]> git.proxmox.com Git - rustc.git/blob - src/librustc_trans/partitioning.rs
New upstream version 1.20.0+dfsg1
[rustc.git] / src / librustc_trans / partitioning.rs
1 // Copyright 2016 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Partitioning Codegen Units for Incremental Compilation
12 //! ======================================================
13 //!
14 //! The task of this module is to take the complete set of translation items of
15 //! a crate and produce a set of codegen units from it, where a codegen unit
16 //! is a named set of (translation-item, linkage) pairs. That is, this module
17 //! decides which translation item appears in which codegen units with which
18 //! linkage. The following paragraphs describe some of the background on the
19 //! partitioning scheme.
20 //!
21 //! The most important opportunity for saving on compilation time with
22 //! incremental compilation is to avoid re-translating and re-optimizing code.
23 //! Since the unit of translation and optimization for LLVM is "modules" or, how
24 //! we call them "codegen units", the particulars of how much time can be saved
25 //! by incremental compilation are tightly linked to how the output program is
26 //! partitioned into these codegen units prior to passing it to LLVM --
27 //! especially because we have to treat codegen units as opaque entities once
28 //! they are created: There is no way for us to incrementally update an existing
29 //! LLVM module and so we have to build any such module from scratch if it was
30 //! affected by some change in the source code.
31 //!
32 //! From that point of view it would make sense to maximize the number of
33 //! codegen units by, for example, putting each function into its own module.
34 //! That way only those modules would have to be re-compiled that were actually
35 //! affected by some change, minimizing the number of functions that could have
36 //! been re-used but just happened to be located in a module that is
37 //! re-compiled.
38 //!
39 //! However, since LLVM optimization does not work across module boundaries,
40 //! using such a highly granular partitioning would lead to very slow runtime
41 //! code since it would effectively prohibit inlining and other inter-procedure
42 //! optimizations. We want to avoid that as much as possible.
43 //!
44 //! Thus we end up with a trade-off: The bigger the codegen units, the better
45 //! LLVM's optimizer can do its work, but also the smaller the compilation time
46 //! reduction we get from incremental compilation.
47 //!
48 //! Ideally, we would create a partitioning such that there are few big codegen
49 //! units with few interdependencies between them. For now though, we use the
50 //! following heuristic to determine the partitioning:
51 //!
52 //! - There are two codegen units for every source-level module:
53 //! - One for "stable", that is non-generic, code
54 //! - One for more "volatile" code, i.e. monomorphized instances of functions
55 //! defined in that module
56 //!
57 //! In order to see why this heuristic makes sense, let's take a look at when a
58 //! codegen unit can get invalidated:
59 //!
60 //! 1. The most straightforward case is when the BODY of a function or global
61 //! changes. Then any codegen unit containing the code for that item has to be
62 //! re-compiled. Note that this includes all codegen units where the function
63 //! has been inlined.
64 //!
65 //! 2. The next case is when the SIGNATURE of a function or global changes. In
66 //! this case, all codegen units containing a REFERENCE to that item have to be
67 //! re-compiled. This is a superset of case 1.
68 //!
69 //! 3. The final and most subtle case is when a REFERENCE to a generic function
70 //! is added or removed somewhere. Even though the definition of the function
71 //! might be unchanged, a new REFERENCE might introduce a new monomorphized
72 //! instance of this function which has to be placed and compiled somewhere.
73 //! Conversely, when removing a REFERENCE, it might have been the last one with
74 //! that particular set of generic arguments and thus we have to remove it.
75 //!
76 //! From the above we see that just using one codegen unit per source-level
77 //! module is not such a good idea, since just adding a REFERENCE to some
78 //! generic item somewhere else would invalidate everything within the module
79 //! containing the generic item. The heuristic above reduces this detrimental
80 //! side-effect of references a little by at least not touching the non-generic
81 //! code of the module.
82 //!
83 //! A Note on Inlining
84 //! ------------------
85 //! As briefly mentioned above, in order for LLVM to be able to inline a
86 //! function call, the body of the function has to be available in the LLVM
87 //! module where the call is made. This has a few consequences for partitioning:
88 //!
89 //! - The partitioning algorithm has to take care of placing functions into all
90 //! codegen units where they should be available for inlining. It also has to
91 //! decide on the correct linkage for these functions.
92 //!
