]> git.proxmox.com Git - rustc.git/blob - src/librustc_trans/trans/debuginfo/create_scope_map.rs
Imported Upstream version 1.6.0+dfsg1
[rustc.git] / src / librustc_trans / trans / debuginfo / create_scope_map.rs
1 // Copyright 2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 use super::metadata::file_metadata;
12 use super::utils::DIB;
13
14 use llvm;
15 use llvm::debuginfo::{DIScope, DISubprogram};
16 use trans::common::CrateContext;
17 use middle::pat_util;
18 use rustc::util::nodemap::NodeMap;
19
20 use libc::c_uint;
21 use syntax::codemap::{Span, Pos};
22 use syntax::{ast, codemap};
23
24 use rustc_front;
25 use rustc_front::hir;
26
27 // This procedure builds the *scope map* for a given function, which maps any
28 // given ast::NodeId in the function's AST to the correct DIScope metadata instance.
29 //
30 // This builder procedure walks the AST in execution order and keeps track of
31 // what belongs to which scope, creating DIScope DIEs along the way, and
32 // introducing *artificial* lexical scope descriptors where necessary. These
33 // artificial scopes allow GDB to correctly handle name shadowing.
34 pub fn create_scope_map(cx: &CrateContext,
35 args: &[hir::Arg],
36 fn_entry_block: &hir::Block,
37 fn_metadata: DISubprogram,
38 fn_ast_id: ast::NodeId)
39 -> NodeMap<DIScope> {
40 let mut scope_map = NodeMap();
41
42 let def_map = &cx.tcx().def_map;
43
44 let mut scope_stack = vec!(ScopeStackEntry { scope_metadata: fn_metadata, name: None });
45 scope_map.insert(fn_ast_id, fn_metadata);
46
47 // Push argument identifiers onto the stack so arguments integrate nicely
48 // with variable shadowing.
49 for arg in args {
50 pat_util::pat_bindings_ident(def_map, &*arg.pat, |_, node_id, _, path1| {
51 scope_stack.push(ScopeStackEntry { scope_metadata: fn_metadata,
52 name: Some(path1.node.unhygienic_name) });
53 scope_map.insert(node_id, fn_metadata);
54 })
55 }
56
57 // Clang creates a separate scope for function bodies, so let's do this too.
58 with_new_scope(cx,
59 fn_entry_block.span,
60 &mut scope_stack,
61 &mut scope_map,
62 |cx, scope_stack, scope_map| {
63 walk_block(cx, fn_entry_block, scope_stack, scope_map);
64 });
65
66 return scope_map;
67 }
68
69 // local helper functions for walking the AST.
70 fn with_new_scope<F>(cx: &CrateContext,
71 scope_span: Span,
72 scope_stack: &mut Vec<ScopeStackEntry> ,
73 scope_map: &mut NodeMap<DIScope>,
74 inner_walk: F) where
75 F: FnOnce(&CrateContext, &mut Vec<ScopeStackEntry>, &mut NodeMap<DIScope>),
76 {
77 // Create a new lexical scope and push it onto the stack
78 let loc = cx.sess().codemap().lookup_char_pos(scope_span.lo);
79 let file_metadata = file_metadata(cx, &loc.file.name);
80 let parent_scope = scope_stack.last().unwrap().scope_metadata;
81
82 let scope_metadata = unsafe {
83 llvm::LLVMDIBuilderCreateLexicalBlock(
84 DIB(cx),
85 parent_scope,
86 file_metadata,
87 loc.line as c_uint,
88 loc.col.to_usize() as c_uint)
89 };
90
91 scope_stack.push(ScopeStackEntry { scope_metadata: scope_metadata, name: None });
92
93 inner_walk(cx, scope_stack, scope_map);
94
95 // pop artificial scopes
96 while scope_stack.last().unwrap().name.is_some() {
97 scope_stack.pop();
98 }
99
100 if scope_stack.last().unwrap().scope_metadata != scope_metadata {
101 cx.sess().span_bug(scope_span, "debuginfo: Inconsistency in scope management.");
102 }
103
104 scope_stack.pop();
105 }
106
107 struct ScopeStackEntry {
108 scope_metadata: DIScope,
109 name: Option<ast::Name>
110 }
111
112 fn walk_block(cx: &CrateContext,
113 block: &hir::Block,
114 scope_stack: &mut Vec<ScopeStackEntry> ,
115 scope_map: &mut NodeMap<DIScope>) {
116 scope_map.insert(block.id, scope_stack.last().unwrap().scope_metadata);
117
118 // The interesting things here are statements and the concluding expression.
