]> git.proxmox.com Git - rustc.git/blob - src/librustc_trans/expr.rs
New upstream version 1.12.0+dfsg1
[rustc.git] / src / librustc_trans / expr.rs
1 // Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! # Translation of Expressions
12 //!
13 //! The expr module handles translation of expressions. The most general
14 //! translation routine is `trans()`, which will translate an expression
15 //! into a datum. `trans_into()` is also available, which will translate
16 //! an expression and write the result directly into memory, sometimes
17 //! avoiding the need for a temporary stack slot. Finally,
18 //! `trans_to_lvalue()` is available if you'd like to ensure that the
19 //! result has cleanup scheduled.
20 //!
21 //! Internally, each of these functions dispatches to various other
22 //! expression functions depending on the kind of expression. We divide
23 //! up expressions into:
24 //!
25 //! - **Datum expressions:** Those that most naturally yield values.
26 //! Examples would be `22`, `box x`, or `a + b` (when not overloaded).
27 //! - **DPS expressions:** Those that most naturally write into a location
28 //! in memory. Examples would be `foo()` or `Point { x: 3, y: 4 }`.
29 //! - **Statement expressions:** That that do not generate a meaningful
30 //! result. Examples would be `while { ... }` or `return 44`.
31 //!
32 //! Public entry points:
33 //!
34 //! - `trans_into(bcx, expr, dest) -> bcx`: evaluates an expression,
35 //! storing the result into `dest`. This is the preferred form, if you
36 //! can manage it.
37 //!
38 //! - `trans(bcx, expr) -> DatumBlock`: evaluates an expression, yielding
39 //! `Datum` with the result. You can then store the datum, inspect
40 //! the value, etc. This may introduce temporaries if the datum is a
41 //! structural type.
42 //!
43 //! - `trans_to_lvalue(bcx, expr, "...") -> DatumBlock`: evaluates an
44 //! expression and ensures that the result has a cleanup associated with it,
45 //! creating a temporary stack slot if necessary.
46 //!
47 //! - `trans_var -> Datum`: looks up a local variable, upvar or static.
48
49 #![allow(non_camel_case_types)]
50
51 pub use self::Dest::*;
52 use self::lazy_binop_ty::*;
53
54 use llvm::{self, ValueRef, TypeKind};
55 use middle::const_qualif::ConstQualif;
56 use rustc::hir::def::Def;
57 use rustc::ty::subst::Substs;
58 use {_match, abi, adt, asm, base, closure, consts, controlflow};
59 use base::*;
60 use build::*;
61 use callee::{Callee, ArgExprs, ArgOverloadedCall, ArgOverloadedOp};
62 use cleanup::{self, CleanupMethods, DropHintMethods};
63 use common::*;
64 use datum::*;
65 use debuginfo::{self, DebugLoc, ToDebugLoc};
66 use glue;
67 use machine;
68 use tvec;
69 use type_of;
70 use value::Value;
71 use Disr;
72 use rustc::ty::adjustment::{AdjustNeverToAny, AdjustDerefRef, AdjustReifyFnPointer};
73 use rustc::ty::adjustment::{AdjustUnsafeFnPointer, AdjustMutToConstPointer};
74 use rustc::ty::adjustment::CustomCoerceUnsized;
75 use rustc::ty::{self, Ty, TyCtxt};
76 use rustc::ty::MethodCall;
77 use rustc::ty::cast::{CastKind, CastTy};
78 use util::common::indenter;
79 use machine::{llsize_of, llsize_of_alloc};
80 use type_::Type;
81
82 use rustc::hir;
83
84 use syntax::ast;
85 use syntax::parse::token::InternedString;
86 use syntax_pos;
87 use std::fmt;
88 use std::mem;
89
90 // Destinations
91
92 // These are passed around by the code generating functions to track the
93 // destination of a computation's value.
94
95 #[derive(Copy, Clone, PartialEq)]
96 pub enum Dest {
97 SaveIn(ValueRef),
98 Ignore,
99 }
100
101 impl fmt::Debug for Dest {
102 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
103 match *self {
104 SaveIn(v) => write!(f, "SaveIn({:?})", Value(v)),
105 Ignore => f.write_str("Ignore")
106 }
107 }
108 }
109
110 /// This function is equivalent to `trans(bcx, expr).store_to_dest(dest)` but it may generate
111 /// better optimized LLVM code.
112 pub fn trans_into<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
113 expr: &hir::Expr,
114 dest: Dest)
115 -> Block<'blk, 'tcx> {
116 let mut bcx = bcx;
117
118 expr.debug_loc().apply(bcx.fcx);
119
120 if adjustment_required(bcx, expr) {
121 // use trans, which may be less efficient but
122 // which will perform the adjustments:
123 let datum = unpack_datum!(bcx, trans(bcx, expr));
124 return datum.store_to_dest(bcx, dest, expr.id);
125 }
126
127 let qualif = *bcx.tcx().const_qualif_map.borrow().get(&expr.id).unwrap();
128 if !qualif.intersects(ConstQualif::NOT_CONST | ConstQualif::NEEDS_DROP) {
129 if !qualif.intersects(ConstQualif::PREFER_IN_PLACE) {
130 if let SaveIn(lldest) = dest {
131 match consts::get_const_expr_as_global(bcx.ccx(), expr, qualif,
132 bcx.fcx.param_substs,
133 consts::TrueConst::No) {
134 Ok(global) => {
135 // Cast pointer to destination, because constants
136 // have different types.
137 let lldest = PointerCast(bcx, lldest, val_ty(global));
138 memcpy_ty(bcx, lldest, global, expr_ty_adjusted(bcx, expr));
139 return bcx;
140 },
141 Err(consts::ConstEvalFailure::Runtime(_)) => {
142 // in case const evaluation errors, translate normally
143 // debug assertions catch the same errors
144 // see RFC 1229
145 },
146 Err(consts::ConstEvalFailure::Compiletime(_)) => {
147 return bcx;
148 },
149 }
150 }
151
152 // If we see a const here, that's because it evaluates to a type with zero size. We
153 // should be able to just discard it, since const expressions are guaranteed not to
154 // have side effects. This seems to be reached through tuple struct constructors being
155 // passed zero-size constants.
156 if let hir::ExprPath(..) = expr.node {
157 match bcx.tcx().expect_def(expr.id) {
158 Def::Const(_) | Def::AssociatedConst(_) => {
159 assert!(type_is_zero_size(bcx.ccx(), bcx.tcx().node_id_to_type(expr.id)));
160 return bcx;
161 }
162 _ => {}
163 }
164 }
165
166 // Even if we don't have a value to emit, and the expression
167 // doesn't have any side-effects, we still have to translate the
168 // body of any closures.
169 // FIXME: Find a better way of handling this case.
170 } else {
171 // The only way we're going to see a `const` at this point is if
172 // it prefers in-place instantiation, likely because it contains
173 // `[x; N]` somewhere within.
174 match expr.node {
175 hir::ExprPath(..) => {
176 match bcx.tcx().expect_def(expr.id) {
177 Def::Const(did) | Def::AssociatedConst(did) => {
178 let empty_substs = bcx.tcx().mk_substs(Substs::empty());
179 let const_expr = consts::get_const_expr(bcx.ccx(), did, expr,
180 empty_substs);
181 // Temporarily get cleanup scopes out of the way,
182 // as they require sub-expressions to be contained
183 // inside the current AST scope.
184 // These should record no cleanups anyways, `const`
185 // can't have destructors.
186 let scopes = mem::replace(&mut *bcx.fcx.scopes.borrow_mut(),
187 vec![]);
188 // Lock emitted debug locations to the location of
189 // the constant reference expression.
190 debuginfo::with_source_location_override(bcx.fcx,
191 expr.debug_loc(),
192 || {
193 bcx = trans_into(bcx, const_expr, dest)
194 });
195 let scopes = mem::replace(&mut *bcx.fcx.scopes.borrow_mut(),
196 scopes);
197 assert!(scopes.is_empty());
198 return bcx;
199 }
200 _ => {}
201 }
202 }
203 _ => {}
204 }
205 }
206 }
207
208 debug!("trans_into() expr={:?}", expr);
209
210 let cleanup_debug_loc = debuginfo::get_cleanup_debug_loc_for_ast_node(bcx.ccx(),
211 expr.id,
212 expr.span,
213 false);
214 bcx.fcx.push_ast_cleanup_scope(cleanup_debug_loc);
215
216 let kind = expr_kind(bcx.tcx(), expr);
217 bcx = match kind {
218 ExprKind::Lvalue | ExprKind::RvalueDatum => {
219 trans_unadjusted(bcx, expr).store_to_dest(dest, expr.id)
220 }
221 ExprKind::RvalueDps => {
222 trans_rvalue_dps_unadjusted(bcx, expr, dest)
223 }
224 ExprKind::RvalueStmt => {
225 trans_rvalue_stmt_unadjusted(bcx, expr)
226 }
227 };
228
229 bcx.fcx.pop_and_trans_ast_cleanup_scope(bcx, expr.id)
230 }
231
232 /// Translates an expression, returning a datum (and new block) encapsulating the result. When
233 /// possible, it is preferred to use `trans_into`, as that may avoid creating a temporary on the
234 /// stack.
235 pub fn trans<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
236 expr: &hir::Expr)
237 -> DatumBlock<'blk, 'tcx, Expr> {
238 debug!("trans(expr={:?})", expr);
239
240 let mut bcx = bcx;
241 let fcx = bcx.fcx;
242 let qualif = *bcx.tcx().const_qualif_map.borrow().get(&expr.id).unwrap();
243 let adjusted_global = !qualif.intersects(ConstQualif::NON_STATIC_BORROWS);
244 let global = if !qualif.intersects(ConstQualif::NOT_CONST | ConstQualif::NEEDS_DROP) {
245 match consts::get_const_expr_as_global(bcx.ccx(), expr, qualif,
246 bcx.fcx.param_substs,
247 consts::TrueConst::No) {
248 Ok(global) => {
249 if qualif.intersects(ConstQualif::HAS_STATIC_BORROWS) {
250 // Is borrowed as 'static, must return lvalue.
251
252 // Cast pointer to global, because constants have different types.
253 let const_ty = expr_ty_adjusted(bcx, expr);
254 let llty = type_of::type_of(bcx.ccx(), const_ty);
255 let global = PointerCast(bcx, global, llty.ptr_to());
256 let datum = Datum::new(global, const_ty, Lvalue::new("expr::trans"));
257 return DatumBlock::new(bcx, datum.to_expr_datum());
258 }
259
260 // Otherwise, keep around and perform adjustments, if needed.
261 let const_ty = if adjusted_global {
262 expr_ty_adjusted(bcx, expr)
263 } else {
264 expr_ty(bcx, expr)
265 };
266
267 // This could use a better heuristic.
268 Some(if type_is_immediate(bcx.ccx(), const_ty) {
269 // Cast pointer to global, because constants have different types.
270 let llty = type_of::type_of(bcx.ccx(), const_ty);
271 let global = PointerCast(bcx, global, llty.ptr_to());
272 // Maybe just get the value directly, instead of loading it?
273 immediate_rvalue(load_ty(bcx, global, const_ty), const_ty)
274 } else {
275 let scratch = alloc_ty(bcx, const_ty, "const");
276 call_lifetime_start(bcx, scratch);
277 let lldest = if !const_ty.is_structural() {
278 // Cast pointer to slot, because constants have different types.
279 PointerCast(bcx, scratch, val_ty(global))
280 } else {
281 // In this case, memcpy_ty calls llvm.memcpy after casting both
282 // source and destination to i8*, so we don't need any casts.
283 scratch
284 };
285 memcpy_ty(bcx, lldest, global, const_ty);
286 Datum::new(scratch, const_ty, Rvalue::new(ByRef))
287 })
288 },
289 Err(consts::ConstEvalFailure::Runtime(_)) => {
290 // in case const evaluation errors, translate normally
291 // debug assertions catch the same errors
292 // see RFC 1229
293 None
294 },
295 Err(consts::ConstEvalFailure::Compiletime(_)) => {
296 // generate a dummy llvm value
297 let const_ty = expr_ty(bcx, expr);
298 let llty = type_of::type_of(bcx.ccx(), const_ty);
299 let dummy = C_undef(llty.ptr_to());
300 Some(Datum::new(dummy, const_ty, Rvalue::new(ByRef)))
301 },
302 }
303 } else {
304 None
305 };
306
307 let cleanup_debug_loc = debuginfo::get_cleanup_debug_loc_for_ast_node(bcx.ccx(),
308 expr.id,
309 expr.span,
310 false);
311 fcx.push_ast_cleanup_scope(cleanup_debug_loc);
312 let datum = match global {
313 Some(rvalue) => rvalue.to_expr_datum(),
314 None => unpack_datum!(bcx, trans_unadjusted(bcx, expr))
315 };
316 let datum = if adjusted_global {
317 datum // trans::consts already performed adjustments.
