty::TyArray(_, u) => {
695 (load_const(cx, bv, mt.ty), C_uint(cx, u))
696 },
697 _ => span_bug!(base.span,
698 "index-expr base must be a vector \
699 or string type, found {:?}",
700 bt),
701 },
702 _ => span_bug!(base.span,
703 "index-expr base must be a vector \
704 or string type, found {:?}",
705 bt),
706 };
707
708 let len = unsafe { llvm::LLVMConstIntGetZExtValue(len) as u64 };
709 let len = match bt.sty {
710 ty::TyBox(ty) | ty::TyRef(_, ty::TypeAndMut{ty, ..}) => match ty.sty {
711 ty::TyStr => {
712 assert!(len > 0);
713 len - 1
714 },
715 _ => len,
716 },
717 _ => len,
718 };
719 if iv >= len {
720 // FIXME #3170: report this earlier on in the const-eval
721 // pass. Reporting here is a bit late.
722 span_err!(cx.sess(), e.span, E0515,
723 "const index-expr is out of bounds");
724 C_undef(val_ty(arr).element_type())
725 } else {
726 const_get_elt(arr, &[iv as c_uint])
727 }
728 },
729 hir::ExprCast(ref base, _) => {
730 let t_cast = ety;
731 let llty = type_of::type_of(cx, t_cast);
732 let (v, t_expr) = const_expr(cx, &base, param_substs, fn_args, trueconst)?;
733 debug!("trans_const_cast({:?} as {:?})", t_expr, t_cast);
734 if expr::cast_is_noop(cx.tcx(), base, t_expr, t_cast) {
735 return Ok(v);
736 }
737 if type_is_fat_ptr(cx.tcx(), t_expr) {
738 // Fat pointer casts.
739 let t_cast_inner =
740 t_cast.builtin_deref(true, ty::NoPreference).expect("cast to non-pointer").ty;
741 let ptr_ty = type_of::in_memory_type_of(cx, t_cast_inner).ptr_to();
742 let addr = ptrcast(const_get_elt(v, &[abi::FAT_PTR_ADDR as u32]),
743 ptr_ty);
744 if type_is_fat_ptr(cx.tcx(), t_cast) {
745 let info = const_get_elt(v, &[abi::FAT_PTR_EXTRA as u32]);
746 return Ok(C_struct(cx, &[addr, info], false))
747 } else {
748 return Ok(addr);
749 }
750 }
751 unsafe { match (
752 CastTy::from_ty(t_expr).expect("bad input type for cast"),
753 CastTy::from_ty(t_cast).expect("bad output type for cast"),
754 ) {
755 (CastTy::Int(IntTy::CEnum), CastTy::Int(_)) => {
756 let repr = adt::represent_type(cx, t_expr);
757 let discr = adt::const_get_discrim(&repr, v);
758 let iv = C_integral(cx.int_type(), discr.0, false);
759 let s = adt::is_discr_signed(&repr) as Bool;
760 llvm::LLVMConstIntCast(iv, llty.to_ref(), s)
761 },
762 (CastTy::Int(_), CastTy::Int(_)) => {
763 let s = t_expr.is_signed() as Bool;
764 llvm::LLVMConstIntCast(v, llty.to_ref(), s)
765 },
766 (CastTy::Int(_), CastTy::Float) => {
767 if t_expr.is_signed() {
768 llvm::LLVMConstSIToFP(v, llty.to_ref())
769 } else {
770 llvm::LLVMConstUIToFP(v, llty.to_ref())
771 }
772 },
773 (CastTy::Float, CastTy::Float) => llvm::LLVMConstFPCast(v, llty.to_ref()),
774 (CastTy::Float, CastTy::Int(IntTy::I)) => llvm::LLVMConstFPToSI(v, llty.to_ref()),
775 (CastTy::Float, CastTy::Int(_)) => llvm::LLVMConstFPToUI(v, llty.to_ref()),
776 (CastTy::Ptr(_), CastTy::Ptr(_)) | (CastTy::FnPtr, CastTy::Ptr(_))
777 | (CastTy::RPtr(_), CastTy::Ptr(_)) => {
778 ptrcast(v, llty)
779 },
780 (CastTy::FnPtr, CastTy::FnPtr) => ptrcast(v, llty), // isn't this a coercion?