93 //! - The partitioning algorithm has to know which functions are likely to get
94 //! inlined, so it can distribute function instantiations accordingly. Since
95 //! there is no way of knowing for sure which functions LLVM will decide to
96 //! inline in the end, we apply a heuristic here: Only functions marked with
97 //! #[inline] are considered for inlining by the partitioner. The current
98 //! implementation will not try to determine if a function is likely to be
99 //! inlined by looking at the functions definition.
100 //!
101 //! Note though that as a side-effect of creating a codegen units per
102 //! source-level module, functions from the same module will be available for
103 //! inlining, even when they are not marked #[inline].
104
105 use collector::InliningMap;
106 use common;
107 use context::SharedCrateContext;
108 use llvm;
109 use rustc::dep_graph::{DepNode, WorkProductId};
110 use rustc::hir::def_id::DefId;
111 use rustc::hir::map::DefPathData;
112 use rustc::session::config::NUMBERED_CODEGEN_UNIT_MARKER;
113 use rustc::ty::{self, TyCtxt};
114 use rustc::ty::item_path::characteristic_def_id_of_type;
115 use rustc_incremental::IchHasher;
116 use std::hash::Hash;
117 use syntax::ast::NodeId;
118 use syntax::symbol::{Symbol, InternedString};
119 use trans_item::{TransItem, InstantiationMode};
120 use rustc::util::nodemap::{FxHashMap, FxHashSet};
121
122 pub enum PartitioningStrategy {
123 /// Generate one codegen unit per source-level module.
124 PerModule,
125
126 /// Partition the whole crate into a fixed number of codegen units.
127 FixedUnitCount(usize)
128 }
129
130 pub struct CodegenUnit<'tcx> {
131 /// A name for this CGU. Incremental compilation requires that
132 /// name be unique amongst **all** crates. Therefore, it should
133 /// contain something unique to this crate (e.g., a module path)
134 /// as well as the crate name and disambiguator.
135 name: InternedString,
136
137 items: FxHashMap<TransItem<'tcx>, llvm::Linkage>,
138 }
139
140 impl<'tcx> CodegenUnit<'tcx> {
141 pub fn new(name: InternedString,
142 items: FxHashMap<TransItem<'tcx>, llvm::Linkage>)
143 -> Self {
144 CodegenUnit {
145 name: name,
146 items: items,
147 }
148 }
149
150 pub fn empty(name: InternedString) -> Self {
151 Self::new(name, FxHashMap())
152 }
153
154 pub fn contains_item(&self, item: &TransItem<'tcx>) -> bool {
155 self.items.contains_key(item)
156 }
157
158 pub fn name(&self) -> &str {
159 &self.name
160 }
161
162 pub fn items(&self) -> &FxHashMap<TransItem<'tcx>, llvm::Linkage> {
163 &self.items
164 }
165
166 pub fn work_product_id(&self) -> WorkProductId {
167 WorkProductId::from_cgu_name(self.name())
168 }
169
170 pub fn work_product_dep_node(&self) -> DepNode {
171 self.work_product_id().to_dep_node()
172 }
173
174 pub fn compute_symbol_name_hash<'a>(&self,
175 scx: &SharedCrateContext<'a, 'tcx>)
176 -> u64 {
177 let mut state = IchHasher::new();
178 let exported_symbols = scx.exported_symbols();
179 let all_items = self.items_in_deterministic_order(scx.tcx());
180 for (item, _) in all_items {
181 let symbol_name = item.symbol_name(scx.tcx());
182 symbol_name.len().hash(&mut state);
183 symbol_name.hash(&mut state);
184 let exported = match item {
185 TransItem::Fn(ref instance) => {
186 let node_id =
187 scx.tcx().hir.as_local_node_id(instance.def_id());
188 node_id.map(|node_id| exported_symbols.contains(&node_id))
189 .unwrap_or(false)
190 }
191 TransItem::Static(node_id) => {
192 exported_symbols.contains(&node_id)
193 }
194 TransItem::GlobalAsm(..) => true,
195 };
196 exported.hash(&mut state);
197 }
198 state.finish().to_smaller_hash()
199 }
200
201 pub fn items_in_deterministic_order<'a>(&self,
202 tcx: TyCtxt<'a, 'tcx, 'tcx>)
203 -> Vec<(TransItem<'tcx>, llvm::Linkage)> {
204 // The codegen tests rely on items being process in the same order as
205 // they appear in the file, so for local items, we sort by node_id first
206 #[derive(PartialEq, Eq, PartialOrd, Ord)]
207 pub struct ItemSortKey(Option<NodeId>, ty::SymbolName);
208
209 fn item_sort_key<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
210 item: TransItem<'tcx>) -> ItemSortKey {
211 ItemSortKey(match item {
212 TransItem::Fn(instance) => {
213 tcx.hir.as_local_node_id(instance.def_id())
214 }
215 TransItem::Static(node_id) | TransItem::GlobalAsm(node_id) => {
216 Some(node_id)
217 }
218 }, item.symbol_name(tcx))
219 }
220
221 let items: Vec<_> = self.items.iter().map(|(&i, &l)| (i, l)).collect();
222 let mut items : Vec<_> = items.iter()
223 .map(|il| (il, item_sort_key(tcx, il.0))).collect();
224 items.sort_by(|&(_, ref key1), &(_, ref key2)| key1.cmp(key2));
225 items.into_iter().map(|(&item_linkage, _)| item_linkage).collect()
226 }
227 }
228
229
230 // Anything we can't find a proper codegen unit for goes into this.