318 } else {
319 unpack_datum!(bcx, apply_adjustments(bcx, expr, datum))
320 };
321 bcx = fcx.pop_and_trans_ast_cleanup_scope(bcx, expr.id);
322 return DatumBlock::new(bcx, datum);
323 }
324
325 pub fn get_meta(bcx: Block, fat_ptr: ValueRef) -> ValueRef {
326 StructGEP(bcx, fat_ptr, abi::FAT_PTR_EXTRA)
327 }
328
329 pub fn get_dataptr(bcx: Block, fat_ptr: ValueRef) -> ValueRef {
330 StructGEP(bcx, fat_ptr, abi::FAT_PTR_ADDR)
331 }
332
333 pub fn copy_fat_ptr(bcx: Block, src_ptr: ValueRef, dst_ptr: ValueRef) {
334 Store(bcx, Load(bcx, get_dataptr(bcx, src_ptr)), get_dataptr(bcx, dst_ptr));
335 Store(bcx, Load(bcx, get_meta(bcx, src_ptr)), get_meta(bcx, dst_ptr));
336 }
337
338 fn adjustment_required<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
339 expr: &hir::Expr) -> bool {
340 let adjustment = match bcx.tcx().tables.borrow().adjustments.get(&expr.id).cloned() {
341 None => { return false; }
342 Some(adj) => adj
343 };
344
345 // Don't skip a conversion from Box<T> to &T, etc.
346 if bcx.tcx().is_overloaded_autoderef(expr.id, 0) {
347 return true;
348 }
349
350 match adjustment {
351 AdjustNeverToAny(..) => true,
352 AdjustReifyFnPointer => true,
353 AdjustUnsafeFnPointer | AdjustMutToConstPointer => {
354 // purely a type-level thing
355 false
356 }
357 AdjustDerefRef(ref adj) => {
358 // We are a bit paranoid about adjustments and thus might have a re-
359 // borrow here which merely derefs and then refs again (it might have
360 // a different region or mutability, but we don't care here).
361 !(adj.autoderefs == 1 && adj.autoref.is_some() && adj.unsize.is_none())
362 }
363 }
364 }
365
366 /// Helper for trans that apply adjustments from `expr` to `datum`, which should be the unadjusted
367 /// translation of `expr`.
368 fn apply_adjustments<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
369 expr: &hir::Expr,
370 datum: Datum<'tcx, Expr>)
371 -> DatumBlock<'blk, 'tcx, Expr>
372 {
373 let mut bcx = bcx;
374 let mut datum = datum;
375 let adjustment = match bcx.tcx().tables.borrow().adjustments.get(&expr.id).cloned() {
376 None => {
377 return DatumBlock::new(bcx, datum);
378 }
379 Some(adj) => { adj }
380 };
381 debug!("unadjusted datum for expr {:?}: {:?} adjustment={:?}",
382 expr, datum, adjustment);
383 match adjustment {
384 AdjustNeverToAny(ref target) => {
385 let mono_target = bcx.monomorphize(target);
386 let llty = type_of::type_of(bcx.ccx(), mono_target);
387 let dummy = C_undef(llty.ptr_to());
388 datum = Datum::new(dummy, mono_target, Lvalue::new("never")).to_expr_datum();
389 }
390 AdjustReifyFnPointer => {
391 match datum.ty.sty {
392 ty::TyFnDef(def_id, substs, _) => {
393 datum = Callee::def(bcx.ccx(), def_id, substs)
394 .reify(bcx.ccx()).to_expr_datum();
395 }
396 _ => {
397 bug!("{} cannot be reified to a fn ptr", datum.ty)
398 }
399 }
400 }
401 AdjustUnsafeFnPointer | AdjustMutToConstPointer => {
402 // purely a type-level thing
403 }
404 AdjustDerefRef(ref adj) => {
405 let skip_reborrows = if adj.autoderefs == 1 && adj.autoref.is_some() {
406 // We are a bit paranoid about adjustments and thus might have a re-
407 // borrow here which merely derefs and then refs again (it might have
408 // a different region or mutability, but we don't care here).
409 match datum.ty.sty {
410 // Don't skip a conversion from Box<T> to &T, etc.
411 ty::TyRef(..) => {
412 if bcx.tcx().is_overloaded_autoderef(expr.id, 0) {
413 // Don't skip an overloaded deref.
414 0
415 } else {
416 1
417 }
418 }
419 _ => 0
420 }
421 } else {
422 0
423 };
424
425 if adj.autoderefs > skip_reborrows {
426 // Schedule cleanup.
427 let lval = unpack_datum!(bcx, datum.to_lvalue_datum(bcx, "auto_deref", expr.id));
428 datum = unpack_datum!(bcx, deref_multiple(bcx, expr,
429 lval.to_expr_datum(),
430 adj.autoderefs - skip_reborrows));
431 }
432
433 // (You might think there is a more elegant way to do this than a
434 // skip_reborrows bool, but then you remember that the borrow checker exists).
435 if skip_reborrows == 0 && adj.autoref.is_some() {
436 datum = unpack_datum!(bcx, auto_ref(bcx, datum, expr));
437 }
438
439 if let Some(target) = adj.unsize {
440 // We do not arrange cleanup ourselves; if we already are an
441 // L-value, then cleanup will have already been scheduled (and
442 // the `datum.to_rvalue_datum` call below will emit code to zero
443 // the drop flag when moving out of the L-value). If we are an
444 // R-value, then we do not need to schedule cleanup.
445 let source_datum = unpack_datum!(bcx,
446 datum.to_rvalue_datum(bcx, "__coerce_source"));
447
448 let target = bcx.monomorphize(&target);
449
450 let scratch = alloc_ty(bcx, target, "__coerce_target");
451 call_lifetime_start(bcx, scratch);
452 let target_datum = Datum::new(scratch, target,
453 Rvalue::new(ByRef));
454 bcx = coerce_unsized(bcx, expr.span, source_datum, target_datum);
455 datum = Datum::new(scratch, target,
456 RvalueExpr(Rvalue::new(ByRef)));
457 }
458 }
459 }
460 debug!("after adjustments, datum={:?}", datum);
461 DatumBlock::new(bcx, datum)
462 }
463
464 fn coerce_unsized<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
465 span: syntax_pos::Span,
466 source: Datum<'tcx, Rvalue>,
467 target: Datum<'tcx, Rvalue>)
468 -> Block<'blk, 'tcx> {
469 let mut bcx = bcx;
470 debug!("coerce_unsized({:?} -> {:?})", source, target);
471
472 match (&source.ty.sty, &target.ty.sty) {
473 (&ty::TyBox(a), &ty::TyBox(b)) |
474 (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
475 &ty::TyRef(_, ty::TypeAndMut { ty: b, .. })) |
476 (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
477 &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) |
478 (&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }),
479 &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => {
480 let (inner_source, inner_target) = (a, b);
481
482 let (base, old_info) = if !type_is_sized(bcx.tcx(), inner_source) {
483 // Normally, the source is a thin pointer and we are
484 // adding extra info to make a fat pointer. The exception
485 // is when we are upcasting an existing object fat pointer
486 // to use a different vtable. In that case, we want to
487 // load out the original data pointer so we can repackage
488 // it.
489 (Load(bcx, get_dataptr(bcx, source.val)),
490 Some(Load(bcx, get_meta(bcx, source.val))))
491 } else {
492 let val = if source.kind.is_by_ref() {
493 load_ty(bcx, source.val, source.ty)
494 } else {
495 source.val
496 };
497 (val, None)
498 };
499
500 let info = unsized_info(bcx.ccx(), inner_source, inner_target, old_info);
501
502 // Compute the base pointer. This doesn't change the pointer value,
503 // but merely its type.
504 let ptr_ty = type_of::in_memory_type_of(bcx.ccx(), inner_target).ptr_to();
505 let base = PointerCast(bcx, base, ptr_ty);
506
507 Store(bcx, base, get_dataptr(bcx, target.val));
508 Store(bcx, info, get_meta(bcx, target.val));
509 }
510
511 // This can be extended to enums and tuples in the future.
512 // (&ty::TyEnum(def_id_a, _), &ty::TyEnum(def_id_b, _)) |
513 (&ty::TyStruct(def_id_a, _), &ty::TyStruct(def_id_b, _)) => {
514 assert_eq!(def_id_a, def_id_b);
515
516 // The target is already by-ref because it's to be written to.
517 let source = unpack_datum!(bcx, source.to_ref_datum(bcx));
518 assert!(target.kind.is_by_ref());
519
520 let kind = custom_coerce_unsize_info(bcx.ccx().shared(),
521 source.ty,
522 target.ty);
523
524 let repr_source = adt::represent_type(bcx.ccx(), source.ty);
525 let src_fields = match &*repr_source {
526 &adt::Repr::Univariant(ref s, _) => &s.fields,
527 _ => span_bug!(span,
528 "Non univariant struct? (repr_source: {:?})",
529 repr_source),
530 };
531 let repr_target = adt::represent_type(bcx.ccx(), target.ty);
532 let target_fields = match &*repr_target {
533 &adt::Repr::Univariant(ref s, _) => &s.fields,
534 _ => span_bug!(span,
535 "Non univariant struct? (repr_target: {:?})",
536 repr_target),
537 };
538
539 let coerce_index = match kind {
540 CustomCoerceUnsized::Struct(i) => i
541 };
542 assert!(coerce_index < src_fields.len() && src_fields.len() == target_fields.len());
543
544 let source_val = adt::MaybeSizedValue::sized(source.val);
545 let target_val = adt::MaybeSizedValue::sized(target.val);
546
547 let iter = src_fields.iter().zip(target_fields).enumerate();
548 for (i, (src_ty, target_ty)) in iter {
549 let ll_source = adt::trans_field_ptr(bcx, &repr_source, source_val, Disr(0), i);
550 let ll_target = adt::trans_field_ptr(bcx, &repr_target, target_val, Disr(0), i);
551
552 // If this is the field we need to coerce, recurse on it.
553 if i == coerce_index {
554 coerce_unsized(bcx, span,
555 Datum::new(ll_source, src_ty,
556 Rvalue::new(ByRef)),
557 Datum::new(ll_target, target_ty,
558 Rvalue::new(ByRef)));
559 } else {
560 // Otherwise, simply copy the data from the source.
561 assert!(src_ty.is_phantom_data() || src_ty == target_ty);
562 memcpy_ty(bcx, ll_target, ll_source, src_ty);
563 }
564 }
565 }
566 _ => bug!("coerce_unsized: invalid coercion {:?} -> {:?}",
567 source.ty,
568 target.ty)
569 }
570 bcx
571 }
572
573 /// Translates an expression in "lvalue" mode -- meaning that it returns a reference to the memory
574 /// that the expr represents.
575 ///
576 /// If this expression is an rvalue, this implies introducing a temporary. In other words,
577 /// something like `x().f` is translated into roughly the equivalent of
578 ///
579 /// { tmp = x(); tmp.f }
580 pub fn trans_to_lvalue<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
581 expr: &hir::Expr,
582 name: &str)
583 -> DatumBlock<'blk, 'tcx, Lvalue> {
584 let mut bcx = bcx;
585 let datum = unpack_datum!(bcx, trans(bcx, expr));
586 return datum.to_lvalue_datum(bcx, name, expr.id);
587 }
588
589 /// A version of `trans` that ignores adjustments. You almost certainly do not want to call this
590 /// directly.
591 fn trans_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
592 expr: &hir::Expr)
593 -> DatumBlock<'blk, 'tcx, Expr> {
594 let mut bcx = bcx;
595
596 debug!("trans_unadjusted(expr={:?})", expr);
597 let _indenter = indenter();
598
599 expr.debug_loc().apply(bcx.fcx);
600
601 return match expr_kind(bcx.tcx(), expr) {
602 ExprKind::Lvalue | ExprKind::RvalueDatum => {
603 let datum = unpack_datum!(bcx, {
604 trans_datum_unadjusted(bcx, expr)
605 });
606
607 DatumBlock {bcx: bcx, datum: datum}
608 }
609
610 ExprKind::RvalueStmt => {
611 bcx = trans_rvalue_stmt_unadjusted(bcx, expr);
612 nil(bcx, expr_ty(bcx, expr))
613 }
614
615 ExprKind::RvalueDps => {
616 let ty = expr_ty(bcx, expr);
617 if type_is_zero_size(bcx.ccx(), ty) {
618 bcx = trans_rvalue_dps_unadjusted(bcx, expr, Ignore);
619 nil(bcx, ty)
620 } else {
621 let scratch = rvalue_scratch_datum(bcx, ty, "");
622 bcx = trans_rvalue_dps_unadjusted(
623 bcx, expr, SaveIn(scratch.val));
624
625 // Note: this is not obviously a good idea. It causes
626 // immediate values to be loaded immediately after a
627 // return from a call or other similar expression,
628 // which in turn leads to alloca's having shorter
629 // lifetimes and hence larger stack frames. However,
630 // in turn it can lead to more register pressure.
631 // Still, in practice it seems to increase
632 // performance, since we have fewer problems with
633 // morestack churn.
