]> git.proxmox.com Git - rustc.git/blob - src/librustc_trans/trans/debuginfo/metadata.rs
Imported Upstream version 1.8.0+dfsg1
[rustc.git] / src / librustc_trans / trans / debuginfo / metadata.rs
1 // Copyright 2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 use self::RecursiveTypeDescription::*;
12 use self::MemberOffset::*;
13 use self::MemberDescriptionFactory::*;
14 use self::EnumDiscriminantInfo::*;
15
16 use super::utils::{debug_context, DIB, span_start, bytes_to_bits, size_and_align_of,
17 get_namespace_and_span_for_item, create_DIArray,
18 fn_should_be_ignored, is_node_local_to_unit};
19 use super::namespace::namespace_for_item;
20 use super::type_names::{compute_debuginfo_type_name, push_debuginfo_type_name};
21 use super::{declare_local, VariableKind, VariableAccess};
22
23 use llvm::{self, ValueRef};
24 use llvm::debuginfo::{DIType, DIFile, DIScope, DIDescriptor, DICompositeType};
25
26 use middle::def_id::DefId;
27 use middle::infer;
28 use middle::pat_util;
29 use middle::subst;
30 use rustc::front::map as hir_map;
31 use rustc_front::hir::{self, PatKind};
32 use trans::{type_of, adt, machine, monomorphize};
33 use trans::common::{self, CrateContext, FunctionContext, Block};
34 use trans::_match::{BindingInfo, TransBindingMode};
35 use trans::type_::Type;
36 use middle::ty::{self, Ty};
37 use session::config::{self, FullDebugInfo};
38 use util::nodemap::FnvHashMap;
39 use util::common::path2cstr;
40
41 use libc::{c_uint, c_longlong};
42 use std::ffi::CString;
43 use std::path::Path;
44 use std::ptr;
45 use std::rc::Rc;
46 use syntax;
47 use syntax::util::interner::Interner;
48 use syntax::codemap::Span;
49 use syntax::{ast, codemap};
50 use syntax::parse::token;
51
52
53 const DW_LANG_RUST: c_uint = 0x9000;
54 #[allow(non_upper_case_globals)]
55 const DW_ATE_boolean: c_uint = 0x02;
56 #[allow(non_upper_case_globals)]
57 const DW_ATE_float: c_uint = 0x04;
58 #[allow(non_upper_case_globals)]
59 const DW_ATE_signed: c_uint = 0x05;
60 #[allow(non_upper_case_globals)]
61 const DW_ATE_unsigned: c_uint = 0x07;
62 #[allow(non_upper_case_globals)]
63 const DW_ATE_unsigned_char: c_uint = 0x08;
64
65 pub const UNKNOWN_LINE_NUMBER: c_uint = 0;
66 pub const UNKNOWN_COLUMN_NUMBER: c_uint = 0;
67
68 // ptr::null() doesn't work :(
69 const NO_FILE_METADATA: DIFile = (0 as DIFile);
70 const NO_SCOPE_METADATA: DIScope = (0 as DIScope);
71
72 const FLAGS_NONE: c_uint = 0;
73
74 #[derive(Copy, Debug, Hash, Eq, PartialEq, Clone)]
75 pub struct UniqueTypeId(ast::Name);
76
77 // The TypeMap is where the CrateDebugContext holds the type metadata nodes
78 // created so far. The metadata nodes are indexed by UniqueTypeId, and, for
79 // faster lookup, also by Ty. The TypeMap is responsible for creating
80 // UniqueTypeIds.
81 pub struct TypeMap<'tcx> {
82 // The UniqueTypeIds created so far
83 unique_id_interner: Interner<Rc<String>>,
84 // A map from UniqueTypeId to debuginfo metadata for that type. This is a 1:1 mapping.
85 unique_id_to_metadata: FnvHashMap<UniqueTypeId, DIType>,
86 // A map from types to debuginfo metadata. This is a N:1 mapping.
