]> git.proxmox.com Git - rustc.git/blob - src/librustc_trans/partitioning.rs
New upstream version 1.23.0+dfsg1
[rustc.git] / src / librustc_trans / partitioning.rs
1 // Copyright 2016 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Partitioning Codegen Units for Incremental Compilation
12 //! ======================================================
13 //!
14 //! The task of this module is to take the complete set of translation items of
15 //! a crate and produce a set of codegen units from it, where a codegen unit
16 //! is a named set of (translation-item, linkage) pairs. That is, this module
17 //! decides which translation item appears in which codegen units with which
18 //! linkage. The following paragraphs describe some of the background on the
19 //! partitioning scheme.
20 //!
21 //! The most important opportunity for saving on compilation time with
22 //! incremental compilation is to avoid re-translating and re-optimizing code.
23 //! Since the unit of translation and optimization for LLVM is "modules" or, how
24 //! we call them "codegen units", the particulars of how much time can be saved
25 //! by incremental compilation are tightly linked to how the output program is
26 //! partitioned into these codegen units prior to passing it to LLVM --
27 //! especially because we have to treat codegen units as opaque entities once
28 //! they are created: There is no way for us to incrementally update an existing
29 //! LLVM module and so we have to build any such module from scratch if it was
30 //! affected by some change in the source code.
31 //!
32 //! From that point of view it would make sense to maximize the number of
33 //! codegen units by, for example, putting each function into its own module.
34 //! That way only those modules would have to be re-compiled that were actually
35 //! affected by some change, minimizing the number of functions that could have
36 //! been re-used but just happened to be located in a module that is
37 //! re-compiled.
38 //!
39 //! However, since LLVM optimization does not work across module boundaries,
40 //! using such a highly granular partitioning would lead to very slow runtime
41 //! code since it would effectively prohibit inlining and other inter-procedure
42 //! optimizations. We want to avoid that as much as possible.
43 //!
44 //! Thus we end up with a trade-off: The bigger the codegen units, the better
45 //! LLVM's optimizer can do its work, but also the smaller the compilation time
46 //! reduction we get from incremental compilation.
47 //!
48 //! Ideally, we would create a partitioning such that there are few big codegen
49 //! units with few interdependencies between them. For now though, we use the
50 //! following heuristic to determine the partitioning:
51 //!
52 //! - There are two codegen units for every source-level module:
53 //! - One for "stable", that is non-generic, code
54 //! - One for more "volatile" code, i.e. monomorphized instances of functions
55 //! defined in that module
56 //!
57 //! In order to see why this heuristic makes sense, let's take a look at when a
58 //! codegen unit can get invalidated:
59 //!
60 //! 1. The most straightforward case is when the BODY of a function or global
61 //! changes. Then any codegen unit containing the code for that item has to be
62 //! re-compiled. Note that this includes all codegen units where the function
63 //! has been inlined.
64 //!
65 //! 2. The next case is when the SIGNATURE of a function or global changes. In
66 //! this case, all codegen units containing a REFERENCE to that item have to be
67 //! re-compiled. This is a superset of case 1.
68 //!
69 //! 3. The final and most subtle case is when a REFERENCE to a generic function
70 //! is added or removed somewhere. Even though the definition of the function
71 //! might be unchanged, a new REFERENCE might introduce a new monomorphized
72 //! instance of this function which has to be placed and compiled somewhere.
73 //! Conversely, when removing a REFERENCE, it might have been the last one with
74 //! that particular set of generic arguments and thus we have to remove it.
75 //!
76 //! From the above we see that just using one codegen unit per source-level
77 //! module is not such a good idea, since just adding a REFERENCE to some
78 //! generic item somewhere else would invalidate everything within the module
79 //! containing the generic item. The heuristic above reduces this detrimental
80 //! side-effect of references a little by at least not touching the non-generic
81 //! code of the module.
82 //!
83 //! A Note on Inlining
84 //! ------------------
85 //! As briefly mentioned above, in order for LLVM to be able to inline a
86 //! function call, the body of the function has to be available in the LLVM
87 //! module where the call is made. This has a few consequences for partitioning:
88 //!
89 //! - The partitioning algorithm has to take care of placing functions into all
90 //! codegen units where they should be available for inlining. It also has to
91 //! decide on the correct linkage for these functions.
92 //!