634 let scratch = unpack_datum!(
635 bcx, scratch.to_appropriate_datum(bcx));
636
637 DatumBlock::new(bcx, scratch.to_expr_datum())
638 }
639 }
640 };
641
642 fn nil<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, ty: Ty<'tcx>)
643 -> DatumBlock<'blk, 'tcx, Expr> {
644 let llval = C_undef(type_of::type_of(bcx.ccx(), ty));
645 let datum = immediate_rvalue(llval, ty);
646 DatumBlock::new(bcx, datum.to_expr_datum())
647 }
648 }
649
650 fn trans_datum_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
651 expr: &hir::Expr)
652 -> DatumBlock<'blk, 'tcx, Expr> {
653 let mut bcx = bcx;
654 let fcx = bcx.fcx;
655 let _icx = push_ctxt("trans_datum_unadjusted");
656
657 match expr.node {
658 hir::ExprType(ref e, _) => {
659 trans(bcx, &e)
660 }
661 hir::ExprPath(..) => {
662 let var = trans_var(bcx, bcx.tcx().expect_def(expr.id));
663 DatumBlock::new(bcx, var.to_expr_datum())
664 }
665 hir::ExprField(ref base, name) => {
666 trans_rec_field(bcx, &base, name.node)
667 }
668 hir::ExprTupField(ref base, idx) => {
669 trans_rec_tup_field(bcx, &base, idx.node)
670 }
671 hir::ExprIndex(ref base, ref idx) => {
672 trans_index(bcx, expr, &base, &idx, MethodCall::expr(expr.id))
673 }
674 hir::ExprBox(ref contents) => {
675 // Special case for `Box<T>`
676 let box_ty = expr_ty(bcx, expr);
677 let contents_ty = expr_ty(bcx, &contents);
678 match box_ty.sty {
679 ty::TyBox(..) => {
680 trans_uniq_expr(bcx, expr, box_ty, &contents, contents_ty)
681 }
682 _ => span_bug!(expr.span,
683 "expected unique box")
684 }
685
686 }
687 hir::ExprLit(ref lit) => trans_immediate_lit(bcx, expr, &lit),
688 hir::ExprBinary(op, ref lhs, ref rhs) => {
689 trans_binary(bcx, expr, op, &lhs, &rhs)
690 }
691 hir::ExprUnary(op, ref x) => {
692 trans_unary(bcx, expr, op, &x)
693 }
694 hir::ExprAddrOf(_, ref x) => {
695 match x.node {
696 hir::ExprRepeat(..) | hir::ExprVec(..) => {
697 // Special case for slices.
698 let cleanup_debug_loc =
699 debuginfo::get_cleanup_debug_loc_for_ast_node(bcx.ccx(),
700 x.id,
701 x.span,
702 false);
703 fcx.push_ast_cleanup_scope(cleanup_debug_loc);
704 let datum = unpack_datum!(
705 bcx, tvec::trans_slice_vec(bcx, expr, &x));
706 bcx = fcx.pop_and_trans_ast_cleanup_scope(bcx, x.id);
707 DatumBlock::new(bcx, datum)
708 }
709 _ => {
710 trans_addr_of(bcx, expr, &x)
711 }
712 }
713 }
714 hir::ExprCast(ref val, _) => {
715 // Datum output mode means this is a scalar cast:
716 trans_imm_cast(bcx, &val, expr.id)
717 }
718 _ => {
719 span_bug!(
720 expr.span,
721 "trans_rvalue_datum_unadjusted reached \
722 fall-through case: {:?}",
723 expr.node);
724 }
725 }
726 }
727
728 fn trans_field<'blk, 'tcx, F>(bcx: Block<'blk, 'tcx>,
729 base: &hir::Expr,
730 get_idx: F)
731 -> DatumBlock<'blk, 'tcx, Expr> where
732 F: FnOnce(TyCtxt<'blk, 'tcx, 'tcx>, &VariantInfo<'tcx>) -> usize,
733 {
734 let mut bcx = bcx;
735 let _icx = push_ctxt("trans_rec_field");
736
737 let base_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, base, "field"));
738 let bare_ty = base_datum.ty;
739 let repr = adt::represent_type(bcx.ccx(), bare_ty);
740 let vinfo = VariantInfo::from_ty(bcx.tcx(), bare_ty, None);
741
742 let ix = get_idx(bcx.tcx(), &vinfo);
743 let d = base_datum.get_element(
744 bcx,
745 vinfo.fields[ix].1,
746 |srcval| {
747 adt::trans_field_ptr(bcx, &repr, srcval, vinfo.discr, ix)
748 });
749
750 if type_is_sized(bcx.tcx(), d.ty) {
751 DatumBlock { datum: d.to_expr_datum(), bcx: bcx }
752 } else {
753 let scratch = rvalue_scratch_datum(bcx, d.ty, "");
754 Store(bcx, d.val, get_dataptr(bcx, scratch.val));
755 let info = Load(bcx, get_meta(bcx, base_datum.val));
756 Store(bcx, info, get_meta(bcx, scratch.val));
757
758 // Always generate an lvalue datum, because this pointer doesn't own
759 // the data and cleanup is scheduled elsewhere.
760 DatumBlock::new(bcx, Datum::new(scratch.val, scratch.ty, LvalueExpr(d.kind)))
761 }
762 }
763
764 /// Translates `base.field`.
765 fn trans_rec_field<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
766 base: &hir::Expr,
767 field: ast::Name)
768 -> DatumBlock<'blk, 'tcx, Expr> {
769 trans_field(bcx, base, |_, vinfo| vinfo.field_index(field))
770 }
771
772 /// Translates `base.<idx>`.
773 fn trans_rec_tup_field<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
774 base: &hir::Expr,
775 idx: usize)
776 -> DatumBlock<'blk, 'tcx, Expr> {
777 trans_field(bcx, base, |_, _| idx)
778 }
779
780 fn trans_index<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
781 index_expr: &hir::Expr,
782 base: &hir::Expr,
783 idx: &hir::Expr,
784 method_call: MethodCall)
785 -> DatumBlock<'blk, 'tcx, Expr> {
786 //! Translates `base[idx]`.
787
788 let _icx = push_ctxt("trans_index");
789 let ccx = bcx.ccx();
790 let mut bcx = bcx;
791
792 let index_expr_debug_loc = index_expr.debug_loc();
793
794 // Check for overloaded index.
795 let method = ccx.tcx().tables.borrow().method_map.get(&method_call).cloned();
796 let elt_datum = match method {
797 Some(method) => {
798 let method_ty = monomorphize_type(bcx, method.ty);
799
800 let base_datum = unpack_datum!(bcx, trans(bcx, base));
801
802 // Translate index expression.
803 let ix_datum = unpack_datum!(bcx, trans(bcx, idx));
804
805 let ref_ty = // invoked methods have LB regions instantiated:
806 bcx.tcx().no_late_bound_regions(&method_ty.fn_ret()).unwrap();
807 let elt_ty = match ref_ty.builtin_deref(true, ty::NoPreference) {
808 None => {
809 span_bug!(index_expr.span,
810 "index method didn't return a \
811 dereferenceable type?!")
812 }
813 Some(elt_tm) => elt_tm.ty,
814 };
815
816 // Overloaded. Invoke the index() method, which basically
817 // yields a `&T` pointer. We can then proceed down the
818 // normal path (below) to dereference that `&T`.
819 let scratch = rvalue_scratch_datum(bcx, ref_ty, "overloaded_index_elt");
820
821 bcx = Callee::method(bcx, method)
822 .call(bcx, index_expr_debug_loc,
823 ArgOverloadedOp(base_datum, Some(ix_datum)),
824 Some(SaveIn(scratch.val))).bcx;
825
826 let datum = scratch.to_expr_datum();
827 let lval = Lvalue::new("expr::trans_index overload");
828 if type_is_sized(bcx.tcx(), elt_ty) {
829 Datum::new(datum.to_llscalarish(bcx), elt_ty, LvalueExpr(lval))
830 } else {
831 Datum::new(datum.val, elt_ty, LvalueExpr(lval))
832 }
833 }
834 None => {
835 let base_datum = unpack_datum!(bcx, trans_to_lvalue(bcx,
836 base,
837 "index"));
838
839 // Translate index expression and cast to a suitable LLVM integer.
840 // Rust is less strict than LLVM in this regard.
841 let ix_datum = unpack_datum!(bcx, trans(bcx, idx));
842 let ix_val = ix_datum.to_llscalarish(bcx);
843 let ix_size = machine::llbitsize_of_real(bcx.ccx(),
844 val_ty(ix_val));
845 let int_size = machine::llbitsize_of_real(bcx.ccx(),
846 ccx.int_type());
847 let ix_val = {
848 if ix_size < int_size {
849 if expr_ty(bcx, idx).is_signed() {
850 SExt(bcx, ix_val, ccx.int_type())
851 } else { ZExt(bcx, ix_val, ccx.int_type()) }
852 } else if ix_size > int_size {
853 Trunc(bcx, ix_val, ccx.int_type())
854 } else {
855 ix_val
856 }
857 };
858
859 let unit_ty = base_datum.ty.sequence_element_type(bcx.tcx());
860
861 let (base, len) = base_datum.get_vec_base_and_len(bcx);
862
863 debug!("trans_index: base {:?}", Value(base));
864 debug!("trans_index: len {:?}", Value(len));
865
866 let bounds_check = ICmp(bcx,
867 llvm::IntUGE,
868 ix_val,
869 len,
870 index_expr_debug_loc);
871 let expect = ccx.get_intrinsic(&("llvm.expect.i1"));
872 let expected = Call(bcx,
873 expect,
874 &[bounds_check, C_bool(ccx, false)],
875 index_expr_debug_loc);
876 bcx = with_cond(bcx, expected, |bcx| {
877 controlflow::trans_fail_bounds_check(bcx,
878 expr_info(index_expr),
879 ix_val,
880 len)
881 });
882 let elt = InBoundsGEP(bcx, base, &[ix_val]);
883 let elt = PointerCast(bcx, elt, type_of::type_of(ccx, unit_ty).ptr_to());
884 let lval = Lvalue::new("expr::trans_index fallback");
885 Datum::new(elt, unit_ty, LvalueExpr(lval))
886 }
887 };
888
889 DatumBlock::new(bcx, elt_datum)
890 }
891
892 /// Translates a reference to a variable.
893 pub fn trans_var<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, def: Def)
894 -> Datum<'tcx, Lvalue> {
895
896 match def {
897 Def::Static(did, _) => consts::get_static(bcx.ccx(), did),
898 Def::Upvar(_, nid, _, _) => {
899 // Can't move upvars, so this is never a ZeroMemLastUse.
900 let local_ty = node_id_type(bcx, nid);
901 let lval = Lvalue::new_with_hint("expr::trans_var (upvar)",
902 bcx, nid, HintKind::ZeroAndMaintain);
903 match bcx.fcx.llupvars.borrow().get(&nid) {
904 Some(&val) => Datum::new(val, local_ty, lval),
905 None => {
906 bug!("trans_var: no llval for upvar {} found", nid);
907 }
908 }
909 }
910 Def::Local(_, nid) => {
911 let datum = match bcx.fcx.lllocals.borrow().get(&nid) {
912 Some(&v) => v,
913 None => {
914 bug!("trans_var: no datum for local/arg {} found", nid);
915 }
916 };
917 debug!("take_local(nid={}, v={:?}, ty={})",
918 nid, Value(datum.val), datum.ty);
919 datum
920 }
921 _ => bug!("{:?} should not reach expr::trans_var", def)
922 }
923 }
924
925 fn trans_rvalue_stmt_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
926 expr: &hir::Expr)
927 -> Block<'blk, 'tcx> {
928 let mut bcx = bcx;
929 let _icx = push_ctxt("trans_rvalue_stmt");
930
931 if bcx.unreachable.get() {
932 return bcx;
933 }
934
935 expr.debug_loc().apply(bcx.fcx);
936
937 match expr.node {
938 hir::ExprBreak(label_opt) => {
939 controlflow::trans_break(bcx, expr, label_opt.map(|l| l.node))
940 }
941 hir::ExprType(ref e, _) => {
942 trans_into(bcx, &e, Ignore)
943 }
944 hir::ExprAgain(label_opt) => {
945 controlflow::trans_cont(bcx, expr, label_opt.map(|l| l.node))
946 }
947 hir::ExprRet(ref ex) => {
948 // Check to see if the return expression itself is reachable.
949 // This can occur when the inner expression contains a return
950 let reachable = if let Some(ref cfg) = bcx.fcx.cfg {
951 cfg.node_is_reachable(expr.id)
952 } else {
953 true
954 };
955
956 if reachable {
957 controlflow::trans_ret(bcx, expr, ex.as_ref().map(|e| &**e))
958 } else {
959 // If it's not reachable, just translate the inner expression
960 // directly. This avoids having to manage a return slot when
961 // it won't actually be used anyway.
962 if let &Some(ref x) = ex {
963 bcx = trans_into(bcx, &x, Ignore);
964 }
965 // Mark the end of the block as unreachable. Once we get to
966 // a return expression, there's no more we should be doing
967 // after this.