87 type_to_metadata: FnvHashMap<Ty<'tcx>, DIType>,
88 // A map from types to UniqueTypeId. This is a N:1 mapping.
89 type_to_unique_id: FnvHashMap<Ty<'tcx>, UniqueTypeId>
90 }
91
92 impl<'tcx> TypeMap<'tcx> {
93 pub fn new() -> TypeMap<'tcx> {
94 TypeMap {
95 unique_id_interner: Interner::new(),
96 type_to_metadata: FnvHashMap(),
97 unique_id_to_metadata: FnvHashMap(),
98 type_to_unique_id: FnvHashMap(),
99 }
100 }
101
102 // Adds a Ty to metadata mapping to the TypeMap. The method will fail if
103 // the mapping already exists.
104 fn register_type_with_metadata<'a>(&mut self,
105 cx: &CrateContext<'a, 'tcx>,
106 type_: Ty<'tcx>,
107 metadata: DIType) {
108 if self.type_to_metadata.insert(type_, metadata).is_some() {
109 cx.sess().bug(&format!("Type metadata for Ty '{}' is already in the TypeMap!",
110 type_));
111 }
112 }
113
114 // Adds a UniqueTypeId to metadata mapping to the TypeMap. The method will
115 // fail if the mapping already exists.
116 fn register_unique_id_with_metadata(&mut self,
117 cx: &CrateContext,
118 unique_type_id: UniqueTypeId,
119 metadata: DIType) {
120 if self.unique_id_to_metadata.insert(unique_type_id, metadata).is_some() {
121 let unique_type_id_str = self.get_unique_type_id_as_string(unique_type_id);
122 cx.sess().bug(&format!("Type metadata for unique id '{}' is already in the TypeMap!",
123 &unique_type_id_str[..]));
124 }
125 }
126
127 fn find_metadata_for_type(&self, type_: Ty<'tcx>) -> Option<DIType> {
128 self.type_to_metadata.get(&type_).cloned()
129 }
130
131 fn find_metadata_for_unique_id(&self, unique_type_id: UniqueTypeId) -> Option<DIType> {
132 self.unique_id_to_metadata.get(&unique_type_id).cloned()
133 }
134
135 // Get the string representation of a UniqueTypeId. This method will fail if
136 // the id is unknown.
137 fn get_unique_type_id_as_string(&self, unique_type_id: UniqueTypeId) -> Rc<String> {
138 let UniqueTypeId(interner_key) = unique_type_id;
139 self.unique_id_interner.get(interner_key)
140 }
141
142 // Get the UniqueTypeId for the given type. If the UniqueTypeId for the given
143 // type has been requested before, this is just a table lookup. Otherwise an
144 // ID will be generated and stored for later lookup.
145 fn get_unique_type_id_of_type<'a>(&mut self, cx: &CrateContext<'a, 'tcx>,
146 type_: Ty<'tcx>) -> UniqueTypeId {
147
148 // basic type -> {:name of the type:}
149 // tuple -> {tuple_(:param-uid:)*}
150 // struct -> {struct_:svh: / :node-id:_<(:param-uid:),*> }
151 // enum -> {enum_:svh: / :node-id:_<(:param-uid:),*> }
152 // enum variant -> {variant_:variant-name:_:enum-uid:}
153 // reference (&) -> {& :pointee-uid:}
154 // mut reference (&mut) -> {&mut :pointee-uid:}
155 // ptr (*) -> {* :pointee-uid:}
156 // mut ptr (*mut) -> {*mut :pointee-uid:}
157 // unique ptr (box) -> {box :pointee-uid:}
158 // @-ptr (@) -> {@ :pointee-uid:}
159 // sized vec ([T; x]) -> {[:size:] :element-uid:}
160 // unsized vec ([T]) -> {[] :element-uid:}
161 // trait (T) -> {trait_:svh: / :node-id:_<(:param-uid:),*> }
162 // closure -> {<unsafe_> <once_> :store-sigil: |(:param-uid:),* <,_...>| -> \
163 // :return-type-uid: : (:bounds:)*}
164 // function -> {<unsafe_> <abi_> fn( (:param-uid:)* <,_...> ) -> \
165 // :return-type-uid:}
166
167 match self.type_to_unique_id.get(&type_).cloned() {
168 Some(unique_type_id) => return unique_type_id,