781 (CastTy::Int(_), CastTy::Ptr(_)) => llvm::LLVMConstIntToPtr(v, llty.to_ref()),
782 (CastTy::Ptr(_), CastTy::Int(_)) | (CastTy::FnPtr, CastTy::Int(_)) => {
783 llvm::LLVMConstPtrToInt(v, llty.to_ref())
784 },
785 _ => {
786 span_bug!(e.span, "bad combination of types for cast")
787 },
788 } } // unsafe { match ( ... ) {
789 },
790 hir::ExprAddrOf(hir::MutImmutable, ref sub) => {
791 // If this is the address of some static, then we need to return
792 // the actual address of the static itself (short circuit the rest
793 // of const eval).
794 let mut cur = sub;
795 loop {
796 match cur.node {
797 hir::ExprBlock(ref blk) => {
798 if let Some(ref sub) = blk.expr {
799 cur = sub;
800 } else {
801 break;
802 }
803 },
804 _ => break,
805 }
806 }
807 let opt_def = cx.tcx().def_map.borrow().get(&cur.id).map(|d| d.full_def());
808 if let Some(Def::Static(def_id, _)) = opt_def {
809 get_static(cx, def_id).val
810 } else {
811 // If this isn't the address of a static, then keep going through
812 // normal constant evaluation.
813 let (v, ty) = const_expr(cx, &sub, param_substs, fn_args, trueconst)?;
814 addr_of(cx, v, type_of::align_of(cx, ty), "ref")
815 }
816 },
817 hir::ExprAddrOf(hir::MutMutable, ref sub) => {
818 let (v, ty) = const_expr(cx, &sub, param_substs, fn_args, trueconst)?;
819 addr_of_mut(cx, v, type_of::align_of(cx, ty), "ref_mut_slice")
820 },
821 hir::ExprTup(ref es) => {
822 let repr = adt::represent_type(cx, ety);
823 let vals = map_list(&es[..])?;
824 adt::trans_const(cx, &repr, Disr(0), &vals[..])
825 },
826 hir::ExprStruct(_, ref fs, ref base_opt) => {
827 let repr = adt::represent_type(cx, ety);
828
829 let base_val = match *base_opt {
830 Some(ref base) => Some(const_expr(
831 cx,
832 &base,
833 param_substs,
834 fn_args,
835 trueconst,
836 )?),
837 None => None
838 };
839
840 let VariantInfo { discr, fields } = VariantInfo::of_node(cx.tcx(), ety, e.id);
841 let cs = fields.iter().enumerate().map(|(ix, &Field(f_name, _))| {
842 match (fs.iter().find(|f| f_name == f.name.node), base_val) {
843 (Some(ref f), _) => {
844 const_expr(cx, &f.expr, param_substs, fn_args, trueconst).map(|(l, _)| l)
845 },
846 (_, Some((bv, _))) => Ok(adt::const_get_field(&repr, bv, discr, ix)),
847 (_, None) => span_bug!(e.span, "missing struct field"),
848 }
849 })
850 .collect::<Vec<Result<_, ConstEvalFailure>>>()
851 .into_iter()
852 .collect::<Result<Vec<_>,ConstEvalFailure>>();
853 let cs = cs?;
854 if ety.is_simd() {
855 C_vector(&cs[..])
856 } else {
857 adt::trans_const(cx, &repr, discr, &cs[..])
858 }
859 },
860 hir::ExprVec(ref es) => {
861 let unit_ty = ety.sequence_element_type(cx.tcx());
862 let llunitty = type_of::type_of(cx, unit_ty);
863 let vs = es.iter()
864 .map(|e| const_expr(
865 cx,
866 &e,
867 param_substs,
868 fn_args,
869 trueconst,
870 ).map(|(l, _)| l))
871 .collect::<Vec<Result<_, ConstEvalFailure>>>()
872 .into_iter()
873 .collect::<Result<Vec<_>, ConstEvalFailure>>();
874 let vs = vs?;
875 // If the vector contains enums, an LLVM array won't work.