968 Unreachable(bcx);
969 bcx
970 }
971 }
972 hir::ExprWhile(ref cond, ref body, _) => {
973 controlflow::trans_while(bcx, expr, &cond, &body)
974 }
975 hir::ExprLoop(ref body, _) => {
976 controlflow::trans_loop(bcx, expr, &body)
977 }
978 hir::ExprAssign(ref dst, ref src) => {
979 let src_datum = unpack_datum!(bcx, trans(bcx, &src));
980 let dst_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, &dst, "assign"));
981
982 if bcx.fcx.type_needs_drop(dst_datum.ty) {
983 // If there are destructors involved, make sure we
984 // are copying from an rvalue, since that cannot possible
985 // alias an lvalue. We are concerned about code like:
986 //
987 // a = a
988 //
989 // but also
990 //
991 // a = a.b
992 //
993 // where e.g. a : Option<Foo> and a.b :
994 // Option<Foo>. In that case, freeing `a` before the
995 // assignment may also free `a.b`!
996 //
997 // We could avoid this intermediary with some analysis
998 // to determine whether `dst` may possibly own `src`.
999 expr.debug_loc().apply(bcx.fcx);
1000 let src_datum = unpack_datum!(
1001 bcx, src_datum.to_rvalue_datum(bcx, "ExprAssign"));
1002 let opt_hint_datum = dst_datum.kind.drop_flag_info.hint_datum(bcx);
1003 let opt_hint_val = opt_hint_datum.map(|d|d.to_value());
1004
1005 // 1. Drop the data at the destination, passing the
1006 // drop-hint in case the lvalue has already been
1007 // dropped or moved.
1008 bcx = glue::drop_ty_core(bcx,
1009 dst_datum.val,
1010 dst_datum.ty,
1011 expr.debug_loc(),
1012 false,
1013 opt_hint_val);
1014
1015 // 2. We are overwriting the destination; ensure that
1016 // its drop-hint (if any) says "initialized."
1017 if let Some(hint_val) = opt_hint_val {
1018 let hint_llval = hint_val.value();
1019 let drop_needed = C_u8(bcx.fcx.ccx, adt::DTOR_NEEDED_HINT);
1020 Store(bcx, drop_needed, hint_llval);
1021 }
1022 src_datum.store_to(bcx, dst_datum.val)
1023 } else {
1024 src_datum.store_to(bcx, dst_datum.val)
1025 }
1026 }
1027 hir::ExprAssignOp(op, ref dst, ref src) => {
1028 let method = bcx.tcx().tables
1029 .borrow()
1030 .method_map
1031 .get(&MethodCall::expr(expr.id)).cloned();
1032
1033 if let Some(method) = method {
1034 let dst = unpack_datum!(bcx, trans(bcx, &dst));
1035 let src_datum = unpack_datum!(bcx, trans(bcx, &src));
1036
1037 Callee::method(bcx, method)
1038 .call(bcx, expr.debug_loc(),
1039 ArgOverloadedOp(dst, Some(src_datum)), None).bcx
1040 } else {
1041 trans_assign_op(bcx, expr, op, &dst, &src)
1042 }
1043 }
1044 hir::ExprInlineAsm(ref a, ref outputs, ref inputs) => {
1045 let outputs = outputs.iter().map(|output| {
1046 let out_datum = unpack_datum!(bcx, trans(bcx, output));
1047 unpack_datum!(bcx, out_datum.to_lvalue_datum(bcx, "out", expr.id))
1048 }).collect();
1049 let inputs = inputs.iter().map(|input| {
1050 let input = unpack_datum!(bcx, trans(bcx, input));
1051 let input = unpack_datum!(bcx, input.to_rvalue_datum(bcx, "in"));
1052 input.to_llscalarish(bcx)
1053 }).collect();
1054 asm::trans_inline_asm(bcx, a, outputs, inputs);
1055 bcx
1056 }
1057 _ => {
1058 span_bug!(
1059 expr.span,
1060 "trans_rvalue_stmt_unadjusted reached \
1061 fall-through case: {:?}",
1062 expr.node);
1063 }
1064 }
1065 }
1066
1067 fn trans_rvalue_dps_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
1068 expr: &hir::Expr,
1069 dest: Dest)
1070 -> Block<'blk, 'tcx> {
1071 let _icx = push_ctxt("trans_rvalue_dps_unadjusted");
1072 let mut bcx = bcx;
1073
1074 expr.debug_loc().apply(bcx.fcx);
1075
1076 // Entry into the method table if this is an overloaded call/op.
1077 let method_call = MethodCall::expr(expr.id);
1078
1079 match expr.node {
1080 hir::ExprType(ref e, _) => {
1081 trans_into(bcx, &e, dest)
1082 }
1083 hir::ExprPath(..) => {
1084 trans_def_dps_unadjusted(bcx, expr, bcx.tcx().expect_def(expr.id), dest)
1085 }
1086 hir::ExprIf(ref cond, ref thn, ref els) => {
1087 controlflow::trans_if(bcx, expr.id, &cond, &thn, els.as_ref().map(|e| &**e), dest)
1088 }
1089 hir::ExprMatch(ref discr, ref arms, _) => {
1090 _match::trans_match(bcx, expr, &discr, &arms[..], dest)
1091 }
1092 hir::ExprBlock(ref blk) => {
1093 controlflow::trans_block(bcx, &blk, dest)
1094 }
1095 hir::ExprStruct(_, ref fields, ref base) => {
1096 trans_struct(bcx,
1097 &fields[..],
1098 base.as_ref().map(|e| &**e),
1099 expr.span,
1100 expr.id,
1101 node_id_type(bcx, expr.id),
1102 dest)
1103 }
1104 hir::ExprTup(ref args) => {
1105 let numbered_fields: Vec<(usize, &hir::Expr)> =
1106 args.iter().enumerate().map(|(i, arg)| (i, &**arg)).collect();
1107 trans_adt(bcx,
1108 expr_ty(bcx, expr),
1109 Disr(0),
1110 &numbered_fields[..],
1111 None,
1112 dest,
1113 expr.debug_loc())
1114 }
1115 hir::ExprLit(ref lit) => {
1116 match lit.node {
1117 ast::LitKind::Str(ref s, _) => {
1118 tvec::trans_lit_str(bcx, expr, (*s).clone(), dest)
1119 }
1120 _ => {
1121 span_bug!(expr.span,
1122 "trans_rvalue_dps_unadjusted shouldn't be \
1123 translating this type of literal")
1124 }
1125 }
1126 }
1127 hir::ExprVec(..) | hir::ExprRepeat(..) => {
1128 tvec::trans_fixed_vstore(bcx, expr, dest)
1129 }
1130 hir::ExprClosure(_, ref decl, ref body, _) => {
1131 let dest = match dest {
1132 SaveIn(lldest) => closure::Dest::SaveIn(bcx, lldest),
1133 Ignore => closure::Dest::Ignore(bcx.ccx())
1134 };
1135
1136 // NB. To get the id of the closure, we don't use
1137 // `local_def_id(id)`, but rather we extract the closure
1138 // def-id from the expr's type. This is because this may
1139 // be an inlined expression from another crate, and we
1140 // want to get the ORIGINAL closure def-id, since that is
1141 // the key we need to find the closure-kind and
1142 // closure-type etc.
1143 let (def_id, substs) = match expr_ty(bcx, expr).sty {
1144 ty::TyClosure(def_id, substs) => (def_id, substs),
1145 ref t =>
1146 span_bug!(
1147 expr.span,
1148 "closure expr without closure type: {:?}", t),
1149 };
1150
1151 closure::trans_closure_expr(dest,
1152 decl,
1153 body,
1154 expr.id,
1155 def_id,
1156 substs).unwrap_or(bcx)
1157 }
1158 hir::ExprCall(ref f, ref args) => {
1159 let method = bcx.tcx().tables.borrow().method_map.get(&method_call).cloned();
1160 let (callee, args) = if let Some(method) = method {
1161 let mut all_args = vec![&**f];
1162 all_args.extend(args.iter().map(|e| &**e));
1163
1164 (Callee::method(bcx, method), ArgOverloadedCall(all_args))
1165 } else {
1166 let f = unpack_datum!(bcx, trans(bcx, f));
1167 (match f.ty.sty {
1168 ty::TyFnDef(def_id, substs, _) => {
1169 Callee::def(bcx.ccx(), def_id, substs)
1170 }
1171 ty::TyFnPtr(_) => {
1172 let f = unpack_datum!(bcx,
1173 f.to_rvalue_datum(bcx, "callee"));
1174 Callee::ptr(f)
1175 }
1176 _ => {
1177 span_bug!(expr.span,
1178 "type of callee is not a fn: {}", f.ty);
1179 }
1180 }, ArgExprs(&args))
1181 };
1182 callee.call(bcx, expr.debug_loc(), args, Some(dest)).bcx
1183 }
1184 hir::ExprMethodCall(_, _, ref args) => {
1185 Callee::method_call(bcx, method_call)
1186 .call(bcx, expr.debug_loc(), ArgExprs(&args), Some(dest)).bcx
1187 }
1188 hir::ExprBinary(op, ref lhs, ref rhs_expr) => {
1189 // if not overloaded, would be RvalueDatumExpr
1190 let lhs = unpack_datum!(bcx, trans(bcx, &lhs));
1191 let mut rhs = unpack_datum!(bcx, trans(bcx, &rhs_expr));
1192 if !op.node.is_by_value() {
1193 rhs = unpack_datum!(bcx, auto_ref(bcx, rhs, rhs_expr));
1194 }
1195
1196 Callee::method_call(bcx, method_call)
1197 .call(bcx, expr.debug_loc(),
1198 ArgOverloadedOp(lhs, Some(rhs)), Some(dest)).bcx
1199 }
1200 hir::ExprUnary(_, ref subexpr) => {
1201 // if not overloaded, would be RvalueDatumExpr
1202 let arg = unpack_datum!(bcx, trans(bcx, &subexpr));
1203
1204 Callee::method_call(bcx, method_call)
1205 .call(bcx, expr.debug_loc(),
1206 ArgOverloadedOp(arg, None), Some(dest)).bcx
1207 }
1208 hir::ExprCast(..) => {
1209 // Trait casts used to come this way, now they should be coercions.
1210 span_bug!(expr.span, "DPS expr_cast (residual trait cast?)")
1211 }
1212 hir::ExprAssignOp(op, _, _) => {
1213 span_bug!(
1214 expr.span,
1215 "augmented assignment `{}=` should always be a rvalue_stmt",
1216 op.node.as_str())
1217 }
1218 _ => {
1219 span_bug!(
1220 expr.span,
1221 "trans_rvalue_dps_unadjusted reached fall-through \
1222 case: {:?}",
1223 expr.node);
1224 }
1225 }
1226 }
1227
1228 fn trans_def_dps_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
1229 ref_expr: &hir::Expr,
1230 def: Def,
1231 dest: Dest)
1232 -> Block<'blk, 'tcx> {
1233 let _icx = push_ctxt("trans_def_dps_unadjusted");
1234
1235 let lldest = match dest {
1236 SaveIn(lldest) => lldest,
1237 Ignore => { return bcx; }
1238 };
1239
1240 let ty = expr_ty(bcx, ref_expr);
1241 if let ty::TyFnDef(..) = ty.sty {
1242 // Zero-sized function or ctor.
1243 return bcx;
1244 }
1245
1246 match def {
1247 Def::Variant(tid, vid) => {
1248 let variant = bcx.tcx().lookup_adt_def(tid).variant_with_id(vid);
1249 // Nullary variant.
1250 let ty = expr_ty(bcx, ref_expr);
1251 let repr = adt::represent_type(bcx.ccx(), ty);
1252 adt::trans_set_discr(bcx, &repr, lldest, Disr::from(variant.disr_val));
1253 bcx
1254 }
1255 Def::Struct(..) => {
1256 match ty.sty {
1257 ty::TyStruct(def, _) if def.has_dtor() => {
1258 let repr = adt::represent_type(bcx.ccx(), ty);
1259 adt::trans_set_discr(bcx, &repr, lldest, Disr(0));
1260 }
1261 _ => {}
1262 }
1263 bcx
1264 }
1265 _ => {
1266 span_bug!(ref_expr.span,
1267 "Non-DPS def {:?} referened by {}",
1268 def, bcx.node_id_to_string(ref_expr.id));
1269 }
1270 }
1271 }
1272
1273 fn trans_struct<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
1274 fields: &[hir::Field],
1275 base: Option<&hir::Expr>,
1276 expr_span: syntax_pos::Span,
1277 expr_id: ast::NodeId,
1278 ty: Ty<'tcx>,
1279 dest: Dest) -> Block<'blk, 'tcx> {
1280 let _icx = push_ctxt("trans_rec");
1281
1282 let tcx = bcx.tcx();
1283 let vinfo = VariantInfo::of_node(tcx, ty, expr_id);
1284
1285 let mut need_base = vec![true; vinfo.fields.len()];
1286
1287 let numbered_fields = fields.iter().map(|field| {
1288 let pos = vinfo.field_index(field.name.node);
1289 need_base[pos] = false;
1290 (pos, &*field.expr)
1291 }).collect::<Vec<_>>();
1292
1293 let optbase = match base {
1294 Some(base_expr) => {
1295 let mut leftovers = Vec::new();
1296 for (i, b) in need_base.iter().enumerate() {
1297 if *b {
1298 leftovers.push((i, vinfo.fields[i].1));
1299 }
1300 }
1301 Some(StructBaseInfo {expr: base_expr,
1302 fields: leftovers })
1303 }
1304 None => {
1305 if need_base.iter().any(|b| *b) {
1306 span_bug!(expr_span, "missing fields and no base expr")
1307 }
1308 None
1309 }
1310 };
1311
1312 trans_adt(bcx,
1313 ty,
1314 vinfo.discr,
1315 &numbered_fields,
1316 optbase,
1317 dest,
1318 DebugLoc::At(expr_id, expr_span))
1319 }
1320
1321 /// Information that `trans_adt` needs in order to fill in the fields
1322 /// of a struct copied from a base struct (e.g., from an expression
1323 /// like `Foo { a: b, ..base }`.