93 //! - The partitioning algorithm has to know which functions are likely to get
94 //! inlined, so it can distribute function instantiations accordingly. Since
95 //! there is no way of knowing for sure which functions LLVM will decide to
96 //! inline in the end, we apply a heuristic here: Only functions marked with
97 //! #[inline] are considered for inlining by the partitioner. The current
98 //! implementation will not try to determine if a function is likely to be
99 //! inlined by looking at the functions definition.
100 //!
101 //! Note though that as a side-effect of creating a codegen units per
102 //! source-level module, functions from the same module will be available for
103 //! inlining, even when they are not marked #[inline].
104
105 use collector::InliningMap;
106 use common;
107 use rustc::dep_graph::WorkProductId;
108 use rustc::hir::def_id::DefId;
109 use rustc::hir::map::DefPathData;
110 use rustc::middle::trans::{Linkage, Visibility};
111 use rustc::ty::{self, TyCtxt, InstanceDef};
112 use rustc::ty::item_path::characteristic_def_id_of_type;
113 use rustc::util::nodemap::{FxHashMap, FxHashSet};
114 use std::collections::hash_map::Entry;
115 use syntax::ast::NodeId;
116 use syntax::symbol::{Symbol, InternedString};
117 use trans_item::{TransItem, BaseTransItemExt, TransItemExt, InstantiationMode};
118
119 pub use rustc::middle::trans::CodegenUnit;
120
121 pub enum PartitioningStrategy {
122 /// Generate one codegen unit per source-level module.
123 PerModule,
124
125 /// Partition the whole crate into a fixed number of codegen units.
126 FixedUnitCount(usize)
127 }
128
129 pub trait CodegenUnitExt<'tcx> {
130 fn as_codegen_unit(&self) -> &CodegenUnit<'tcx>;
131
132 fn contains_item(&self, item: &TransItem<'tcx>) -> bool {
133 self.items().contains_key(item)
134 }
135
136 fn name<'a>(&'a self) -> &'a InternedString
137 where 'tcx: 'a,
138 {
139 &self.as_codegen_unit().name()
140 }
141
142 fn items(&self) -> &FxHashMap<TransItem<'tcx>, (Linkage, Visibility)> {
143 &self.as_codegen_unit().items()
144 }
145
146 fn work_product_id(&self) -> WorkProductId {
147 WorkProductId::from_cgu_name(self.name())
148 }
149
150 fn items_in_deterministic_order<'a>(&self,
151 tcx: TyCtxt<'a, 'tcx, 'tcx>)
152 -> Vec<(TransItem<'tcx>,
153 (Linkage, Visibility))> {
154 // The codegen tests rely on items being process in the same order as
155 // they appear in the file, so for local items, we sort by node_id first
156 #[derive(PartialEq, Eq, PartialOrd, Ord)]
157 pub struct ItemSortKey(Option<NodeId>, ty::SymbolName);
158
159 fn item_sort_key<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
160 item: TransItem<'tcx>) -> ItemSortKey {
161 ItemSortKey(match item {
162 TransItem::Fn(ref instance) => {
163 match instance.def {
164 // We only want to take NodeIds of user-defined
165 // instances into account. The others don't matter for
166 // the codegen tests and can even make item order
167 // unstable.
168 InstanceDef::Item(def_id) => {
169 tcx.hir.as_local_node_id(def_id)
170 }
171 InstanceDef::Intrinsic(..) |
172 InstanceDef::FnPtrShim(..) |
173 InstanceDef::Virtual(..) |
174 InstanceDef::ClosureOnceShim { .. } |
175 InstanceDef::DropGlue(..) |
176 InstanceDef::CloneShim(..) => {
177 None
178 }
179 }
180 }
181 TransItem::Static(node_id) |
182 TransItem::GlobalAsm(node_id) => {
183 Some(node_id)
184 }
185 }, item.symbol_name(tcx))
186 }
187
188 let items: Vec<_> = self.items().iter().map(|(&i, &l)| (i, l)).collect();
189 let mut items : Vec<_> = items.iter()
190 .map(|il| (il, item_sort_key(tcx, il.0))).collect();
191 items.sort_by(|&(_, ref key1), &(_, ref key2)| key1.cmp(key2));
192 items.into_iter().map(|(&item_linkage, _)| item_linkage).collect()
193 }
194 }
195
196 impl<'tcx> CodegenUnitExt<'tcx> for CodegenUnit<'tcx> {
197 fn as_codegen_unit(&self) -> &CodegenUnit<'tcx> {
198 self
199 }
200 }
201
202 // Anything we can't find a proper codegen unit for goes into this.