119 for statement in &block.stmts {
120 scope_map.insert(rustc_front::util::stmt_id(statement),
121 scope_stack.last().unwrap().scope_metadata);
122
123 match statement.node {
124 hir::StmtDecl(ref decl, _) =>
125 walk_decl(cx, &**decl, scope_stack, scope_map),
126 hir::StmtExpr(ref exp, _) |
127 hir::StmtSemi(ref exp, _) =>
128 walk_expr(cx, &**exp, scope_stack, scope_map),
129 }
130 }
131
132 if let Some(ref exp) = block.expr {
133 walk_expr(cx, &**exp, scope_stack, scope_map);
134 }
135 }
136
137 fn walk_decl(cx: &CrateContext,
138 decl: &hir::Decl,
139 scope_stack: &mut Vec<ScopeStackEntry> ,
140 scope_map: &mut NodeMap<DIScope>) {
141 match *decl {
142 codemap::Spanned { node: hir::DeclLocal(ref local), .. } => {
143 scope_map.insert(local.id, scope_stack.last().unwrap().scope_metadata);
144
145 walk_pattern(cx, &*local.pat, scope_stack, scope_map);
146
147 if let Some(ref exp) = local.init {
148 walk_expr(cx, &**exp, scope_stack, scope_map);
149 }
150 }
151 _ => ()
152 }
153 }
154
155 fn walk_pattern(cx: &CrateContext,
156 pat: &hir::Pat,
157 scope_stack: &mut Vec<ScopeStackEntry> ,
158 scope_map: &mut NodeMap<DIScope>) {
159
160 let def_map = &cx.tcx().def_map;
161
162 // Unfortunately, we cannot just use pat_util::pat_bindings() or
163 // ast_util::walk_pat() here because we have to visit *all* nodes in
164 // order to put them into the scope map. The above functions don't do that.
165 match pat.node {
166 hir::PatIdent(_, ref path1, ref sub_pat_opt) => {
167
168 // Check if this is a binding. If so we need to put it on the
169 // scope stack and maybe introduce an artificial scope
170 if pat_util::pat_is_binding(&def_map.borrow(), &*pat) {
171
172 let name = path1.node.unhygienic_name;
173
174 // LLVM does not properly generate 'DW_AT_start_scope' fields
175 // for variable DIEs. For this reason we have to introduce
176 // an artificial scope at bindings whenever a variable with
177 // the same name is declared in *any* parent scope.
178 //
179 // Otherwise the following error occurs:
180 //
181 // let x = 10;
182 //
183 // do_something(); // 'gdb print x' correctly prints 10
184 //
185 // {
186 // do_something(); // 'gdb print x' prints 0, because it
187 // // already reads the uninitialized 'x'
188 // // from the next line...
189 // let x = 100;
190 // do_something(); // 'gdb print x' correctly prints 100
191 // }
192
193 // Is there already a binding with that name?
194 // N.B.: this comparison must be UNhygienic... because
195 // gdb knows nothing about the context, so any two
196 // variables with the same name will cause the problem.
197 let need_new_scope = scope_stack
198 .iter()
199 .any(|entry| entry.name == Some(name));
200
201 if need_new_scope {
202 // Create a new lexical scope and push it onto the stack
203 let loc = cx.sess().codemap().lookup_char_pos(pat.span.lo);
204 let file_metadata = file_metadata(cx, &loc.file.name);
205 let parent_scope = scope_stack.last().unwrap().scope_metadata;
206
207 let scope_metadata = unsafe {
208 llvm::LLVMDIBuilderCreateLexicalBlock(
209 DIB(cx),
210 parent_scope,
211 file_metadata,
212 loc.line as c_uint,
213 loc.col.to_usize() as c_uint)
214 };
215
216 scope_stack.push(ScopeStackEntry {
217 scope_metadata: scope_metadata,
218 name: Some(name)
219 });
220
221 } else {
222 // Push a new entry anyway so the name can be found
223 let prev_metadata = scope_stack.last().unwrap().scope_metadata;
224 scope_stack.push(ScopeStackEntry {
225 scope_metadata: prev_metadata,
226 name: Some(name)
227 });
228 }
229 }
230
231 scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
232
233 if let Some(ref sub_pat) = *sub_pat_opt {
234 walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
235 }
236 }
237
238 hir::PatWild => {
239 scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
240 }
241
242 hir::PatEnum(_, ref sub_pats_opt) => {
243 scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
244
245 if let Some(ref sub_pats) = *sub_pats_opt {
246 for p in sub_pats {
247 walk_pattern(cx, &**p, scope_stack, scope_map);
248 }
249 }
250 }
251
252 hir::PatQPath(..) => {
253 scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
254 }
255
256 hir::PatStruct(_, ref field_pats, _) => {
257 scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
258
259 for &codemap::Spanned {
260 node: hir::FieldPat { pat: ref sub_pat, .. },
261 ..