231 const FALLBACK_CODEGEN_UNIT: &'static str = "__rustc_fallback_codegen_unit";
232
233 pub fn partition<'a, 'tcx, I>(scx: &SharedCrateContext<'a, 'tcx>,
234 trans_items: I,
235 strategy: PartitioningStrategy,
236 inlining_map: &InliningMap<'tcx>)
237 -> Vec<CodegenUnit<'tcx>>
238 where I: Iterator<Item = TransItem<'tcx>>
239 {
240 let tcx = scx.tcx();
241
242 // In the first step, we place all regular translation items into their
243 // respective 'home' codegen unit. Regular translation items are all
244 // functions and statics defined in the local crate.
245 let mut initial_partitioning = place_root_translation_items(scx,
246 trans_items);
247
248 debug_dump(tcx, "INITIAL PARTITONING:", initial_partitioning.codegen_units.iter());
249
250 // If the partitioning should produce a fixed count of codegen units, merge
251 // until that count is reached.
252 if let PartitioningStrategy::FixedUnitCount(count) = strategy {
253 merge_codegen_units(&mut initial_partitioning, count, &tcx.crate_name.as_str());
254
255 debug_dump(tcx, "POST MERGING:", initial_partitioning.codegen_units.iter());
256 }
257
258 // In the next step, we use the inlining map to determine which addtional
259 // translation items have to go into each codegen unit. These additional
260 // translation items can be drop-glue, functions from external crates, and
261 // local functions the definition of which is marked with #[inline].
262 let post_inlining = place_inlined_translation_items(initial_partitioning,
263 inlining_map);
264
265 debug_dump(tcx, "POST INLINING:", post_inlining.0.iter());
266
267 // Finally, sort by codegen unit name, so that we get deterministic results
268 let mut result = post_inlining.0;
269 result.sort_by(|cgu1, cgu2| {
270 (&cgu1.name[..]).cmp(&cgu2.name[..])
271 });
272
273 if scx.sess().opts.enable_dep_node_debug_strs() {
274 for cgu in &result {
275 let dep_node = cgu.work_product_dep_node();
276 scx.tcx().dep_graph.register_dep_node_debug_str(dep_node,
277 || cgu.name().to_string());
278 }
279 }
280
281 result
282 }
283
284 struct PreInliningPartitioning<'tcx> {
285 codegen_units: Vec<CodegenUnit<'tcx>>,
286 roots: FxHashSet<TransItem<'tcx>>,
287 }
288
289 struct PostInliningPartitioning<'tcx>(Vec<CodegenUnit<'tcx>>);
290
291 fn place_root_translation_items<'a, 'tcx, I>(scx: &SharedCrateContext<'a, 'tcx>,
292 trans_items: I)
293 -> PreInliningPartitioning<'tcx>
294 where I: Iterator<Item = TransItem<'tcx>>
295 {
296 let tcx = scx.tcx();
297 let mut roots = FxHashSet();
298 let mut codegen_units = FxHashMap();
299 let is_incremental_build = tcx.sess.opts.incremental.is_some();
300
301 for trans_item in trans_items {
302 let is_root = trans_item.instantiation_mode(tcx) == InstantiationMode::GloballyShared;
303
304 if is_root {
305 let characteristic_def_id = characteristic_def_id_of_trans_item(scx, trans_item);
306 let is_volatile = is_incremental_build &&
307 trans_item.is_generic_fn();
308
309 let codegen_unit_name = match characteristic_def_id {
310 Some(def_id) => compute_codegen_unit_name(tcx, def_id, is_volatile),
311 None => Symbol::intern(FALLBACK_CODEGEN_UNIT).as_str(),
312 };
313
314 let make_codegen_unit = || {
315 CodegenUnit::empty(codegen_unit_name.clone())
316 };
317
318 let mut codegen_unit = codegen_units.entry(codegen_unit_name.clone())
319 .or_insert_with(make_codegen_unit);
320
321 let linkage = match trans_item.explicit_linkage(tcx) {
322 Some(explicit_linkage) => explicit_linkage,
323 None => {
324 match trans_item {