203 const FALLBACK_CODEGEN_UNIT: &'static str = "__rustc_fallback_codegen_unit";
204
205 pub fn partition<'a, 'tcx, I>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
206 trans_items: I,
207 strategy: PartitioningStrategy,
208 inlining_map: &InliningMap<'tcx>)
209 -> Vec<CodegenUnit<'tcx>>
210 where I: Iterator<Item = TransItem<'tcx>>
211 {
212 // In the first step, we place all regular translation items into their
213 // respective 'home' codegen unit. Regular translation items are all
214 // functions and statics defined in the local crate.
215 let mut initial_partitioning = place_root_translation_items(tcx,
216 trans_items);
217
218 debug_dump(tcx, "INITIAL PARTITIONING:", initial_partitioning.codegen_units.iter());
219
220 // If the partitioning should produce a fixed count of codegen units, merge
221 // until that count is reached.
222 if let PartitioningStrategy::FixedUnitCount(count) = strategy {
223 merge_codegen_units(&mut initial_partitioning, count, &tcx.crate_name.as_str());
224
225 debug_dump(tcx, "POST MERGING:", initial_partitioning.codegen_units.iter());
226 }
227
228 // In the next step, we use the inlining map to determine which additional
229 // translation items have to go into each codegen unit. These additional
230 // translation items can be drop-glue, functions from external crates, and
231 // local functions the definition of which is marked with #[inline].
232 let mut post_inlining = place_inlined_translation_items(initial_partitioning,
233 inlining_map);
234
235 debug_dump(tcx, "POST INLINING:", post_inlining.codegen_units.iter());
236
237 // Next we try to make as many symbols "internal" as possible, so LLVM has
238 // more freedom to optimize.
239 internalize_symbols(tcx, &mut post_inlining, inlining_map);
240
241 // Finally, sort by codegen unit name, so that we get deterministic results
242 let PostInliningPartitioning {
243 codegen_units: mut result,
244 trans_item_placements: _,
245 internalization_candidates: _,
246 } = post_inlining;
247
248 result.sort_by(|cgu1, cgu2| {
249 cgu1.name().cmp(cgu2.name())
250 });
251
252 result
253 }
254
255 struct PreInliningPartitioning<'tcx> {
256 codegen_units: Vec<CodegenUnit<'tcx>>,
257 roots: FxHashSet<TransItem<'tcx>>,
258 internalization_candidates: FxHashSet<TransItem<'tcx>>,
259 }
260
261 /// For symbol internalization, we need to know whether a symbol/trans-item is
262 /// accessed from outside the codegen unit it is defined in. This type is used
263 /// to keep track of that.
264 #[derive(Clone, PartialEq, Eq, Debug)]
265 enum TransItemPlacement {
266 SingleCgu { cgu_name: InternedString },
267 MultipleCgus,
268 }
269
270 struct PostInliningPartitioning<'tcx> {
271 codegen_units: Vec<CodegenUnit<'tcx>>,
272 trans_item_placements: FxHashMap<TransItem<'tcx>, TransItemPlacement>,
273 internalization_candidates: FxHashSet<TransItem<'tcx>>,
274 }
275
276 fn place_root_translation_items<'a, 'tcx, I>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
277 trans_items: I)
278 -> PreInliningPartitioning<'tcx>
279 where I: Iterator<Item = TransItem<'tcx>>
280 {
281 let mut roots = FxHashSet();
282 let mut codegen_units = FxHashMap();