169 None => { /* generate one */}
170 };
171
172 let mut unique_type_id = String::with_capacity(256);
173 unique_type_id.push('{');
174
175 match type_.sty {
176 ty::TyBool |
177 ty::TyChar |
178 ty::TyStr |
179 ty::TyInt(_) |
180 ty::TyUint(_) |
181 ty::TyFloat(_) => {
182 push_debuginfo_type_name(cx, type_, false, &mut unique_type_id);
183 },
184 ty::TyEnum(def, substs) => {
185 unique_type_id.push_str("enum ");
186 from_def_id_and_substs(self, cx, def.did, substs, &mut unique_type_id);
187 },
188 ty::TyStruct(def, substs) => {
189 unique_type_id.push_str("struct ");
190 from_def_id_and_substs(self, cx, def.did, substs, &mut unique_type_id);
191 },
192 ty::TyTuple(ref component_types) if component_types.is_empty() => {
193 push_debuginfo_type_name(cx, type_, false, &mut unique_type_id);
194 },
195 ty::TyTuple(ref component_types) => {
196 unique_type_id.push_str("tuple ");
197 for &component_type in component_types {
198 let component_type_id =
199 self.get_unique_type_id_of_type(cx, component_type);
200 let component_type_id =
201 self.get_unique_type_id_as_string(component_type_id);
202 unique_type_id.push_str(&component_type_id[..]);
203 }
204 },
205 ty::TyBox(inner_type) => {
206 unique_type_id.push_str("box ");
207 let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
208 let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
209 unique_type_id.push_str(&inner_type_id[..]);
210 },
211 ty::TyRawPtr(ty::TypeAndMut { ty: inner_type, mutbl } ) => {
212 unique_type_id.push('*');
213 if mutbl == hir::MutMutable {
214 unique_type_id.push_str("mut");
215 }
216
217 let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
218 let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
219 unique_type_id.push_str(&inner_type_id[..]);
220 },
221 ty::TyRef(_, ty::TypeAndMut { ty: inner_type, mutbl }) => {
222 unique_type_id.push('&');
223 if mutbl == hir::MutMutable {
224 unique_type_id.push_str("mut");
225 }
226
227 let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
228 let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
229 unique_type_id.push_str(&inner_type_id[..]);
230 },
231 ty::TyArray(inner_type, len) => {
232 unique_type_id.push_str(&format!("[{}]", len));
233
234 let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
235 let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
236 unique_type_id.push_str(&inner_type_id[..]);
237 },
238 ty::TySlice(inner_type) => {
239 unique_type_id.push_str("[]");
240
241 let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
242 let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
243 unique_type_id.push_str(&inner_type_id[..]);
244 },
245 ty::TyTrait(ref trait_data) => {
246 unique_type_id.push_str("trait ");
247
248 let principal = cx.tcx().erase_late_bound_regions(&trait_data.principal);
249
250 from_def_id_and_substs(self,
251 cx,
252 principal.def_id,
253 principal.substs,
254 &mut unique_type_id);
255 },
256 ty::TyBareFn(_, &ty::BareFnTy{ unsafety, abi, ref sig } ) => {
257 if unsafety == hir::Unsafety::Unsafe {
258 unique_type_id.push_str("unsafe ");
259 }
260
261 unique_type_id.push_str(abi.name());
262
263 unique_type_id.push_str(" fn(");
264
265 let sig = cx.tcx().erase_late_bound_regions(sig);
266 let sig = infer::normalize_associated_type(cx.tcx(), &sig);
267
268 for &parameter_type in &sig.inputs {
269 let parameter_type_id =