325 TransItem::Fn(..) |
326 TransItem::Static(..) |
327 TransItem::GlobalAsm(..) => llvm::ExternalLinkage,
328 }
329 }
330 };
331
332 codegen_unit.items.insert(trans_item, linkage);
333 roots.insert(trans_item);
334 }
335 }
336
337 // always ensure we have at least one CGU; otherwise, if we have a
338 // crate with just types (for example), we could wind up with no CGU
339 if codegen_units.is_empty() {
340 let codegen_unit_name = Symbol::intern(FALLBACK_CODEGEN_UNIT).as_str();
341 codegen_units.entry(codegen_unit_name.clone())
342 .or_insert_with(|| CodegenUnit::empty(codegen_unit_name.clone()));
343 }
344
345 PreInliningPartitioning {
346 codegen_units: codegen_units.into_iter()
347 .map(|(_, codegen_unit)| codegen_unit)
348 .collect(),
349 roots: roots,
350 }
351 }
352
353 fn merge_codegen_units<'tcx>(initial_partitioning: &mut PreInliningPartitioning<'tcx>,
354 target_cgu_count: usize,
355 crate_name: &str) {
356 assert!(target_cgu_count >= 1);
357 let codegen_units = &mut initial_partitioning.codegen_units;
358
359 // Merge the two smallest codegen units until the target size is reached.
360 // Note that "size" is estimated here rather inaccurately as the number of
361 // translation items in a given unit. This could be improved on.
362 while codegen_units.len() > target_cgu_count {
363 // Sort small cgus to the back
364 codegen_units.sort_by_key(|cgu| -(cgu.items.len() as i64));
365 let smallest = codegen_units.pop().unwrap();
366 let second_smallest = codegen_units.last_mut().unwrap();
367
368 for (k, v) in smallest.items.into_iter() {
369 second_smallest.items.insert(k, v);
370 }
371 }
372
373 for (index, cgu) in codegen_units.iter_mut().enumerate() {
374 cgu.name = numbered_codegen_unit_name(crate_name, index);
375 }
376
377 // If the initial partitioning contained less than target_cgu_count to begin
378 // with, we won't have enough codegen units here, so add a empty units until
379 // we reach the target count
380 while codegen_units.len() < target_cgu_count {
381 let index = codegen_units.len();
382 codegen_units.push(
383 CodegenUnit::empty(numbered_codegen_unit_name(crate_name, index)));
384 }
385 }
386
387 fn place_inlined_translation_items<'tcx>(initial_partitioning: PreInliningPartitioning<'tcx>,
388 inlining_map: &InliningMap<'tcx>)
389 -> PostInliningPartitioning<'tcx> {
390 let mut new_partitioning = Vec::new();
391
392 for codegen_unit in &initial_partitioning.codegen_units[..] {
393 // Collect all items that need to be available in this codegen unit
394 let mut reachable = FxHashSet();
395 for root in codegen_unit.items.keys() {
396 follow_inlining(*root, inlining_map, &mut reachable);
397 }
398
399 let mut new_codegen_unit =
400 CodegenUnit::empty(codegen_unit.name.clone());
401
402 // Add all translation items that are not already there
403 for trans_item in reachable {
404 if let Some(linkage) = codegen_unit.items.get(&trans_item) {
405 // This is a root, just copy it over
406 new_codegen_unit.items.insert(trans_item, *linkage);
407 } else {
408 if initial_partitioning.roots.contains(&trans_item) {
409 bug!("GloballyShared trans-item inlined into other CGU: \
410 {:?}", trans_item);
411 }
412
413 // This is a cgu-private copy
414 new_codegen_unit.items.insert(trans_item, llvm::InternalLinkage);
415 }
416 }
417
418 new_partitioning.push(new_codegen_unit);
419 }
420
421 return PostInliningPartitioning(new_partitioning);
422
423 fn follow_inlining<'tcx>(trans_item: TransItem<'tcx>,
424 inlining_map: &InliningMap<'tcx>,