876 if vs.iter().any(|vi| val_ty(*vi) != llunitty) {
877 C_struct(cx, &vs[..], false)
878 } else {
879 C_array(llunitty, &vs[..])
880 }
881 },
882 hir::ExprRepeat(ref elem, ref count) => {
883 let unit_ty = ety.sequence_element_type(cx.tcx());
884 let llunitty = type_of::type_of(cx, unit_ty);
885 let n = eval_repeat_count(cx.tcx(), count);
886 let unit_val = const_expr(cx, &elem, param_substs, fn_args, trueconst)?.0;
887 let vs = vec![unit_val; n];
888 if val_ty(unit_val) != llunitty {
889 C_struct(cx, &vs[..], false)
890 } else {
891 C_array(llunitty, &vs[..])
892 }
893 },
894 hir::ExprPath(..) => {
895 let def = cx.tcx().def_map.borrow().get(&e.id).unwrap().full_def();
896 match def {
897 Def::Local(_, id) => {
898 if let Some(val) = fn_args.and_then(|args| args.get(&id).cloned()) {
899 val
900 } else {
901 span_bug!(e.span, "const fn argument not found")
902 }
903 }
904 Def::Fn(..) | Def::Method(..) => C_nil(cx),
905 Def::Const(def_id) | Def::AssociatedConst(def_id) => {
906 load_const(cx, get_const_val(cx, def_id, e, param_substs)?,
907 ety)
908 }
909 Def::Variant(enum_did, variant_did) => {
910 let vinfo = cx.tcx().lookup_adt_def(enum_did).variant_with_id(variant_did);
911 match vinfo.kind() {
912 ty::VariantKind::Unit => {
913 let repr = adt::represent_type(cx, ety);
914 adt::trans_const(cx, &repr, Disr::from(vinfo.disr_val), &[])
915 }
916 ty::VariantKind::Tuple => C_nil(cx),
917 ty::VariantKind::Struct => {
918 span_bug!(e.span, "path-expr refers to a dict variant!")
919 }
920 }
921 }
922 // Unit struct or ctor.
923 Def::Struct(..) => C_null(type_of::type_of(cx, ety)),
924 _ => {
925 span_bug!(e.span, "expected a const, fn, struct, \
926 or variant def")
927 }
928 }
929 },
930 hir::ExprCall(ref callee, ref args) => {
931 let mut callee = &**callee;
932 loop {
933 callee = match callee.node {
934 hir::ExprBlock(ref block) => match block.expr {
935 Some(ref tail) => &tail,
936 None => break,
937 },
938 _ => break,
939 };
940 }
941 let def = cx.tcx().def_map.borrow()[&callee.id].full_def();
942 let arg_vals = map_list(args)?;
943 match def {
944 Def::Fn(did) | Def::Method(did) => {
945 const_fn_call(
946 cx,
947 did,
948 cx.tcx().node_id_item_substs(callee.id).substs,
949 &arg_vals,
950 param_substs,
951 trueconst,
952 )?
953 }
954 Def::Struct(..) => {
955 if ety.is_simd() {
956 C_vector(&arg_vals[..])
957 } else {
958 let repr = adt::represent_type(cx, ety);
959 adt::trans_const(cx, &repr, Disr(0), &arg_vals[..])
960 }
961 }
962 Def::Variant(enum_did, variant_did) => {
963 let repr = adt::represent_type(cx, ety);
964 let vinfo = cx.tcx().lookup_adt_def(enum_did).variant_with_id(variant_did);
965 adt::trans_const(cx,
966 &repr,
967 Disr::from(vinfo.disr_val),
968 &arg_vals[..])
969 }
970 _ => span_bug!(e.span, "expected a struct, variant, or const fn def"),
971 }
972 },
973 hir::ExprMethodCall(_, _, ref args) => {
974 let arg_vals = map_list(args)?;
975 let method_call = ty::MethodCall::expr(e.id);
976 let method = cx.tcx().tables.borrow().method_map[&method_call];
977 const_fn_call(cx, method.def_id, method.substs.clone(),
978 &arg_vals, param_substs, trueconst)?