270 self.get_unique_type_id_of_type(cx, parameter_type);
271 let parameter_type_id =
272 self.get_unique_type_id_as_string(parameter_type_id);
273 unique_type_id.push_str(&parameter_type_id[..]);
274 unique_type_id.push(',');
275 }
276
277 if sig.variadic {
278 unique_type_id.push_str("...");
279 }
280
281 unique_type_id.push_str(")->");
282 match sig.output {
283 ty::FnConverging(ret_ty) => {
284 let return_type_id = self.get_unique_type_id_of_type(cx, ret_ty);
285 let return_type_id = self.get_unique_type_id_as_string(return_type_id);
286 unique_type_id.push_str(&return_type_id[..]);
287 }
288 ty::FnDiverging => {
289 unique_type_id.push_str("!");
290 }
291 }
292 },
293 ty::TyClosure(_, ref substs) if substs.upvar_tys.is_empty() => {
294 push_debuginfo_type_name(cx, type_, false, &mut unique_type_id);
295 },
296 ty::TyClosure(_, ref substs) => {
297 unique_type_id.push_str("closure ");
298 for upvar_type in &substs.upvar_tys {
299 let upvar_type_id =
300 self.get_unique_type_id_of_type(cx, upvar_type);
301 let upvar_type_id =
302 self.get_unique_type_id_as_string(upvar_type_id);
303 unique_type_id.push_str(&upvar_type_id[..]);
304 }
305 },
306 _ => {
307 cx.sess().bug(&format!("get_unique_type_id_of_type() - unexpected type: {:?}",
308 type_))
309 }
310 };
311
312 unique_type_id.push('}');
313
314 // Trim to size before storing permanently
315 unique_type_id.shrink_to_fit();
316
317 let key = self.unique_id_interner.intern(Rc::new(unique_type_id));
318 self.type_to_unique_id.insert(type_, UniqueTypeId(key));
319
320 return UniqueTypeId(key);
321
322 fn from_def_id_and_substs<'a, 'tcx>(type_map: &mut TypeMap<'tcx>,
323 cx: &CrateContext<'a, 'tcx>,
324 def_id: DefId,
325 substs: &subst::Substs<'tcx>,
326 output: &mut String) {
327 // First, find out the 'real' def_id of the type. Items inlined from
328 // other crates have to be mapped back to their source.
329 let source_def_id = if let Some(node_id) = cx.tcx().map.as_local_node_id(def_id) {
330 match cx.external_srcs().borrow().get(&node_id).cloned() {
331 Some(source_def_id) => {
332 // The given def_id identifies the inlined copy of a
333 // type definition, let's take the source of the copy.
334 source_def_id
335 }
336 None => def_id
337 }
338 } else {
339 def_id
340 };
341
342 // Get the crate hash as first part of the identifier.
343 let crate_hash = if source_def_id.is_local() {
344 cx.link_meta().crate_hash.clone()
345 } else {
346 cx.sess().cstore.crate_hash(source_def_id.krate)
347 };
348
349 output.push_str(crate_hash.as_str());
350 output.push_str("/");
351 output.push_str(&format!("{:x}", def_id.index.as_usize()));
352
353 // Maybe check that there is no self type here.
354
355 let tps = substs.types.get_slice(subst::TypeSpace);
356 if !tps.is_empty() {
357 output.push('<');
358
359 for &type_parameter in tps {
360 let param_type_id =
361 type_map.get_unique_type_id_of_type(cx, type_parameter);
362 let param_type_id =
363 type_map.get_unique_type_id_as_string(param_type_id);
364 output.push_str(&param_type_id[..]);
365 output.push(',');
366 }
367
368 output.push('>');
369 }
370 }
371 }
372
373 // Get the UniqueTypeId for an enum variant. Enum variants are not really
374 // types of their own, so they need special handling. We still need a
375 // UniqueTypeId for them, since to debuginfo they *are* real types.