1324 ///
1325 /// Note that `fields` may be empty; the base expression must always be
1326 /// evaluated for side-effects.
1327 pub struct StructBaseInfo<'a, 'tcx> {
1328 /// The base expression; will be evaluated after all explicit fields.
1329 expr: &'a hir::Expr,
1330 /// The indices of fields to copy paired with their types.
1331 fields: Vec<(usize, Ty<'tcx>)>
1332 }
1333
1334 /// Constructs an ADT instance:
1335 ///
1336 /// - `fields` should be a list of field indices paired with the
1337 /// expression to store into that field. The initializers will be
1338 /// evaluated in the order specified by `fields`.
1339 ///
1340 /// - `optbase` contains information on the base struct (if any) from
1341 /// which remaining fields are copied; see comments on `StructBaseInfo`.
1342 pub fn trans_adt<'a, 'blk, 'tcx>(mut bcx: Block<'blk, 'tcx>,
1343 ty: Ty<'tcx>,
1344 discr: Disr,
1345 fields: &[(usize, &hir::Expr)],
1346 optbase: Option<StructBaseInfo<'a, 'tcx>>,
1347 dest: Dest,
1348 debug_location: DebugLoc)
1349 -> Block<'blk, 'tcx> {
1350 let _icx = push_ctxt("trans_adt");
1351 let fcx = bcx.fcx;
1352 let repr = adt::represent_type(bcx.ccx(), ty);
1353
1354 debug_location.apply(bcx.fcx);
1355
1356 // If we don't care about the result, just make a
1357 // temporary stack slot
1358 let addr = match dest {
1359 SaveIn(pos) => pos,
1360 Ignore => {
1361 let llresult = alloc_ty(bcx, ty, "temp");
1362 call_lifetime_start(bcx, llresult);
1363 llresult
1364 }
1365 };
1366
1367 debug!("trans_adt");
1368
1369 // This scope holds intermediates that must be cleaned should
1370 // panic occur before the ADT as a whole is ready.
1371 let custom_cleanup_scope = fcx.push_custom_cleanup_scope();
1372
1373 if ty.is_simd() {
1374 // Issue 23112: The original logic appeared vulnerable to same
1375 // order-of-eval bug. But, SIMD values are tuple-structs;
1376 // i.e. functional record update (FRU) syntax is unavailable.
1377 //
1378 // To be safe, double-check that we did not get here via FRU.
1379 assert!(optbase.is_none());
1380
1381 // This is the constructor of a SIMD type, such types are
1382 // always primitive machine types and so do not have a
1383 // destructor or require any clean-up.
1384 let llty = type_of::type_of(bcx.ccx(), ty);
1385
1386 // keep a vector as a register, and running through the field
1387 // `insertelement`ing them directly into that register
1388 // (i.e. avoid GEPi and `store`s to an alloca) .
1389 let mut vec_val = C_undef(llty);
1390
1391 for &(i, ref e) in fields {
1392 let block_datum = trans(bcx, &e);
1393 bcx = block_datum.bcx;
1394 let position = C_uint(bcx.ccx(), i);
1395 let value = block_datum.datum.to_llscalarish(bcx);
1396 vec_val = InsertElement(bcx, vec_val, value, position);
1397 }
1398 Store(bcx, vec_val, addr);
1399 } else if let Some(base) = optbase {
1400 // Issue 23112: If there is a base, then order-of-eval
1401 // requires field expressions eval'ed before base expression.
1402
1403 // First, trans field expressions to temporary scratch values.
1404 let scratch_vals: Vec<_> = fields.iter().map(|&(i, ref e)| {
1405 let datum = unpack_datum!(bcx, trans(bcx, &e));
1406 (i, datum)
1407 }).collect();
1408
1409 debug_location.apply(bcx.fcx);
1410
1411 // Second, trans the base to the dest.
1412 assert_eq!(discr, Disr(0));
1413
1414 let addr = adt::MaybeSizedValue::sized(addr);
1415 match expr_kind(bcx.tcx(), &base.expr) {
1416 ExprKind::RvalueDps | ExprKind::RvalueDatum if !bcx.fcx.type_needs_drop(ty) => {
1417 bcx = trans_into(bcx, &base.expr, SaveIn(addr.value));
1418 },
1419 ExprKind::RvalueStmt => {
1420 bug!("unexpected expr kind for struct base expr")
1421 }
1422 _ => {
1423 let base_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, &base.expr, "base"));
1424 for &(i, t) in &base.fields {
1425 let datum = base_datum.get_element(
1426 bcx, t, |srcval| adt::trans_field_ptr(bcx, &repr, srcval, discr, i));
1427 assert!(type_is_sized(bcx.tcx(), datum.ty));
1428 let dest = adt::trans_field_ptr(bcx, &repr, addr, discr, i);
1429 bcx = datum.store_to(bcx, dest);
1430 }
1431 }
1432 }
1433
1434 // Finally, move scratch field values into actual field locations
1435 for (i, datum) in scratch_vals {
1436 let dest = adt::trans_field_ptr(bcx, &repr, addr, discr, i);
1437 bcx = datum.store_to(bcx, dest);
1438 }
1439 } else {
1440 // No base means we can write all fields directly in place.
1441 let addr = adt::MaybeSizedValue::sized(addr);
1442 for &(i, ref e) in fields {
1443 let dest = adt::trans_field_ptr(bcx, &repr, addr, discr, i);
1444 let e_ty = expr_ty_adjusted(bcx, &e);
1445 bcx = trans_into(bcx, &e, SaveIn(dest));
1446 let scope = cleanup::CustomScope(custom_cleanup_scope);
1447 fcx.schedule_lifetime_end(scope, dest);
1448 // FIXME: nonzeroing move should generalize to fields
1449 fcx.schedule_drop_mem(scope, dest, e_ty, None);
1450 }
1451 }
1452
1453 adt::trans_set_discr(bcx, &repr, addr, discr);
1454
1455 fcx.pop_custom_cleanup_scope(custom_cleanup_scope);
1456
1457 // If we don't care about the result drop the temporary we made
1458 match dest {
1459 SaveIn(_) => bcx,
1460 Ignore => {
1461 bcx = glue::drop_ty(bcx, addr, ty, debug_location);
1462 base::call_lifetime_end(bcx, addr);
1463 bcx
1464 }
1465 }
1466 }
1467
1468
1469 fn trans_immediate_lit<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
1470 expr: &hir::Expr,
1471 lit: &ast::Lit)
1472 -> DatumBlock<'blk, 'tcx, Expr> {
1473 // must not be a string constant, that is a RvalueDpsExpr
1474 let _icx = push_ctxt("trans_immediate_lit");
1475 let ty = expr_ty(bcx, expr);
1476 let v = consts::const_lit(bcx.ccx(), expr, lit);
1477 immediate_rvalue_bcx(bcx, v, ty).to_expr_datumblock()
1478 }
1479
1480 fn trans_unary<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
1481 expr: &hir::Expr,
1482 op: hir::UnOp,
1483 sub_expr: &hir::Expr)
1484 -> DatumBlock<'blk, 'tcx, Expr> {
1485 let ccx = bcx.ccx();
1486 let mut bcx = bcx;
1487 let _icx = push_ctxt("trans_unary_datum");
1488
1489 let method_call = MethodCall::expr(expr.id);
1490
1491 // The only overloaded operator that is translated to a datum
1492 // is an overloaded deref, since it is always yields a `&T`.
1493 // Otherwise, we should be in the RvalueDpsExpr path.
1494 assert!(op == hir::UnDeref || !ccx.tcx().is_method_call(expr.id));
1495
1496 let un_ty = expr_ty(bcx, expr);
1497
1498 let debug_loc = expr.debug_loc();
1499
1500 match op {
1501 hir::UnNot => {
1502 let datum = unpack_datum!(bcx, trans(bcx, sub_expr));
1503 let llresult = Not(bcx, datum.to_llscalarish(bcx), debug_loc);
1504 immediate_rvalue_bcx(bcx, llresult, un_ty).to_expr_datumblock()
1505 }
1506 hir::UnNeg => {
1507 let datum = unpack_datum!(bcx, trans(bcx, sub_expr));
1508 let val = datum.to_llscalarish(bcx);
1509 let (bcx, llneg) = {
1510 if un_ty.is_fp() {
1511 let result = FNeg(bcx, val, debug_loc);
1512 (bcx, result)
1513 } else {
1514 let is_signed = un_ty.is_signed();
1515 let result = Neg(bcx, val, debug_loc);
1516 let bcx = if bcx.ccx().check_overflow() && is_signed {
1517 let (llty, min) = base::llty_and_min_for_signed_ty(bcx, un_ty);
1518 let is_min = ICmp(bcx, llvm::IntEQ, val,
1519 C_integral(llty, min, true), debug_loc);
1520 with_cond(bcx, is_min, |bcx| {
1521 let msg = InternedString::new(
1522 "attempt to negate with overflow");
1523 controlflow::trans_fail(bcx, expr_info(expr), msg)
1524 })
1525 } else {
1526 bcx
1527 };
1528 (bcx, result)
1529 }
1530 };
1531 immediate_rvalue_bcx(bcx, llneg, un_ty).to_expr_datumblock()
1532 }
1533 hir::UnDeref => {
1534 let datum = unpack_datum!(bcx, trans(bcx, sub_expr));
1535 deref_once(bcx, expr, datum, method_call)
1536 }
1537 }
1538 }
1539
1540 fn trans_uniq_expr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
1541 box_expr: &hir::Expr,
1542 box_ty: Ty<'tcx>,
1543 contents: &hir::Expr,
1544 contents_ty: Ty<'tcx>)
1545 -> DatumBlock<'blk, 'tcx, Expr> {
1546 let _icx = push_ctxt("trans_uniq_expr");
1547 let fcx = bcx.fcx;
1548 assert!(type_is_sized(bcx.tcx(), contents_ty));
1549 let llty = type_of::type_of(bcx.ccx(), contents_ty);
1550 let size = llsize_of(bcx.ccx(), llty);
1551 let align = C_uint(bcx.ccx(), type_of::align_of(bcx.ccx(), contents_ty));
1552 let llty_ptr = llty.ptr_to();
1553 let Result { bcx, val } = malloc_raw_dyn(bcx,
1554 llty_ptr,
1555 box_ty,
1556 size,
1557 align,
1558 box_expr.debug_loc());
1559 // Unique boxes do not allocate for zero-size types. The standard library
1560 // may assume that `free` is never called on the pointer returned for
1561 // `Box<ZeroSizeType>`.
1562 let bcx = if llsize_of_alloc(bcx.ccx(), llty) == 0 {
1563 trans_into(bcx, contents, SaveIn(val))
1564 } else {
1565 let custom_cleanup_scope = fcx.push_custom_cleanup_scope();
1566 fcx.schedule_free_value(cleanup::CustomScope(custom_cleanup_scope),
1567 val, cleanup::HeapExchange, contents_ty);
1568 let bcx = trans_into(bcx, contents, SaveIn(val));
1569 fcx.pop_custom_cleanup_scope(custom_cleanup_scope);
1570 bcx
1571 };
1572 immediate_rvalue_bcx(bcx, val, box_ty).to_expr_datumblock()
1573 }
1574
1575 fn trans_addr_of<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
1576 expr: &hir::Expr,
1577 subexpr: &hir::Expr)
1578 -> DatumBlock<'blk, 'tcx, Expr> {
1579 let _icx = push_ctxt("trans_addr_of");
1580 let mut bcx = bcx;
1581 let sub_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, subexpr, "addr_of"));
1582 let ty = expr_ty(bcx, expr);
1583 if !type_is_sized(bcx.tcx(), sub_datum.ty) {
1584 // Always generate an lvalue datum, because this pointer doesn't own
1585 // the data and cleanup is scheduled elsewhere.