262 } in field_pats {
263 walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
264 }
265 }
266
267 hir::PatTup(ref sub_pats) => {
268 scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
269
270 for sub_pat in sub_pats {
271 walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
272 }
273 }
274
275 hir::PatBox(ref sub_pat) | hir::PatRegion(ref sub_pat, _) => {
276 scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
277 walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
278 }
279
280 hir::PatLit(ref exp) => {
281 scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
282 walk_expr(cx, &**exp, scope_stack, scope_map);
283 }
284
285 hir::PatRange(ref exp1, ref exp2) => {
286 scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
287 walk_expr(cx, &**exp1, scope_stack, scope_map);
288 walk_expr(cx, &**exp2, scope_stack, scope_map);
289 }
290
291 hir::PatVec(ref front_sub_pats, ref middle_sub_pats, ref back_sub_pats) => {
292 scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
293
294 for sub_pat in front_sub_pats {
295 walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
296 }
297
298 if let Some(ref sub_pat) = *middle_sub_pats {
299 walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
300 }
301
302 for sub_pat in back_sub_pats {
303 walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
304 }
305 }
306 }
307 }
308
309 fn walk_expr(cx: &CrateContext,
310 exp: &hir::Expr,
311 scope_stack: &mut Vec<ScopeStackEntry> ,
312 scope_map: &mut NodeMap<DIScope>) {
313
314 scope_map.insert(exp.id, scope_stack.last().unwrap().scope_metadata);
315
316 match exp.node {
317 hir::ExprLit(_) |
318 hir::ExprBreak(_) |
319 hir::ExprAgain(_) |
320 hir::ExprPath(..) => {}
321
322 hir::ExprCast(ref sub_exp, _) |
323 hir::ExprAddrOf(_, ref sub_exp) |
324 hir::ExprField(ref sub_exp, _) |
325 hir::ExprTupField(ref sub_exp, _) =>
326 walk_expr(cx, &**sub_exp, scope_stack, scope_map),
327
328 hir::ExprBox(ref sub_expr) => {
329 walk_expr(cx, &**sub_expr, scope_stack, scope_map);
330 }
331
332 hir::ExprRet(ref exp_opt) => match *exp_opt {
333 Some(ref sub_exp) => walk_expr(cx, &**sub_exp, scope_stack, scope_map),
334 None => ()
335 },
336
337 hir::ExprUnary(_, ref sub_exp) => {
338 walk_expr(cx, &**sub_exp, scope_stack, scope_map);
339 }
340
341 hir::ExprAssignOp(_, ref lhs, ref rhs) |
342 hir::ExprIndex(ref lhs, ref rhs) |
343 hir::ExprBinary(_, ref lhs, ref rhs) => {
344 walk_expr(cx, &**lhs, scope_stack, scope_map);
345 walk_expr(cx, &**rhs, scope_stack, scope_map);
346 }
347
348 hir::ExprRange(ref start, ref end) => {
349 start.as_ref().map(|e| walk_expr(cx, &**e, scope_stack, scope_map));
350 end.as_ref().map(|e| walk_expr(cx, &**e, scope_stack, scope_map));
351 }
352
353 hir::ExprVec(ref init_expressions) |
354 hir::ExprTup(ref init_expressions) => {
355 for ie in init_expressions {
356 walk_expr(cx, &**ie, scope_stack, scope_map);
357 }
358 }
359
360 hir::ExprAssign(ref sub_exp1, ref sub_exp2) |
361 hir::ExprRepeat(ref sub_exp1, ref sub_exp2) => {
362 walk_expr(cx, &**sub_exp1, scope_stack, scope_map);
363 walk_expr(cx, &**sub_exp2, scope_stack, scope_map);
364 }
365