376 fn get_unique_type_id_of_enum_variant<'a>(&mut self,
377 cx: &CrateContext<'a, 'tcx>,
378 enum_type: Ty<'tcx>,
379 variant_name: &str)
380 -> UniqueTypeId {
381 let enum_type_id = self.get_unique_type_id_of_type(cx, enum_type);
382 let enum_variant_type_id = format!("{}::{}",
383 &self.get_unique_type_id_as_string(enum_type_id),
384 variant_name);
385 let interner_key = self.unique_id_interner.intern(Rc::new(enum_variant_type_id));
386 UniqueTypeId(interner_key)
387 }
388 }
389
390 // A description of some recursive type. It can either be already finished (as
391 // with FinalMetadata) or it is not yet finished, but contains all information
392 // needed to generate the missing parts of the description. See the
393 // documentation section on Recursive Types at the top of this file for more
394 // information.
395 enum RecursiveTypeDescription<'tcx> {
396 UnfinishedMetadata {
397 unfinished_type: Ty<'tcx>,
398 unique_type_id: UniqueTypeId,
399 metadata_stub: DICompositeType,
400 llvm_type: Type,
401 member_description_factory: MemberDescriptionFactory<'tcx>,
402 },
403 FinalMetadata(DICompositeType)
404 }
405
406 fn create_and_register_recursive_type_forward_declaration<'a, 'tcx>(
407 cx: &CrateContext<'a, 'tcx>,
408 unfinished_type: Ty<'tcx>,
409 unique_type_id: UniqueTypeId,
410 metadata_stub: DICompositeType,
411 llvm_type: Type,
412 member_description_factory: MemberDescriptionFactory<'tcx>)
413 -> RecursiveTypeDescription<'tcx> {
414
415 // Insert the stub into the TypeMap in order to allow for recursive references
416 let mut type_map = debug_context(cx).type_map.borrow_mut();
417 type_map.register_unique_id_with_metadata(cx, unique_type_id, metadata_stub);
418 type_map.register_type_with_metadata(cx, unfinished_type, metadata_stub);
419
420 UnfinishedMetadata {
421 unfinished_type: unfinished_type,
422 unique_type_id: unique_type_id,
423 metadata_stub: metadata_stub,
424 llvm_type: llvm_type,
425 member_description_factory: member_description_factory,
426 }
427 }
428
429 impl<'tcx> RecursiveTypeDescription<'tcx> {
430 // Finishes up the description of the type in question (mostly by providing
431 // descriptions of the fields of the given type) and returns the final type
432 // metadata.
433 fn finalize<'a>(&self, cx: &CrateContext<'a, 'tcx>) -> MetadataCreationResult {
434 match *self {
435 FinalMetadata(metadata) => MetadataCreationResult::new(metadata, false),
436 UnfinishedMetadata {
437 unfinished_type,
438 unique_type_id,
439 metadata_stub,
440 llvm_type,
441 ref member_description_factory,
442 ..
443 } => {
444 // Make sure that we have a forward declaration of the type in
445 // the TypeMap so that recursive references are possible. This
446 // will always be the case if the RecursiveTypeDescription has
447 // been properly created through the
448 // create_and_register_recursive_type_forward_declaration()
449 // function.
450 {
451 let type_map = debug_context(cx).type_map.borrow();
452 if type_map.find_metadata_for_unique_id(unique_type_id).is_none() ||
453 type_map.find_metadata_for_type(unfinished_type).is_none() {
454 cx.sess().bug(&format!("Forward declaration of potentially recursive type \
455 '{:?}' was not found in TypeMap!",
456 unfinished_type)
457 );
458 }
459 }
460
461 // ... then create the member descriptions ...
462 let member_descriptions =
463 member_description_factory.create_member_descriptions(cx);
464
465 // ... and attach them to the stub to complete it.