1586 DatumBlock::new(bcx, Datum::new(sub_datum.val, ty, LvalueExpr(sub_datum.kind)))
1587 } else {
1588 // Sized value, ref to a thin pointer
1589 immediate_rvalue_bcx(bcx, sub_datum.val, ty).to_expr_datumblock()
1590 }
1591 }
1592
1593 fn trans_scalar_binop<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
1594 binop_expr: &hir::Expr,
1595 binop_ty: Ty<'tcx>,
1596 op: hir::BinOp,
1597 lhs: Datum<'tcx, Rvalue>,
1598 rhs: Datum<'tcx, Rvalue>)
1599 -> DatumBlock<'blk, 'tcx, Expr>
1600 {
1601 let _icx = push_ctxt("trans_scalar_binop");
1602
1603 let lhs_t = lhs.ty;
1604 assert!(!lhs_t.is_simd());
1605 let is_float = lhs_t.is_fp();
1606 let is_signed = lhs_t.is_signed();
1607 let info = expr_info(binop_expr);
1608
1609 let binop_debug_loc = binop_expr.debug_loc();
1610
1611 let mut bcx = bcx;
1612 let lhs = lhs.to_llscalarish(bcx);
1613 let rhs = rhs.to_llscalarish(bcx);
1614 let val = match op.node {
1615 hir::BiAdd => {
1616 if is_float {
1617 FAdd(bcx, lhs, rhs, binop_debug_loc)
1618 } else {
1619 let (newbcx, res) = with_overflow_check(
1620 bcx, OverflowOp::Add, info, lhs_t, lhs, rhs, binop_debug_loc);
1621 bcx = newbcx;
1622 res
1623 }
1624 }
1625 hir::BiSub => {
1626 if is_float {
1627 FSub(bcx, lhs, rhs, binop_debug_loc)
1628 } else {
1629 let (newbcx, res) = with_overflow_check(
1630 bcx, OverflowOp::Sub, info, lhs_t, lhs, rhs, binop_debug_loc);
1631 bcx = newbcx;
1632 res
1633 }
1634 }
1635 hir::BiMul => {
1636 if is_float {
1637 FMul(bcx, lhs, rhs, binop_debug_loc)
1638 } else {
1639 let (newbcx, res) = with_overflow_check(
1640 bcx, OverflowOp::Mul, info, lhs_t, lhs, rhs, binop_debug_loc);
1641 bcx = newbcx;
1642 res
1643 }
1644 }
1645 hir::BiDiv => {
1646 if is_float {
1647 FDiv(bcx, lhs, rhs, binop_debug_loc)
1648 } else {
1649 // Only zero-check integers; fp /0 is NaN
1650 bcx = base::fail_if_zero_or_overflows(bcx,
1651 expr_info(binop_expr),
1652 op,
1653 lhs,
1654 rhs,
1655 lhs_t);
1656 if is_signed {
1657 SDiv(bcx, lhs, rhs, binop_debug_loc)
1658 } else {
1659 UDiv(bcx, lhs, rhs, binop_debug_loc)
1660 }
1661 }
1662 }
1663 hir::BiRem => {
1664 if is_float {
1665 FRem(bcx, lhs, rhs, binop_debug_loc)
1666 } else {
1667 // Only zero-check integers; fp %0 is NaN
1668 bcx = base::fail_if_zero_or_overflows(bcx,
1669 expr_info(binop_expr),
1670 op, lhs, rhs, lhs_t);
1671 if is_signed {
1672 SRem(bcx, lhs, rhs, binop_debug_loc)
1673 } else {
1674 URem(bcx, lhs, rhs, binop_debug_loc)
1675 }
1676 }
1677 }
1678 hir::BiBitOr => Or(bcx, lhs, rhs, binop_debug_loc),
1679 hir::BiBitAnd => And(bcx, lhs, rhs, binop_debug_loc),
1680 hir::BiBitXor => Xor(bcx, lhs, rhs, binop_debug_loc),
1681 hir::BiShl => {
1682 let (newbcx, res) = with_overflow_check(
1683 bcx, OverflowOp::Shl, info, lhs_t, lhs, rhs, binop_debug_loc);
1684 bcx = newbcx;
1685 res
1686 }
1687 hir::BiShr => {
1688 let (newbcx, res) = with_overflow_check(
1689 bcx, OverflowOp::Shr, info, lhs_t, lhs, rhs, binop_debug_loc);
1690 bcx = newbcx;
1691 res
1692 }
1693 hir::BiEq | hir::BiNe | hir::BiLt | hir::BiGe | hir::BiLe | hir::BiGt => {
1694 base::compare_scalar_types(bcx, lhs, rhs, lhs_t, op.node, binop_debug_loc)
1695 }
1696 _ => {
1697 span_bug!(binop_expr.span, "unexpected binop");
1698 }
1699 };
1700
1701 immediate_rvalue_bcx(bcx, val, binop_ty).to_expr_datumblock()
1702 }
1703
1704 // refinement types would obviate the need for this
1705 #[derive(Clone, Copy)]
1706 enum lazy_binop_ty {
1707 lazy_and,
1708 lazy_or,
1709 }
1710
1711
1712 fn trans_lazy_binop<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
1713 binop_expr: &hir::Expr,
1714 op: lazy_binop_ty,
1715 a: &hir::Expr,
1716 b: &hir::Expr)
1717 -> DatumBlock<'blk, 'tcx, Expr> {
1718 let _icx = push_ctxt("trans_lazy_binop");
1719 let binop_ty = expr_ty(bcx, binop_expr);
1720 let fcx = bcx.fcx;
1721
1722 let DatumBlock {bcx: past_lhs, datum: lhs} = trans(bcx, a);
1723 let lhs = lhs.to_llscalarish(past_lhs);
1724
1725 if past_lhs.unreachable.get() {
1726 return immediate_rvalue_bcx(past_lhs, lhs, binop_ty).to_expr_datumblock();
1727 }
1728
1729 // If the rhs can never be reached, don't generate code for it.
1730 if let Some(cond_val) = const_to_opt_uint(lhs) {
1731 match (cond_val, op) {
1732 (0, lazy_and) |
1733 (1, lazy_or) => {
1734 return immediate_rvalue_bcx(past_lhs, lhs, binop_ty).to_expr_datumblock();
1735 }
1736 _ => { /* continue */ }
1737 }
1738 }
1739
1740 let join = fcx.new_id_block("join", binop_expr.id);
1741 let before_rhs = fcx.new_id_block("before_rhs", b.id);
1742
1743 match op {
1744 lazy_and => CondBr(past_lhs, lhs, before_rhs.llbb, join.llbb, DebugLoc::None),
1745 lazy_or => CondBr(past_lhs, lhs, join.llbb, before_rhs.llbb, DebugLoc::None)
1746 }
1747
1748 let DatumBlock {bcx: past_rhs, datum: rhs} = trans(before_rhs, b);
1749 let rhs = rhs.to_llscalarish(past_rhs);
1750
1751 if past_rhs.unreachable.get() {
1752 return immediate_rvalue_bcx(join, lhs, binop_ty).to_expr_datumblock();
1753 }
1754
1755 Br(past_rhs, join.llbb, DebugLoc::None);
1756 let phi = Phi(join, Type::i1(bcx.ccx()), &[lhs, rhs],
1757 &[past_lhs.llbb, past_rhs.llbb]);
1758
1759 return immediate_rvalue_bcx(join, phi, binop_ty).to_expr_datumblock();
1760 }
1761
1762 fn trans_binary<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
1763 expr: &hir::Expr,
1764 op: hir::BinOp,
1765 lhs: &hir::Expr,
1766 rhs: &hir::Expr)
1767 -> DatumBlock<'blk, 'tcx, Expr> {
1768 let _icx = push_ctxt("trans_binary");
1769 let ccx = bcx.ccx();
1770
1771 // if overloaded, would be RvalueDpsExpr
1772 assert!(!ccx.tcx().is_method_call(expr.id));
1773
1774 match op.node {
1775 hir::BiAnd => {
1776 trans_lazy_binop(bcx, expr, lazy_and, lhs, rhs)
1777 }
1778 hir::BiOr => {
1779 trans_lazy_binop(bcx, expr, lazy_or, lhs, rhs)
1780 }
1781 _ => {
1782 let mut bcx = bcx;
1783 let binop_ty = expr_ty(bcx, expr);
1784
1785 let lhs = unpack_datum!(bcx, trans(bcx, lhs));
1786 let lhs = unpack_datum!(bcx, lhs.to_rvalue_datum(bcx, "binop_lhs"));
1787 debug!("trans_binary (expr {}): lhs={:?}", expr.id, lhs);
1788 let rhs = unpack_datum!(bcx, trans(bcx, rhs));
1789 let rhs = unpack_datum!(bcx, rhs.to_rvalue_datum(bcx, "binop_rhs"));
1790 debug!("trans_binary (expr {}): rhs={:?}", expr.id, rhs);
1791
1792 if type_is_fat_ptr(ccx.tcx(), lhs.ty) {
1793 assert!(type_is_fat_ptr(ccx.tcx(), rhs.ty),
1794 "built-in binary operators on fat pointers are homogeneous");
1795 assert_eq!(binop_ty, bcx.tcx().types.bool);
1796 let val = base::compare_scalar_types(
1797 bcx,
1798 lhs.val,
1799 rhs.val,
1800 lhs.ty,
1801 op.node,
1802 expr.debug_loc());
1803 immediate_rvalue_bcx(bcx, val, binop_ty).to_expr_datumblock()
1804 } else {
1805 assert!(!type_is_fat_ptr(ccx.tcx(), rhs.ty),
1806 "built-in binary operators on fat pointers are homogeneous");
1807 trans_scalar_binop(bcx, expr, binop_ty, op, lhs, rhs)
1808 }
1809 }
1810 }
1811 }
1812
1813 pub fn cast_is_noop<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1814 expr: &hir::Expr,
1815 t_in: Ty<'tcx>,
1816 t_out: Ty<'tcx>)
1817 -> bool {
1818 if let Some(&CastKind::CoercionCast) = tcx.cast_kinds.borrow().get(&expr.id) {
1819 return true;
1820 }
1821
1822 match (t_in.builtin_deref(true, ty::NoPreference),
1823 t_out.builtin_deref(true, ty::NoPreference)) {
1824 (Some(ty::TypeAndMut{ ty: t_in, .. }), Some(ty::TypeAndMut{ ty: t_out, .. })) => {
1825 t_in == t_out
1826 }
1827 _ => {
1828 // This condition isn't redundant with the check for CoercionCast:
1829 // different types can be substituted into the same type, and
1830 // == equality can be overconservative if there are regions.