366 hir::ExprIf(ref cond_exp, ref then_block, ref opt_else_exp) => {
367 walk_expr(cx, &**cond_exp, scope_stack, scope_map);
368
369 with_new_scope(cx,
370 then_block.span,
371 scope_stack,
372 scope_map,
373 |cx, scope_stack, scope_map| {
374 walk_block(cx, &**then_block, scope_stack, scope_map);
375 });
376
377 match *opt_else_exp {
378 Some(ref else_exp) =>
379 walk_expr(cx, &**else_exp, scope_stack, scope_map),
380 _ => ()
381 }
382 }
383
384 hir::ExprWhile(ref cond_exp, ref loop_body, _) => {
385 walk_expr(cx, &**cond_exp, scope_stack, scope_map);
386
387 with_new_scope(cx,
388 loop_body.span,
389 scope_stack,
390 scope_map,
391 |cx, scope_stack, scope_map| {
392 walk_block(cx, &**loop_body, scope_stack, scope_map);
393 })
394 }
395
396 hir::ExprLoop(ref block, _) |
397 hir::ExprBlock(ref block) => {
398 with_new_scope(cx,
399 block.span,
400 scope_stack,
401 scope_map,
402 |cx, scope_stack, scope_map| {
403 walk_block(cx, &**block, scope_stack, scope_map);
404 })
405 }
406
407 hir::ExprClosure(_, ref decl, ref block) => {
408 with_new_scope(cx,
409 block.span,
410 scope_stack,
411 scope_map,
412 |cx, scope_stack, scope_map| {
413 for &hir::Arg { pat: ref pattern, .. } in &decl.inputs {
414 walk_pattern(cx, &**pattern, scope_stack, scope_map);
415 }
416
417 walk_block(cx, &**block, scope_stack, scope_map);
418 })
419 }
420
421 hir::ExprCall(ref fn_exp, ref args) => {
422 walk_expr(cx, &**fn_exp, scope_stack, scope_map);
423
424 for arg_exp in args {
425 walk_expr(cx, &**arg_exp, scope_stack, scope_map);
426 }
427 }
428
429 hir::ExprMethodCall(_, _, ref args) => {
430 for arg_exp in args {
431 walk_expr(cx, &**arg_exp, scope_stack, scope_map);
432 }
433 }
434
435 hir::ExprMatch(ref discriminant_exp, ref arms, _) => {
436 walk_expr(cx, &**discriminant_exp, scope_stack, scope_map);
437
438 // For each arm we have to first walk the pattern as these might
439 // introduce new artificial scopes. It should be sufficient to
440 // walk only one pattern per arm, as they all must contain the
441 // same binding names.
442
443 for arm_ref in arms {
444 let arm_span = arm_ref.pats[0].span;
445
446 with_new_scope(cx,
447 arm_span,
448 scope_stack,
449 scope_map,
450 |cx, scope_stack, scope_map| {
451 for pat in &arm_ref.pats {
452 walk_pattern(cx, &**pat, scope_stack, scope_map);
453 }
454
455 if let Some(ref guard_exp) = arm_ref.guard {
456 walk_expr(cx, &**guard_exp, scope_stack, scope_map)
457 }
458
459 walk_expr(cx, &*arm_ref.body, scope_stack, scope_map);
460 })
461 }
462 }
463
464 hir::ExprStruct(_, ref fields, ref base_exp) => {
465 for &hir::Field { expr: ref exp, .. } in fields {
466 walk_expr(cx, &**exp, scope_stack, scope_map);
467 }
468
469 match *base_exp {
470 Some(ref exp) => walk_expr(cx, &**exp, scope_stack, scope_map),
471 None => ()
472 }
473 }
474
475 hir::ExprInlineAsm(hir::InlineAsm { ref inputs,
476 ref outputs,
477 .. }) => {
478 // inputs, outputs: Vec<(String, P<Expr>)>
479 for &(_, ref exp) in inputs {
480 walk_expr(cx, &**exp, scope_stack, scope_map);
481 }
482
483 for &(_, ref exp, _) in outputs {
484 walk_expr(cx, &**exp, scope_stack, scope_map);
485 }
486 }
487 }
488 }