466 set_members_of_composite_type(cx,
467 metadata_stub,
468 llvm_type,
469 &member_descriptions[..]);
470 return MetadataCreationResult::new(metadata_stub, true);
471 }
472 }
473 }
474 }
475
476 // Returns from the enclosing function if the type metadata with the given
477 // unique id can be found in the type map
478 macro_rules! return_if_metadata_created_in_meantime {
479 ($cx: expr, $unique_type_id: expr) => (
480 match debug_context($cx).type_map
481 .borrow()
482 .find_metadata_for_unique_id($unique_type_id) {
483 Some(metadata) => return MetadataCreationResult::new(metadata, true),
484 None => { /* proceed normally */ }
485 }
486 )
487 }
488
489 fn fixed_vec_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
490 unique_type_id: UniqueTypeId,
491 element_type: Ty<'tcx>,
492 len: Option<u64>,
493 span: Span)
494 -> MetadataCreationResult {
495 let element_type_metadata = type_metadata(cx, element_type, span);
496
497 return_if_metadata_created_in_meantime!(cx, unique_type_id);
498
499 let element_llvm_type = type_of::type_of(cx, element_type);
500 let (element_type_size, element_type_align) = size_and_align_of(cx, element_llvm_type);
501
502 let (array_size_in_bytes, upper_bound) = match len {
503 Some(len) => (element_type_size * len, len as c_longlong),
504 None => (0, -1)
505 };
506
507 let subrange = unsafe {
508 llvm::LLVMDIBuilderGetOrCreateSubrange(DIB(cx), 0, upper_bound)
509 };
510
511 let subscripts = create_DIArray(DIB(cx), &[subrange]);
512 let metadata = unsafe {
513 llvm::LLVMDIBuilderCreateArrayType(
514 DIB(cx),
515 bytes_to_bits(array_size_in_bytes),
516 bytes_to_bits(element_type_align),
517 element_type_metadata,
518 subscripts)
519 };
520
521 return MetadataCreationResult::new(metadata, false);
522 }
523
524 fn vec_slice_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
525 vec_type: Ty<'tcx>,
526 element_type: Ty<'tcx>,
527 unique_type_id: UniqueTypeId,
528 span: Span)
529 -> MetadataCreationResult {
530 let data_ptr_type = cx.tcx().mk_ptr(ty::TypeAndMut {
531 ty: element_type,
532 mutbl: hir::MutImmutable
533 });
534
535 let element_type_metadata = type_metadata(cx, data_ptr_type, span);
536
537 return_if_metadata_created_in_meantime!(cx, unique_type_id);
538
539 let slice_llvm_type = type_of::type_of(cx, vec_type);
540 let slice_type_name = compute_debuginfo_type_name(cx, vec_type, true);
541
542 let member_llvm_types = slice_llvm_type.field_types();
543 assert!(slice_layout_is_correct(cx,
544 &member_llvm_types[..],
545 element_type));
546 let member_descriptions = [
547 MemberDescription {
548 name: "data_ptr".to_string(),
549 llvm_type: member_llvm_types[0],
550 type_metadata: element_type_metadata,
551 offset: ComputedMemberOffset,
552 flags: FLAGS_NONE
553 },
554 MemberDescription {
555 name: "length".to_string(),
556 llvm_type: member_llvm_types[1],
557 type_metadata: type_metadata(cx, cx.tcx().types.usize, span),
558 offset: ComputedMemberOffset,
559 flags: FLAGS_NONE
560 },
561 ];
562
563 assert!(member_descriptions.len() == member_llvm_types.len());
564
565 let loc = span_start(cx, span);
566 let file_metadata = file_metadata(cx, &loc.file.name);
567
568 let metadata = composite_type_metadata(cx,
569 slice_llvm_type,
570 &slice_type_name[..],
571 unique_type_id,
572 &member_descriptions,
573 NO_SCOPE_METADATA,
574 file_metadata,
575 span);
576 return MetadataCreationResult::new(metadata, false);
577
578 fn slice_layout_is_correct<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
579 member_llvm_types: &[Type],
580 element_type: Ty<'tcx>)
581 -> bool {
582 member_llvm_types.len() == 2 &&
583 member_llvm_types[0] == type_of::type_of(cx, element_type).ptr_to() &&
584 member_llvm_types[1] == cx.int_type()
585 }