979 },
980 hir::ExprType(ref e, _) => const_expr(cx, &e, param_substs, fn_args, trueconst)?.0,
981 hir::ExprBlock(ref block) => {
982 match block.expr {
983 Some(ref expr) => const_expr(
984 cx,
985 &expr,
986 param_substs,
987 fn_args,
988 trueconst,
989 )?.0,
990 None => C_nil(cx),
991 }
992 },
993 hir::ExprClosure(_, ref decl, ref body) => {
994 match ety.sty {
995 ty::TyClosure(def_id, ref substs) => {
996 closure::trans_closure_expr(closure::Dest::Ignore(cx),
997 decl,
998 body,
999 e.id,
1000 def_id,
1001 substs);
1002 }
1003 _ =>
1004 span_bug!(
1005 e.span,
1006 "bad type for closure expr: {:?}", ety)
1007 }
1008 C_null(type_of::type_of(cx, ety))
1009 },
1010 _ => span_bug!(e.span,
1011 "bad constant expression type in consts::const_expr"),
1012 })
1013 }
1014
1015 pub fn get_static<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, def_id: DefId)
1016 -> Datum<'tcx, Lvalue> {
1017 let ty = ccx.tcx().lookup_item_type(def_id).ty;
1018
1019 let instance = Instance::mono(ccx.tcx(), def_id);
1020 if let Some(&g) = ccx.instances().borrow().get(&instance) {
1021 return Datum::new(g, ty, Lvalue::new("static"));
1022 }
1023
1024 let g = if let Some(id) = ccx.tcx().map.as_local_node_id(def_id) {
1025 let llty = type_of::type_of(ccx, ty);
1026 match ccx.tcx().map.get(id) {
1027 hir_map::NodeItem(&hir::Item {
1028 ref attrs, span, node: hir::ItemStatic(..), ..
1029 }) => {
1030 // If this static came from an external crate, then
1031 // we need to get the symbol from metadata instead of
1032 // using the current crate's name/version
1033 // information in the hash of the symbol
1034 let sym = exported_name(ccx, instance, attrs);
1035 debug!("making {}", sym);
1036
1037 // Create the global before evaluating the initializer;
1038 // this is necessary to allow recursive statics.
1039 let g = declare::define_global(ccx, &sym, llty).unwrap_or_else(|| {
1040 ccx.sess().span_fatal(span,
1041 &format!("symbol `{}` is already defined", sym))
1042 });
1043
1044 ccx.item_symbols().borrow_mut().insert(id, sym);
1045 g
1046 }
1047
1048 hir_map::NodeForeignItem(&hir::ForeignItem {
1049 ref attrs, name, span, node: hir::ForeignItemStatic(..), ..
1050 }) => {
1051 let ident = imported_name(name, attrs);
1052 let g = if let Some(name) =
1053 attr::first_attr_value_str_by_name(&attrs, "linkage") {
1054 // If this is a static with a linkage specified, then we need to handle
1055 // it a little specially. The typesystem prevents things like &T and
1056 // extern "C" fn() from being non-null, so we can't just declare a
1057 // static and call it a day. Some linkages (like weak) will make it such
1058 // that the static actually has a null value.
1059 let linkage = match base::llvm_linkage_by_name(&name) {
1060 Some(linkage) => linkage,
1061 None => {
1062 ccx.sess().span_fatal(span, "invalid linkage specified");
1063 }
1064 };
1065 let llty2 = match ty.sty {
1066 ty::TyRawPtr(ref mt) => type_of::type_of(ccx, mt.ty),
1067 _ => {
1068 ccx.sess().span_fatal(span, "must have type `*const T` or `*mut T`");
1069 }
1070 };
1071 unsafe {
1072 // Declare a symbol `foo` with the desired linkage.
1073 let g1 = declare::declare_global(ccx, &ident, llty2);
1074 llvm::SetLinkage(g1, linkage);
1075
1076 // Declare an internal global `extern_with_linkage_foo` which
1077 // is initialized with the address of `foo`. If `foo` is
1078 // discarded during linking (for example, if `foo` has weak
1079 // linkage and there are no definitions), then
1080 // `extern_with_linkage_foo` will instead be initialized to
1081 // zero.
1082 let mut real_name = "_rust_extern_with_linkage_".to_string();
1083 real_name.push_str(&ident);
1084 let g2 = declare::define_global(ccx, &real_name, llty).unwrap_or_else(||{
1085 ccx.sess().span_fatal(span,
1086 &format!("symbol `{}` is already defined", ident))
1087 });
1088 llvm::SetLinkage(g2, llvm::InternalLinkage);
1089 llvm::LLVMSetInitializer(g2, g1);
1090 g2
1091 }
1092 } else {
1093 // Generate an external declaration.
1094 declare::declare_global(ccx, &ident, llty)
1095 };
1096
1097 for attr in attrs {
1098 if attr.check_name("thread_local") {
1099 llvm::set_thread_local(g, true);
1100 }
1101 }
1102
1103 g
1104 }
1105
1106 item => bug!("get_static: expected static, found {:?}", item)
1107 }
1108 } else {
1109 // FIXME(nagisa): perhaps the map of externs could be offloaded to llvm somehow?