283 let is_incremental_build = tcx.sess.opts.incremental.is_some();
284 let mut internalization_candidates = FxHashSet();
285
286 for trans_item in trans_items {
287 match trans_item.instantiation_mode(tcx) {
288 InstantiationMode::GloballyShared { .. } => {}
289 InstantiationMode::LocalCopy => continue,
290 }
291
292 let characteristic_def_id = characteristic_def_id_of_trans_item(tcx, trans_item);
293 let is_volatile = is_incremental_build &&
294 trans_item.is_generic_fn();
295
296 let codegen_unit_name = match characteristic_def_id {
297 Some(def_id) => compute_codegen_unit_name(tcx, def_id, is_volatile),
298 None => Symbol::intern(FALLBACK_CODEGEN_UNIT).as_str(),
299 };
300
301 let make_codegen_unit = || {
302 CodegenUnit::new(codegen_unit_name.clone())
303 };
304
305 let codegen_unit = codegen_units.entry(codegen_unit_name.clone())
306 .or_insert_with(make_codegen_unit);
307
308 let (linkage, visibility) = match trans_item.explicit_linkage(tcx) {
309 Some(explicit_linkage) => (explicit_linkage, Visibility::Default),
310 None => {
311 match trans_item {
312 TransItem::Fn(ref instance) => {
313 let visibility = match instance.def {
314 InstanceDef::Item(def_id) => {
315 if def_id.is_local() {
316 if tcx.is_exported_symbol(def_id) {
317 Visibility::Default
318 } else {
319 Visibility::Hidden
320 }
321 } else {
322 Visibility::Hidden
323 }
324 }
325 InstanceDef::FnPtrShim(..) |
326 InstanceDef::Virtual(..) |
327 InstanceDef::Intrinsic(..) |
328 InstanceDef::ClosureOnceShim { .. } |
329 InstanceDef::DropGlue(..) |
330 InstanceDef::CloneShim(..) => {
331 Visibility::Hidden
332 }
333 };
334 (Linkage::External, visibility)
335 }
336 TransItem::Static(node_id) |
337 TransItem::GlobalAsm(node_id) => {
338 let def_id = tcx.hir.local_def_id(node_id);
339 let visibility = if tcx.is_exported_symbol(def_id) {
340 Visibility::Default
341 } else {
342 Visibility::Hidden
343 };
344 (Linkage::External, visibility)
345 }
346 }
347 }
348 };
349 if visibility == Visibility::Hidden {
350 internalization_candidates.insert(trans_item);
351 }
352
353 codegen_unit.items_mut().insert(trans_item, (linkage, visibility));
354 roots.insert(trans_item);
355 }
356
357 // always ensure we have at least one CGU; otherwise, if we have a
358 // crate with just types (for example), we could wind up with no CGU
359 if codegen_units.is_empty() {
360 let codegen_unit_name = Symbol::intern(FALLBACK_CODEGEN_UNIT).as_str();
361 codegen_units.insert(codegen_unit_name.clone(),
362 CodegenUnit::new(codegen_unit_name.clone()));
363 }
364
365 PreInliningPartitioning {
366 codegen_units: codegen_units.into_iter()
367 .map(|(_, codegen_unit)| codegen_unit)
368 .collect(),
369 roots,
370 internalization_candidates,
371 }
372 }
373
374 fn merge_codegen_units<'tcx>(initial_partitioning: &mut PreInliningPartitioning<'tcx>,
375 target_cgu_count: usize,
376 crate_name: &str) {
377 assert!(target_cgu_count >= 1);
378 let codegen_units = &mut initial_partitioning.codegen_units;
379
380 // Merge the two smallest codegen units until the target size is reached.
381 // Note that "size" is estimated here rather inaccurately as the number of
382 // translation items in a given unit. This could be improved on.