586 }
587
588 fn subroutine_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
589 unique_type_id: UniqueTypeId,
590 signature: &ty::PolyFnSig<'tcx>,
591 span: Span)
592 -> MetadataCreationResult
593 {
594 let signature = cx.tcx().erase_late_bound_regions(signature);
595
596 let mut signature_metadata: Vec<DIType> = Vec::with_capacity(signature.inputs.len() + 1);
597
598 // return type
599 signature_metadata.push(match signature.output {
600 ty::FnConverging(ret_ty) => match ret_ty.sty {
601 ty::TyTuple(ref tys) if tys.is_empty() => ptr::null_mut(),
602 _ => type_metadata(cx, ret_ty, span)
603 },
604 ty::FnDiverging => diverging_type_metadata(cx)
605 });
606
607 // regular arguments
608 for &argument_type in &signature.inputs {
609 signature_metadata.push(type_metadata(cx, argument_type, span));
610 }
611
612 return_if_metadata_created_in_meantime!(cx, unique_type_id);
613
614 return MetadataCreationResult::new(
615 unsafe {
616 llvm::LLVMDIBuilderCreateSubroutineType(
617 DIB(cx),
618 NO_FILE_METADATA,
619 create_DIArray(DIB(cx), &signature_metadata[..]))
620 },
621 false);
622 }
623
624 // FIXME(1563) This is all a bit of a hack because 'trait pointer' is an ill-
625 // defined concept. For the case of an actual trait pointer (i.e., Box<Trait>,
626 // &Trait), trait_object_type should be the whole thing (e.g, Box<Trait>) and
627 // trait_type should be the actual trait (e.g., Trait). Where the trait is part
628 // of a DST struct, there is no trait_object_type and the results of this
629 // function will be a little bit weird.
630 fn trait_pointer_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
631 trait_type: Ty<'tcx>,
632 trait_object_type: Option<Ty<'tcx>>,
633 unique_type_id: UniqueTypeId)
634 -> DIType {
635 // The implementation provided here is a stub. It makes sure that the trait
636 // type is assigned the correct name, size, namespace, and source location.
637 // But it does not describe the trait's methods.
638
639 let def_id = match trait_type.sty {
640 ty::TyTrait(ref data) => data.principal_def_id(),
641 _ => {
642 cx.sess().bug(&format!("debuginfo: Unexpected trait-object type in \
643 trait_pointer_metadata(): {:?}",
644 trait_type));
645 }
646 };
647
648 let trait_object_type = trait_object_type.unwrap_or(trait_type);
649 let trait_type_name =
650 compute_debuginfo_type_name(cx, trait_object_type, false);
651
652 let (containing_scope, _) = get_namespace_and_span_for_item(cx, def_id);
653
654 let trait_llvm_type = type_of::type_of(cx, trait_object_type);
655
656 composite_type_metadata(cx,
657 trait_llvm_type,
658 &trait_type_name[..],
659 unique_type_id,
660 &[],
661 containing_scope,
662 NO_FILE_METADATA,
663 codemap::DUMMY_SP)
664 }
665
666 pub fn type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
667 t: Ty<'tcx>,
668 usage_site_span: Span)
669 -> DIType {
670 // Get the unique type id of this type.
671 let unique_type_id = {
672 let mut type_map = debug_context(cx).type_map.borrow_mut();
673 // First, try to find the type in TypeMap. If we have seen it before, we
674 // can exit early here.
675 match type_map.find_metadata_for_type(t) {
676 Some(metadata) => {
677 return metadata;
678 },
679 None => {
680 // The Ty is not in the TypeMap but maybe we have already seen
681 // an equivalent type (e.g. only differing in region arguments).
682 // In order to find out, generate the unique type id and look
683 // that up.
684 let unique_type_id = type_map.get_unique_type_id_of_type(cx, t);
685 match type_map.find_metadata_for_unique_id(unique_type_id) {
686 Some(metadata) => {
687 // There is already an equivalent type in the TypeMap.
688 // Register this Ty as an alias in the cache and
689 // return the cached metadata.