425 visited: &mut FxHashSet<TransItem<'tcx>>) {
426 if !visited.insert(trans_item) {
427 return;
428 }
429
430 inlining_map.with_inlining_candidates(trans_item, |target| {
431 follow_inlining(target, inlining_map, visited);
432 });
433 }
434 }
435
436 fn characteristic_def_id_of_trans_item<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
437 trans_item: TransItem<'tcx>)
438 -> Option<DefId> {
439 let tcx = scx.tcx();
440 match trans_item {
441 TransItem::Fn(instance) => {
442 let def_id = match instance.def {
443 ty::InstanceDef::Item(def_id) => def_id,
444 ty::InstanceDef::FnPtrShim(..) |
445 ty::InstanceDef::ClosureOnceShim { .. } |
446 ty::InstanceDef::Intrinsic(..) |
447 ty::InstanceDef::DropGlue(..) |
448 ty::InstanceDef::Virtual(..) => return None
449 };
450
451 // If this is a method, we want to put it into the same module as
452 // its self-type. If the self-type does not provide a characteristic
453 // DefId, we use the location of the impl after all.
454
455 if tcx.trait_of_item(def_id).is_some() {
456 let self_ty = instance.substs.type_at(0);
457 // This is an implementation of a trait method.
458 return characteristic_def_id_of_type(self_ty).or(Some(def_id));
459 }
460
461 if let Some(impl_def_id) = tcx.impl_of_method(def_id) {
462 // This is a method within an inherent impl, find out what the
463 // self-type is:
464 let impl_self_ty = common::def_ty(scx, impl_def_id, instance.substs);
465 if let Some(def_id) = characteristic_def_id_of_type(impl_self_ty) {
466 return Some(def_id);
467 }
468 }
469
470 Some(def_id)
471 }
472 TransItem::Static(node_id) |
473 TransItem::GlobalAsm(node_id) => Some(tcx.hir.local_def_id(node_id)),
474 }
475 }
476
477 fn compute_codegen_unit_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
478 def_id: DefId,
479 volatile: bool)
480 -> InternedString {
481 // Unfortunately we cannot just use the `ty::item_path` infrastructure here
482 // because we need paths to modules and the DefIds of those are not
483 // available anymore for external items.
484 let mut mod_path = String::with_capacity(64);
485
486 let def_path = tcx.def_path(def_id);
487 mod_path.push_str(&tcx.crate_name(def_path.krate).as_str());
488
489 for part in tcx.def_path(def_id)
490 .data
491 .iter()
492 .take_while(|part| {
493 match part.data {
494 DefPathData::Module(..) => true,
495 _ => false,
496 }
497 }) {
498 mod_path.push_str("-");
499 mod_path.push_str(&part.data.as_interned_str());
500 }
501
502 if volatile {
503 mod_path.push_str(".volatile");
504 }
505
506 return Symbol::intern(&mod_path[..]).as_str();
507 }
508
509 fn numbered_codegen_unit_name(crate_name: &str, index: usize) -> InternedString {
510 Symbol::intern(&format!("{}{}{}", crate_name, NUMBERED_CODEGEN_UNIT_MARKER, index)).as_str()
511 }
512
513 fn debug_dump<'a, 'b, 'tcx, I>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
514 label: &str,
515 cgus: I)
516 where I: Iterator<Item=&'b CodegenUnit<'tcx>>,
517 'tcx: 'a + 'b
518 {
519 if cfg!(debug_assertions) {
520 debug!("{}", label);
521 for cgu in cgus {
522 debug!("CodegenUnit {}:", cgu.name);
523
524 for (trans_item, linkage) in &cgu.items {
525 let symbol_name = trans_item.symbol_name(tcx);
526 let symbol_hash_start = symbol_name.rfind('h');
527 let symbol_hash = symbol_hash_start.map(|i| &symbol_name[i ..])
528 .unwrap_or("<no hash>");
529
530 debug!(" - {} [{:?}] [{}]",
531 trans_item.to_string(tcx),
532 linkage,
533 symbol_hash);
534 }
535
536 debug!("");
537 }
538 }
539 }