1831 t_in == t_out
1832 }
1833 }
1834 }
1835
1836 fn trans_imm_cast<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
1837 expr: &hir::Expr,
1838 id: ast::NodeId)
1839 -> DatumBlock<'blk, 'tcx, Expr>
1840 {
1841 use rustc::ty::cast::CastTy::*;
1842 use rustc::ty::cast::IntTy::*;
1843
1844 fn int_cast(bcx: Block,
1845 lldsttype: Type,
1846 llsrctype: Type,
1847 llsrc: ValueRef,
1848 signed: bool)
1849 -> ValueRef
1850 {
1851 let _icx = push_ctxt("int_cast");
1852 let srcsz = llsrctype.int_width();
1853 let dstsz = lldsttype.int_width();
1854 return if dstsz == srcsz {
1855 BitCast(bcx, llsrc, lldsttype)
1856 } else if srcsz > dstsz {
1857 TruncOrBitCast(bcx, llsrc, lldsttype)
1858 } else if signed {
1859 SExtOrBitCast(bcx, llsrc, lldsttype)
1860 } else {
1861 ZExtOrBitCast(bcx, llsrc, lldsttype)
1862 }
1863 }
1864
1865 fn float_cast(bcx: Block,
1866 lldsttype: Type,
1867 llsrctype: Type,
1868 llsrc: ValueRef)
1869 -> ValueRef
1870 {
1871 let _icx = push_ctxt("float_cast");
1872 let srcsz = llsrctype.float_width();
1873 let dstsz = lldsttype.float_width();
1874 return if dstsz > srcsz {
1875 FPExt(bcx, llsrc, lldsttype)
1876 } else if srcsz > dstsz {
1877 FPTrunc(bcx, llsrc, lldsttype)
1878 } else { llsrc };
1879 }
1880
1881 let _icx = push_ctxt("trans_cast");
1882 let mut bcx = bcx;
1883 let ccx = bcx.ccx();
1884
1885 let t_in = expr_ty_adjusted(bcx, expr);
1886 let t_out = node_id_type(bcx, id);
1887
1888 debug!("trans_cast({:?} as {:?})", t_in, t_out);
1889 let mut ll_t_in = type_of::immediate_type_of(ccx, t_in);
1890 let ll_t_out = type_of::immediate_type_of(ccx, t_out);
1891 // Convert the value to be cast into a ValueRef, either by-ref or
1892 // by-value as appropriate given its type:
1893 let mut datum = unpack_datum!(bcx, trans(bcx, expr));
1894
1895 let datum_ty = monomorphize_type(bcx, datum.ty);
1896
1897 if cast_is_noop(bcx.tcx(), expr, datum_ty, t_out) {
1898 datum.ty = t_out;
1899 return DatumBlock::new(bcx, datum);
1900 }
1901
1902 if type_is_fat_ptr(bcx.tcx(), t_in) {
1903 assert!(datum.kind.is_by_ref());
1904 if type_is_fat_ptr(bcx.tcx(), t_out) {
1905 return DatumBlock::new(bcx, Datum::new(
1906 PointerCast(bcx, datum.val, ll_t_out.ptr_to()),
1907 t_out,
1908 Rvalue::new(ByRef)
1909 )).to_expr_datumblock();
1910 } else {
1911 // Return the address
1912 return immediate_rvalue_bcx(bcx,
1913 PointerCast(bcx,
1914 Load(bcx, get_dataptr(bcx, datum.val)),
1915 ll_t_out),
1916 t_out).to_expr_datumblock();
1917 }
1918 }
1919
1920 let r_t_in = CastTy::from_ty(t_in).expect("bad input type for cast");
1921 let r_t_out = CastTy::from_ty(t_out).expect("bad output type for cast");
1922
1923 let (llexpr, signed) = if let Int(CEnum) = r_t_in {
1924 let repr = adt::represent_type(ccx, t_in);
1925 let datum = unpack_datum!(
1926 bcx, datum.to_lvalue_datum(bcx, "trans_imm_cast", expr.id));
1927 let llexpr_ptr = datum.to_llref();
1928 let discr = adt::trans_get_discr(bcx, &repr, llexpr_ptr,
1929 Some(Type::i64(ccx)), true);
1930 ll_t_in = val_ty(discr);
1931 (discr, adt::is_discr_signed(&repr))
1932 } else {
1933 (datum.to_llscalarish(bcx), t_in.is_signed())
1934 };
1935
1936 let newval = match (r_t_in, r_t_out) {
1937 (Ptr(_), Ptr(_)) | (FnPtr, Ptr(_)) | (RPtr(_), Ptr(_)) => {
1938 PointerCast(bcx, llexpr, ll_t_out)
1939 }
1940 (Ptr(_), Int(_)) | (FnPtr, Int(_)) => PtrToInt(bcx, llexpr, ll_t_out),
1941 (Int(_), Ptr(_)) => IntToPtr(bcx, llexpr, ll_t_out),
1942
1943 (Int(_), Int(_)) => int_cast(bcx, ll_t_out, ll_t_in, llexpr, signed),
1944 (Float, Float) => float_cast(bcx, ll_t_out, ll_t_in, llexpr),
1945 (Int(_), Float) if signed => SIToFP(bcx, llexpr, ll_t_out),
1946 (Int(_), Float) => UIToFP(bcx, llexpr, ll_t_out),
1947 (Float, Int(I)) => FPToSI(bcx, llexpr, ll_t_out),
1948 (Float, Int(_)) => FPToUI(bcx, llexpr, ll_t_out),
1949
1950 _ => span_bug!(expr.span,
1951 "translating unsupported cast: \
1952 {:?} -> {:?}",
1953 t_in,
1954 t_out)
1955 };
1956 return immediate_rvalue_bcx(bcx, newval, t_out).to_expr_datumblock();
1957 }
1958
1959 fn trans_assign_op<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
1960 expr: &hir::Expr,
1961 op: hir::BinOp,
1962 dst: &hir::Expr,
1963 src: &hir::Expr)
1964 -> Block<'blk, 'tcx> {
1965 let _icx = push_ctxt("trans_assign_op");
1966 let mut bcx = bcx;
1967
1968 debug!("trans_assign_op(expr={:?})", expr);
1969
1970 // User-defined operator methods cannot be used with `+=` etc right now
1971 assert!(!bcx.tcx().is_method_call(expr.id));
1972
1973 // Evaluate LHS (destination), which should be an lvalue
1974 let dst = unpack_datum!(bcx, trans_to_lvalue(bcx, dst, "assign_op"));
1975 assert!(!bcx.fcx.type_needs_drop(dst.ty));
1976 let lhs = load_ty(bcx, dst.val, dst.ty);
1977 let lhs = immediate_rvalue(lhs, dst.ty);
1978
1979 // Evaluate RHS - FIXME(#28160) this sucks
1980 let rhs = unpack_datum!(bcx, trans(bcx, &src));
1981 let rhs = unpack_datum!(bcx, rhs.to_rvalue_datum(bcx, "assign_op_rhs"));
1982
1983 // Perform computation and store the result
1984 let result_datum = unpack_datum!(
1985 bcx, trans_scalar_binop(bcx, expr, dst.ty, op, lhs, rhs));
1986 return result_datum.store_to(bcx, dst.val);
1987 }
1988
1989 fn auto_ref<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
1990 datum: Datum<'tcx, Expr>,
1991 expr: &hir::Expr)
1992 -> DatumBlock<'blk, 'tcx, Expr> {
1993 let mut bcx = bcx;
1994
1995 // Ensure cleanup of `datum` if not already scheduled and obtain
1996 // a "by ref" pointer.
1997 let lv_datum = unpack_datum!(bcx, datum.to_lvalue_datum(bcx, "autoref", expr.id));
1998
1999 // Compute final type. Note that we are loose with the region and
2000 // mutability, since those things don't matter in trans.
2001 let referent_ty = lv_datum.ty;
2002 let ptr_ty = bcx.tcx().mk_imm_ref(bcx.tcx().mk_region(ty::ReErased), referent_ty);
2003
2004 // Construct the resulting datum. The right datum to return here would be an Lvalue datum,
2005 // because there is cleanup scheduled and the datum doesn't own the data, but for thin pointers
2006 // we microoptimize it to be an Rvalue datum to avoid the extra alloca and level of
2007 // indirection and for thin pointers, this has no ill effects.
2008 let kind = if type_is_sized(bcx.tcx(), referent_ty) {
2009 RvalueExpr(Rvalue::new(ByValue))
2010 } else {
2011 LvalueExpr(lv_datum.kind)
2012 };
2013
2014 // Get the pointer.
2015 let llref = lv_datum.to_llref();
2016 DatumBlock::new(bcx, Datum::new(llref, ptr_ty, kind))
2017 }
2018
2019 fn deref_multiple<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
2020 expr: &hir::Expr,
2021 datum: Datum<'tcx, Expr>,
2022 times: usize)
2023 -> DatumBlock<'blk, 'tcx, Expr> {
2024 let mut bcx = bcx;
2025 let mut datum = datum;
2026 for i in 0..times {
2027 let method_call = MethodCall::autoderef(expr.id, i as u32);
2028 datum = unpack_datum!(bcx, deref_once(bcx, expr, datum, method_call));
2029 }
2030 DatumBlock { bcx: bcx, datum: datum }
2031 }
2032
2033 fn deref_once<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
2034 expr: &hir::Expr,
2035 datum: Datum<'tcx, Expr>,
2036 method_call: MethodCall)
2037 -> DatumBlock<'blk, 'tcx, Expr> {
2038 let ccx = bcx.ccx();
2039
2040 debug!("deref_once(expr={:?}, datum={:?}, method_call={:?})",
2041 expr, datum, method_call);
2042
2043 let mut bcx = bcx;
2044
2045 // Check for overloaded deref.
2046 let method = ccx.tcx().tables.borrow().method_map.get(&method_call).cloned();
2047 let datum = match method {
2048 Some(method) => {
2049 let method_ty = monomorphize_type(bcx, method.ty);
2050
2051 // Overloaded. Invoke the deref() method, which basically
2052 // converts from the `Smaht<T>` pointer that we have into
2053 // a `&T` pointer. We can then proceed down the normal
2054 // path (below) to dereference that `&T`.
2055 let datum = if method_call.autoderef == 0 {
2056 datum
2057 } else {
2058 // Always perform an AutoPtr when applying an overloaded auto-deref
2059 unpack_datum!(bcx, auto_ref(bcx, datum, expr))
2060 };
2061
2062 let ref_ty = // invoked methods have their LB regions instantiated
2063 ccx.tcx().no_late_bound_regions(&method_ty.fn_ret()).unwrap();
2064 let scratch = rvalue_scratch_datum(bcx, ref_ty, "overloaded_deref");
2065
2066 bcx = Callee::method(bcx, method)
2067 .call(bcx, expr.debug_loc(),
2068 ArgOverloadedOp(datum, None),
2069 Some(SaveIn(scratch.val))).bcx;
2070 scratch.to_expr_datum()
2071 }
2072 None => {
2073 // Not overloaded. We already have a pointer we know how to deref.
2074 datum
2075 }
2076 };
2077
2078 let r = match datum.ty.sty {
2079 ty::TyBox(content_ty) => {
2080 // Make sure we have an lvalue datum here to get the
2081 // proper cleanups scheduled
2082 let datum = unpack_datum!(
2083 bcx, datum.to_lvalue_datum(bcx, "deref", expr.id));
2084
2085 if type_is_sized(bcx.tcx(), content_ty) {
2086 let ptr = load_ty(bcx, datum.val, datum.ty);
2087 DatumBlock::new(bcx, Datum::new(ptr, content_ty, LvalueExpr(datum.kind)))
2088 } else {
2089 // A fat pointer and a DST lvalue have the same representation
2090 // just different types. Since there is no temporary for `*e`
2091 // here (because it is unsized), we cannot emulate the sized
2092 // object code path for running drop glue and free. Instead,
2093 // we schedule cleanup for `e`, turning it into an lvalue.
2094
2095 let lval = Lvalue::new("expr::deref_once ty_uniq");
2096 let datum = Datum::new(datum.val, content_ty, LvalueExpr(lval));
2097 DatumBlock::new(bcx, datum)
2098 }
2099 }
2100
2101 ty::TyRawPtr(ty::TypeAndMut { ty: content_ty, .. }) |
2102 ty::TyRef(_, ty::TypeAndMut { ty: content_ty, .. }) => {
2103 let lval = Lvalue::new("expr::deref_once ptr");
2104 if type_is_sized(bcx.tcx(), content_ty) {
2105 let ptr = datum.to_llscalarish(bcx);
2106
2107 // Always generate an lvalue datum, even if datum.mode is
2108 // an rvalue. This is because datum.mode is only an
2109 // rvalue for non-owning pointers like &T or *T, in which
2110 // case cleanup *is* scheduled elsewhere, by the true
2111 // owner (or, in the case of *T, by the user).
2112 DatumBlock::new(bcx, Datum::new(ptr, content_ty, LvalueExpr(lval)))
2113 } else {
2114 // A fat pointer and a DST lvalue have the same representation
2115 // just different types.