383 while codegen_units.len() > target_cgu_count {
384 // Sort small cgus to the back
385 codegen_units.sort_by_key(|cgu| -(cgu.items().len() as i64));
386 let mut smallest = codegen_units.pop().unwrap();
387 let second_smallest = codegen_units.last_mut().unwrap();
388
389 for (k, v) in smallest.items_mut().drain() {
390 second_smallest.items_mut().insert(k, v);
391 }
392 }
393
394 for (index, cgu) in codegen_units.iter_mut().enumerate() {
395 cgu.set_name(numbered_codegen_unit_name(crate_name, index));
396 }
397 }
398
399 fn place_inlined_translation_items<'tcx>(initial_partitioning: PreInliningPartitioning<'tcx>,
400 inlining_map: &InliningMap<'tcx>)
401 -> PostInliningPartitioning<'tcx> {
402 let mut new_partitioning = Vec::new();
403 let mut trans_item_placements = FxHashMap();
404
405 let PreInliningPartitioning {
406 codegen_units: initial_cgus,
407 roots,
408 internalization_candidates,
409 } = initial_partitioning;
410
411 let single_codegen_unit = initial_cgus.len() == 1;
412
413 for old_codegen_unit in initial_cgus {
414 // Collect all items that need to be available in this codegen unit
415 let mut reachable = FxHashSet();
416 for root in old_codegen_unit.items().keys() {
417 follow_inlining(*root, inlining_map, &mut reachable);
418 }
419
420 let mut new_codegen_unit = CodegenUnit::new(old_codegen_unit.name().clone());
421
422 // Add all translation items that are not already there
423 for trans_item in reachable {
424 if let Some(linkage) = old_codegen_unit.items().get(&trans_item) {
425 // This is a root, just copy it over
426 new_codegen_unit.items_mut().insert(trans_item, *linkage);
427 } else {
428 if roots.contains(&trans_item) {
429 bug!("GloballyShared trans-item inlined into other CGU: \
430 {:?}", trans_item);
431 }
432
433 // This is a cgu-private copy
434 new_codegen_unit.items_mut().insert(
435 trans_item,
436 (Linkage::Internal, Visibility::Default),
437 );
438 }
439
440 if !single_codegen_unit {
441 // If there is more than one codegen unit, we need to keep track
442 // in which codegen units each translation item is placed:
443 match trans_item_placements.entry(trans_item) {
444 Entry::Occupied(e) => {
445 let placement = e.into_mut();
446 debug_assert!(match *placement {
447 TransItemPlacement::SingleCgu { ref cgu_name } => {
448 *cgu_name != *new_codegen_unit.name()
449 }
450 TransItemPlacement::MultipleCgus => true,
451 });
452 *placement = TransItemPlacement::MultipleCgus;
453 }
454 Entry::Vacant(e) => {
455 e.insert(TransItemPlacement::SingleCgu {
456 cgu_name: new_codegen_unit.name().clone()
457 });
458 }
459 }
460 }
461 }
462
463 new_partitioning.push(new_codegen_unit);
464 }
465
466 return PostInliningPartitioning {
467 codegen_units: new_partitioning,
468 trans_item_placements,
469 internalization_candidates,
470 };
471
472 fn follow_inlining<'tcx>(trans_item: TransItem<'tcx>,
473 inlining_map: &InliningMap<'tcx>,
474 visited: &mut FxHashSet<TransItem<'tcx>>) {
475 if !visited.insert(trans_item) {
476 return;
477 }
478
479 inlining_map.with_inlining_candidates(trans_item, |target| {
480 follow_inlining(target, inlining_map, visited);
481 });
482 }
483 }
484
485 fn internalize_symbols<'a, 'tcx>(_tcx: TyCtxt<'a, 'tcx, 'tcx>,
486 partitioning: &mut PostInliningPartitioning<'tcx>,
487 inlining_map: &InliningMap<'tcx>) {
488 if partitioning.codegen_units.len() == 1 {
489 // Fast path for when there is only one codegen unit. In this case we
490 // can internalize all candidates, since there is nowhere else they
491 // could be accessed from.
492 for cgu in &mut partitioning.codegen_units {
493 for candidate in &partitioning.internalization_candidates {
494 cgu.items_mut().insert(*candidate,
495 (Linkage::Internal, Visibility::Default));
496 }
497 }
498
499 return;
500 }
501
502 // Build a map from every translation item to all the translation items that
503 // reference it.
504 let mut accessor_map: FxHashMap<TransItem<'tcx>, Vec<TransItem<'tcx>>> = FxHashMap();
505 inlining_map.iter_accesses(|accessor, accessees| {
506 for accessee in accessees {
507 accessor_map.entry(*accessee)
508 .or_insert(Vec::new())
509 .push(accessor);
510 }
511 });
512
513 let trans_item_placements = &partitioning.trans_item_placements;
514
515 // For each internalization candidates in each codegen unit, check if it is
516 // accessed from outside its defining codegen unit.
517 for cgu in &mut partitioning.codegen_units {
518 let home_cgu = TransItemPlacement::SingleCgu {
519 cgu_name: cgu.name().clone()
520 };
521
522 for (accessee, linkage_and_visibility) in cgu.items_mut() {
523 if !partitioning.internalization_candidates.contains(accessee) {
524 // This item is no candidate for internalizing, so skip it.
525 continue
526 }
527 debug_assert_eq!(trans_item_placements[accessee], home_cgu);
528
529 if let Some(accessors) = accessor_map.get(accessee) {
530 if accessors.iter()
531 .filter_map(|accessor| {
532 // Some accessors might not have been
533 // instantiated. We can safely ignore those.