1110 // FIXME(nagisa): investigate whether it can be changed into define_global
1111 let name = ccx.sess().cstore.item_symbol(def_id);
1112 let g = declare::declare_global(ccx, &name, type_of::type_of(ccx, ty));
1113 // Thread-local statics in some other crate need to *always* be linked
1114 // against in a thread-local fashion, so we need to be sure to apply the
1115 // thread-local attribute locally if it was present remotely. If we
1116 // don't do this then linker errors can be generated where the linker
1117 // complains that one object files has a thread local version of the
1118 // symbol and another one doesn't.
1119 for attr in ccx.tcx().get_attrs(def_id).iter() {
1120 if attr.check_name("thread_local") {
1121 llvm::set_thread_local(g, true);
1122 }
1123 }
1124 if ccx.use_dll_storage_attrs() {
1125 llvm::SetDLLStorageClass(g, llvm::DLLImportStorageClass);
1126 }
1127 g
1128 };
1129
1130 ccx.instances().borrow_mut().insert(instance, g);
1131 Datum::new(g, ty, Lvalue::new("static"))
1132 }
1133
1134 pub fn trans_static(ccx: &CrateContext,
1135 m: hir::Mutability,
1136 expr: &hir::Expr,
1137 id: ast::NodeId,
1138 attrs: &[ast::Attribute])
1139 -> Result<ValueRef, ConstEvalErr> {
1140
1141 if collector::collecting_debug_information(ccx) {
1142 ccx.record_translation_item_as_generated(TransItem::Static(id));
1143 }
1144
1145 unsafe {
1146 let _icx = push_ctxt("trans_static");
1147 let def_id = ccx.tcx().map.local_def_id(id);
1148 let datum = get_static(ccx, def_id);
1149
1150 let empty_substs = ccx.tcx().mk_substs(Substs::empty());
1151 let (v, _) = const_expr(
1152 ccx,
1153 expr,
1154 empty_substs,
1155 None,
1156 TrueConst::Yes,
1157 ).map_err(|e| e.into_inner())?;
1158
1159 // boolean SSA values are i1, but they have to be stored in i8 slots,
1160 // otherwise some LLVM optimization passes don't work as expected
1161 let mut val_llty = val_ty(v);
1162 let v = if val_llty == Type::i1(ccx) {
1163 val_llty = Type::i8(ccx);
1164 llvm::LLVMConstZExt(v, val_llty.to_ref())
1165 } else {
1166 v
1167 };
1168
1169 let llty = type_of::type_of(ccx, datum.ty);
1170 let g = if val_llty == llty {
1171 datum.val
1172 } else {
1173 // If we created the global with the wrong type,
1174 // correct the type.
1175 let empty_string = CString::new("").unwrap();
1176 let name_str_ref = CStr::from_ptr(llvm::LLVMGetValueName(datum.val));
1177 let name_string = CString::new(name_str_ref.to_bytes()).unwrap();
1178 llvm::LLVMSetValueName(datum.val, empty_string.as_ptr());
1179 let new_g = llvm::LLVMGetOrInsertGlobal(
1180 ccx.llmod(), name_string.as_ptr(), val_llty.to_ref());
1181 // To avoid breaking any invariants, we leave around the old
1182 // global for the moment; we'll replace all references to it
1183 // with the new global later. (See base::trans_crate.)
1184 ccx.statics_to_rauw().borrow_mut().push((datum.val, new_g));
1185 new_g
1186 };
1187 llvm::LLVMSetAlignment(g, type_of::align_of(ccx, datum.ty));
1188 llvm::LLVMSetInitializer(g, v);
1189
1190 // As an optimization, all shared statics which do not have interior
1191 // mutability are placed into read-only memory.
1192 if m != hir::MutMutable {
1193 let tcontents = datum.ty.type_contents(ccx.tcx());
1194 if !tcontents.interior_unsafe() {
1195 llvm::LLVMSetGlobalConstant(g, llvm::True);
1196 }
1197 }
1198
1199 debuginfo::create_global_var_metadata(ccx, id, g);
1200
1201 if attr::contains_name(attrs,
1202 "thread_local") {
1203 llvm::set_thread_local(g, true);
1204 }
1205 Ok(g)
1206 }
1207 }