2116 DatumBlock::new(bcx, Datum::new(datum.val, content_ty, LvalueExpr(lval)))
2117 }
2118 }
2119
2120 _ => {
2121 span_bug!(
2122 expr.span,
2123 "deref invoked on expr of invalid type {:?}",
2124 datum.ty);
2125 }
2126 };
2127
2128 debug!("deref_once(expr={}, method_call={:?}, result={:?})",
2129 expr.id, method_call, r.datum);
2130
2131 return r;
2132 }
2133
2134 #[derive(Debug)]
2135 enum OverflowOp {
2136 Add,
2137 Sub,
2138 Mul,
2139 Shl,
2140 Shr,
2141 }
2142
2143 impl OverflowOp {
2144 fn codegen_strategy(&self) -> OverflowCodegen {
2145 use self::OverflowCodegen::{ViaIntrinsic, ViaInputCheck};
2146 match *self {
2147 OverflowOp::Add => ViaIntrinsic(OverflowOpViaIntrinsic::Add),
2148 OverflowOp::Sub => ViaIntrinsic(OverflowOpViaIntrinsic::Sub),
2149 OverflowOp::Mul => ViaIntrinsic(OverflowOpViaIntrinsic::Mul),
2150
2151 OverflowOp::Shl => ViaInputCheck(OverflowOpViaInputCheck::Shl),
2152 OverflowOp::Shr => ViaInputCheck(OverflowOpViaInputCheck::Shr),
2153 }
2154 }
2155 }
2156
2157 enum OverflowCodegen {
2158 ViaIntrinsic(OverflowOpViaIntrinsic),
2159 ViaInputCheck(OverflowOpViaInputCheck),
2160 }
2161
2162 enum OverflowOpViaInputCheck { Shl, Shr, }
2163
2164 #[derive(Debug)]
2165 enum OverflowOpViaIntrinsic { Add, Sub, Mul, }
2166
2167 impl OverflowOpViaIntrinsic {
2168 fn to_intrinsic<'blk, 'tcx>(&self, bcx: Block<'blk, 'tcx>, lhs_ty: Ty) -> ValueRef {
2169 let name = self.to_intrinsic_name(bcx.tcx(), lhs_ty);
2170 bcx.ccx().get_intrinsic(&name)
2171 }
2172 fn to_intrinsic_name(&self, tcx: TyCtxt, ty: Ty) -> &'static str {
2173 use syntax::ast::IntTy::*;
2174 use syntax::ast::UintTy::*;
2175 use rustc::ty::{TyInt, TyUint};
2176
2177 let new_sty = match ty.sty {
2178 TyInt(Is) => match &tcx.sess.target.target.target_pointer_width[..] {
2179 "16" => TyInt(I16),
2180 "32" => TyInt(I32),
2181 "64" => TyInt(I64),
2182 _ => bug!("unsupported target word size")
2183 },
2184 TyUint(Us) => match &tcx.sess.target.target.target_pointer_width[..] {
2185 "16" => TyUint(U16),
2186 "32" => TyUint(U32),
2187 "64" => TyUint(U64),
2188 _ => bug!("unsupported target word size")
2189 },
2190 ref t @ TyUint(_) | ref t @ TyInt(_) => t.clone(),
2191 _ => bug!("tried to get overflow intrinsic for {:?} applied to non-int type",
2192 *self)
2193 };
2194
2195 match *self {
2196 OverflowOpViaIntrinsic::Add => match new_sty {
2197 TyInt(I8) => "llvm.sadd.with.overflow.i8",
2198 TyInt(I16) => "llvm.sadd.with.overflow.i16",
2199 TyInt(I32) => "llvm.sadd.with.overflow.i32",
2200 TyInt(I64) => "llvm.sadd.with.overflow.i64",
2201
2202 TyUint(U8) => "llvm.uadd.with.overflow.i8",
2203 TyUint(U16) => "llvm.uadd.with.overflow.i16",
2204 TyUint(U32) => "llvm.uadd.with.overflow.i32",
2205 TyUint(U64) => "llvm.uadd.with.overflow.i64",
2206
2207 _ => bug!(),
2208 },
2209 OverflowOpViaIntrinsic::Sub => match new_sty {
2210 TyInt(I8) => "llvm.ssub.with.overflow.i8",
2211 TyInt(I16) => "llvm.ssub.with.overflow.i16",
2212 TyInt(I32) => "llvm.ssub.with.overflow.i32",
2213 TyInt(I64) => "llvm.ssub.with.overflow.i64",
2214
2215 TyUint(U8) => "llvm.usub.with.overflow.i8",
2216 TyUint(U16) => "llvm.usub.with.overflow.i16",
2217 TyUint(U32) => "llvm.usub.with.overflow.i32",
2218 TyUint(U64) => "llvm.usub.with.overflow.i64",
2219
2220 _ => bug!(),
2221 },
2222 OverflowOpViaIntrinsic::Mul => match new_sty {
2223 TyInt(I8) => "llvm.smul.with.overflow.i8",
2224 TyInt(I16) => "llvm.smul.with.overflow.i16",
2225 TyInt(I32) => "llvm.smul.with.overflow.i32",
2226 TyInt(I64) => "llvm.smul.with.overflow.i64",
2227
2228 TyUint(U8) => "llvm.umul.with.overflow.i8",
2229 TyUint(U16) => "llvm.umul.with.overflow.i16",
2230 TyUint(U32) => "llvm.umul.with.overflow.i32",
2231 TyUint(U64) => "llvm.umul.with.overflow.i64",
2232
2233 _ => bug!(),
2234 },
2235 }
2236 }
2237
2238 fn build_intrinsic_call<'blk, 'tcx>(&self, bcx: Block<'blk, 'tcx>,
2239 info: NodeIdAndSpan,
2240 lhs_t: Ty<'tcx>, lhs: ValueRef,
2241 rhs: ValueRef,
2242 binop_debug_loc: DebugLoc)
2243 -> (Block<'blk, 'tcx>, ValueRef) {
2244 use rustc_const_math::{ConstMathErr, Op};
2245
2246 let llfn = self.to_intrinsic(bcx, lhs_t);
2247
2248 let val = Call(bcx, llfn, &[lhs, rhs], binop_debug_loc);
2249 let result = ExtractValue(bcx, val, 0); // iN operation result
2250 let overflow = ExtractValue(bcx, val, 1); // i1 "did it overflow?"
2251
2252 let cond = ICmp(bcx, llvm::IntEQ, overflow, C_integral(Type::i1(bcx.ccx()), 1, false),
2253 binop_debug_loc);
2254
2255 let expect = bcx.ccx().get_intrinsic(&"llvm.expect.i1");
2256 let expected = Call(bcx, expect, &[cond, C_bool(bcx.ccx(), false)],
2257 binop_debug_loc);
2258
2259 let op = match *self {
2260 OverflowOpViaIntrinsic::Add => Op::Add,
2261 OverflowOpViaIntrinsic::Sub => Op::Sub,
2262 OverflowOpViaIntrinsic::Mul => Op::Mul
2263 };
2264
2265 let bcx =
2266 base::with_cond(bcx, expected, |bcx|
2267 controlflow::trans_fail(bcx, info,
2268 InternedString::new(ConstMathErr::Overflow(op).description())));
2269
2270 (bcx, result)
2271 }
2272 }
2273
2274 impl OverflowOpViaInputCheck {
2275 fn build_with_input_check<'blk, 'tcx>(&self,
2276 bcx: Block<'blk, 'tcx>,
2277 info: NodeIdAndSpan,
2278 lhs_t: Ty<'tcx>,
2279 lhs: ValueRef,
2280 rhs: ValueRef,
2281 binop_debug_loc: DebugLoc)
2282 -> (Block<'blk, 'tcx>, ValueRef)
2283 {
2284 use rustc_const_math::{ConstMathErr, Op};
2285
2286 let lhs_llty = val_ty(lhs);
2287 let rhs_llty = val_ty(rhs);
2288
2289 // Panic if any bits are set outside of bits that we always
2290 // mask in.
2291 //
2292 // Note that the mask's value is derived from the LHS type
2293 // (since that is where the 32/64 distinction is relevant) but
2294 // the mask's type must match the RHS type (since they will
2295 // both be fed into an and-binop)
2296 let invert_mask = shift_mask_val(bcx, lhs_llty, rhs_llty, true);
2297
2298 let outer_bits = And(bcx, rhs, invert_mask, binop_debug_loc);
2299 let cond = build_nonzero_check(bcx, outer_bits, binop_debug_loc);
2300 let (result, op) = match *self {
2301 OverflowOpViaInputCheck::Shl =>
2302 (build_unchecked_lshift(bcx, lhs, rhs, binop_debug_loc), Op::Shl),
2303 OverflowOpViaInputCheck::Shr =>
2304 (build_unchecked_rshift(bcx, lhs_t, lhs, rhs, binop_debug_loc), Op::Shr)
2305 };
2306 let bcx =
2307 base::with_cond(bcx, cond, |bcx|
2308 controlflow::trans_fail(bcx, info,
2309 InternedString::new(ConstMathErr::Overflow(op).description())));
2310
2311 (bcx, result)
2312 }
2313 }
2314
2315 // Check if an integer or vector contains a nonzero element.
2316 fn build_nonzero_check<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
2317 value: ValueRef,
2318 binop_debug_loc: DebugLoc) -> ValueRef {
2319 let llty = val_ty(value);
2320 let kind = llty.kind();
2321 match kind {
2322 TypeKind::Integer => ICmp(bcx, llvm::IntNE, value, C_null(llty), binop_debug_loc),
2323 TypeKind::Vector => {
2324 // Check if any elements of the vector are nonzero by treating
2325 // it as a wide integer and checking if the integer is nonzero.
2326 let width = llty.vector_length() as u64 * llty.element_type().int_width();
2327 let int_value = BitCast(bcx, value, Type::ix(bcx.ccx(), width));
2328 build_nonzero_check(bcx, int_value, binop_debug_loc)
2329 },
2330 _ => bug!("build_nonzero_check: expected Integer or Vector, found {:?}", kind),
2331 }
2332 }
2333
2334 fn with_overflow_check<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, oop: OverflowOp, info: NodeIdAndSpan,
2335 lhs_t: Ty<'tcx>, lhs: ValueRef,
2336 rhs: ValueRef,
2337 binop_debug_loc: DebugLoc)
2338 -> (Block<'blk, 'tcx>, ValueRef) {
2339 if bcx.unreachable.get() { return (bcx, _Undef(lhs)); }
2340 if bcx.ccx().check_overflow() {
2341
2342 match oop.codegen_strategy() {
2343 OverflowCodegen::ViaIntrinsic(oop) =>
2344 oop.build_intrinsic_call(bcx, info, lhs_t, lhs, rhs, binop_debug_loc),
2345 OverflowCodegen::ViaInputCheck(oop) =>
2346 oop.build_with_input_check(bcx, info, lhs_t, lhs, rhs, binop_debug_loc),
2347 }
2348 } else {
2349 let res = match oop {
2350 OverflowOp::Add => Add(bcx, lhs, rhs, binop_debug_loc),
2351 OverflowOp::Sub => Sub(bcx, lhs, rhs, binop_debug_loc),
2352 OverflowOp::Mul => Mul(bcx, lhs, rhs, binop_debug_loc),
2353
2354 OverflowOp::Shl =>
2355 build_unchecked_lshift(bcx, lhs, rhs, binop_debug_loc),
2356 OverflowOp::Shr =>
2357 build_unchecked_rshift(bcx, lhs_t, lhs, rhs, binop_debug_loc),
2358 };
2359 (bcx, res)
2360 }
2361 }
2362
2363 /// We categorize expressions into three kinds. The distinction between
2364 /// lvalue/rvalue is fundamental to the language. The distinction between the
2365 /// two kinds of rvalues is an artifact of trans which reflects how we will
2366 /// generate code for that kind of expression. See trans/expr.rs for more
2367 /// information.
2368 #[derive(Copy, Clone)]
2369 enum ExprKind {
2370 Lvalue,
2371 RvalueDps,
2372 RvalueDatum,
2373 RvalueStmt
2374 }
2375
2376 fn expr_kind<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, expr: &hir::Expr) -> ExprKind {
2377 if tcx.is_method_call(expr.id) {
2378 // Overloaded operations are generally calls, and hence they are
2379 // generated via DPS, but there are a few exceptions:
2380 return match expr.node {
2381 // `a += b` has a unit result.
2382 hir::ExprAssignOp(..) => ExprKind::RvalueStmt,
2383
2384 // the deref method invoked for `*a` always yields an `&T`
2385 hir::ExprUnary(hir::UnDeref, _) => ExprKind::Lvalue,
2386
2387 // the index method invoked for `a[i]` always yields an `&T`
2388 hir::ExprIndex(..) => ExprKind::Lvalue,
2389
2390 // in the general case, result could be any type, use DPS
2391 _ => ExprKind::RvalueDps
2392 };
2393 }
2394
2395 match expr.node {
2396 hir::ExprPath(..) => {
2397 match tcx.expect_def(expr.id) {
2398 // Put functions and ctors with the ADTs, as they
2399 // are zero-sized, so DPS is the cheapest option.
2400 Def::Struct(..) | Def::Variant(..) |
2401 Def::Fn(..) | Def::Method(..) => {
2402 ExprKind::RvalueDps
2403 }
2404
2405 // Note: there is actually a good case to be made that
2406 // DefArg's, particularly those of immediate type, ought to
2407 // considered rvalues.
2408 Def::Static(..) |
2409 Def::Upvar(..) |
2410 Def::Local(..) => ExprKind::Lvalue,
2411
2412 Def::Const(..) |
2413 Def::AssociatedConst(..) => ExprKind::RvalueDatum,
2414
2415 def => {
2416 span_bug!(
2417 expr.span,
2418 "uncategorized def for expr {}: {:?}",
2419 expr.id,
2420 def);
2421 }
2422 }
2423 }
2424
2425 hir::ExprType(ref expr, _) => {
2426 expr_kind(tcx, expr)
2427 }
2428
2429 hir::ExprUnary(hir::UnDeref, _) |
2430 hir::ExprField(..) |
2431 hir::ExprTupField(..) |
2432 hir::ExprIndex(..) => {
2433 ExprKind::Lvalue
2434 }
2435
2436 hir::ExprCall(..) |
2437 hir::ExprMethodCall(..) |
2438 hir::ExprStruct(..) |
2439 hir::ExprTup(..) |
2440 hir::ExprIf(..) |
2441 hir::ExprMatch(..) |
2442 hir::ExprClosure(..) |
2443 hir::ExprBlock(..) |
2444 hir::ExprRepeat(..) |
2445 hir::ExprVec(..) => {
2446 ExprKind::RvalueDps
2447 }
2448
2449 hir::ExprLit(ref lit) if lit.node.is_str() => {
2450 ExprKind::RvalueDps
2451 }
2452
2453 hir::ExprBreak(..) |
2454 hir::ExprAgain(..) |
2455 hir::ExprRet(..) |
2456 hir::ExprWhile(..) |
2457 hir::ExprLoop(..) |
2458 hir::ExprAssign(..) |
2459 hir::ExprInlineAsm(..) |
2460 hir::ExprAssignOp(..) => {
2461 ExprKind::RvalueStmt
2462 }
2463
2464 hir::ExprLit(_) | // Note: LitStr is carved out above
2465 hir::ExprUnary(..) |
2466 hir::ExprBox(_) |
2467 hir::ExprAddrOf(..) |
2468 hir::ExprBinary(..) |
2469 hir::ExprCast(..) => {
2470 ExprKind::RvalueDatum
2471 }
2472 }
2473 }