534 trans_item_placements.get(accessor)
535 })
536 .any(|placement| *placement != home_cgu) {
537 // Found an accessor from another CGU, so skip to the next
538 // item without marking this one as internal.
539 continue
540 }
541 }
542
543 // If we got here, we did not find any accesses from other CGUs,
544 // so it's fine to make this translation item internal.
545 *linkage_and_visibility = (Linkage::Internal, Visibility::Default);
546 }
547 }
548 }
549
550 fn characteristic_def_id_of_trans_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
551 trans_item: TransItem<'tcx>)
552 -> Option<DefId> {
553 match trans_item {
554 TransItem::Fn(instance) => {
555 let def_id = match instance.def {
556 ty::InstanceDef::Item(def_id) => def_id,
557 ty::InstanceDef::FnPtrShim(..) |
558 ty::InstanceDef::ClosureOnceShim { .. } |
559 ty::InstanceDef::Intrinsic(..) |
560 ty::InstanceDef::DropGlue(..) |
561 ty::InstanceDef::Virtual(..) |
562 ty::InstanceDef::CloneShim(..) => return None
563 };
564
565 // If this is a method, we want to put it into the same module as
566 // its self-type. If the self-type does not provide a characteristic
567 // DefId, we use the location of the impl after all.
568
569 if tcx.trait_of_item(def_id).is_some() {
570 let self_ty = instance.substs.type_at(0);
571 // This is an implementation of a trait method.
572 return characteristic_def_id_of_type(self_ty).or(Some(def_id));
573 }
574
575 if let Some(impl_def_id) = tcx.impl_of_method(def_id) {
576 // This is a method within an inherent impl, find out what the
577 // self-type is:
578 let impl_self_ty = common::def_ty(tcx, impl_def_id, instance.substs);
579 if let Some(def_id) = characteristic_def_id_of_type(impl_self_ty) {
580 return Some(def_id);
581 }
582 }
583
584 Some(def_id)
585 }
586 TransItem::Static(node_id) |
587 TransItem::GlobalAsm(node_id) => Some(tcx.hir.local_def_id(node_id)),
588 }
589 }
590
591 fn compute_codegen_unit_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
592 def_id: DefId,
593 volatile: bool)
594 -> InternedString {
595 // Unfortunately we cannot just use the `ty::item_path` infrastructure here
596 // because we need paths to modules and the DefIds of those are not
597 // available anymore for external items.
598 let mut mod_path = String::with_capacity(64);
599
600 let def_path = tcx.def_path(def_id);
601 mod_path.push_str(&tcx.crate_name(def_path.krate).as_str());
602
603 for part in tcx.def_path(def_id)
604 .data
605 .iter()
606 .take_while(|part| {
607 match part.data {
608 DefPathData::Module(..) => true,
609 _ => false,
610 }
611 }) {
612 mod_path.push_str("-");
613 mod_path.push_str(&part.data.as_interned_str());
614 }
615
616 if volatile {
617 mod_path.push_str(".volatile");
618 }
619
620 return Symbol::intern(&mod_path[..]).as_str();
621 }
622
623 fn numbered_codegen_unit_name(crate_name: &str, index: usize) -> InternedString {
624 Symbol::intern(&format!("{}{}", crate_name, index)).as_str()
625 }
626
627 fn debug_dump<'a, 'b, 'tcx, I>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
628 label: &str,
629 cgus: I)
630 where I: Iterator<Item=&'b CodegenUnit<'tcx>>,
631 'tcx: 'a + 'b
632 {
633 if cfg!(debug_assertions) {
634 debug!("{}", label);
635 for cgu in cgus {
636 debug!("CodegenUnit {}:", cgu.name());
637
638 for (trans_item, linkage) in cgu.items() {
639 let symbol_name = trans_item.symbol_name(tcx);
640 let symbol_hash_start = symbol_name.rfind('h');
641 let symbol_hash = symbol_hash_start.map(|i| &symbol_name[i ..])
642 .unwrap_or("<no hash>");
643
644 debug!(" - {} [{:?}] [{}]",
645 trans_item.to_string(tcx),
646 linkage,
647 symbol_hash);
648 }
649
650 debug!("");
651 }
652 }
653 }