690 type_map.register_type_with_metadata(cx, t, metadata);
691 return metadata;
692 },
693 None => {
694 // There really is no type metadata for this type, so
695 // proceed by creating it.
696 unique_type_id
697 }
698 }
699 }
700 }
701 };
702
703 debug!("type_metadata: {:?}", t);
704
705 let sty = &t.sty;
706 let MetadataCreationResult { metadata, already_stored_in_typemap } = match *sty {
707 ty::TyBool |
708 ty::TyChar |
709 ty::TyInt(_) |
710 ty::TyUint(_) |
711 ty::TyFloat(_) => {
712 MetadataCreationResult::new(basic_type_metadata(cx, t), false)
713 }
714 ty::TyTuple(ref elements) if elements.is_empty() => {
715 MetadataCreationResult::new(basic_type_metadata(cx, t), false)
716 }
717 ty::TyEnum(def, _) => {
718 prepare_enum_metadata(cx,
719 t,
720 def.did,
721 unique_type_id,
722 usage_site_span).finalize(cx)
723 }
724 ty::TyArray(typ, len) => {
725 fixed_vec_metadata(cx, unique_type_id, typ, Some(len as u64), usage_site_span)
726 }
727 ty::TySlice(typ) => {
728 fixed_vec_metadata(cx, unique_type_id, typ, None, usage_site_span)
729 }
730 ty::TyStr => {
731 fixed_vec_metadata(cx, unique_type_id, cx.tcx().types.i8, None, usage_site_span)
732 }
733 ty::TyTrait(..) => {
734 MetadataCreationResult::new(
735 trait_pointer_metadata(cx, t, None, unique_type_id),
736 false)
737 }
738 ty::TyBox(ty) |
739 ty::TyRawPtr(ty::TypeAndMut{ty, ..}) |
740 ty::TyRef(_, ty::TypeAndMut{ty, ..}) => {
741 match ty.sty {
742 ty::TySlice(typ) => {
743 vec_slice_metadata(cx, t, typ, unique_type_id, usage_site_span)
744 }
745 ty::TyStr => {
746 vec_slice_metadata(cx, t, cx.tcx().types.u8, unique_type_id, usage_site_span)
747 }
748 ty::TyTrait(..) => {
749 MetadataCreationResult::new(
750 trait_pointer_metadata(cx, ty, Some(t), unique_type_id),
751 false)
752 }
753 _ => {
754 let pointee_metadata = type_metadata(cx, ty, usage_site_span);
755
756 match debug_context(cx).type_map
757 .borrow()
758 .find_metadata_for_unique_id(unique_type_id) {
759 Some(metadata) => return metadata,
760 None => { /* proceed normally */ }
761 };
762
763 MetadataCreationResult::new(pointer_type_metadata(cx, t, pointee_metadata),
764 false)
765 }
766 }
767 }
768 ty::TyBareFn(_, ref barefnty) => {
769 let fn_metadata = subroutine_type_metadata(cx,
770 unique_type_id,
771 &barefnty.sig,
772 usage_site_span).metadata;
773 match debug_context(cx).type_map
774 .borrow()
775 .find_metadata_for_unique_id(unique_type_id) {
776 Some(metadata) => return metadata,
777 None => { /* proceed normally */ }
778 };
779
780 // This is actually a function pointer, so wrap it in pointer DI
781 MetadataCreationResult::new(pointer_type_metadata(cx, t, fn_metadata), false)
782
783 }
784 ty::TyClosure(_, ref substs) => {
785 prepare_tuple_metadata(cx,
786 t,
787 &substs.upvar_tys,
788 unique_type_id,
789 usage_site_span).finalize(cx)
790 }
791 ty::TyStruct(..) => {
792 prepare_struct_metadata(cx,
793 t,
794 unique_type_id,
795 usage_site_span).finalize(cx)
796 }
797 ty::TyTuple(ref elements) => {
798 prepare_tuple_metadata(cx,
799 t,
800 &elements[..],
801 unique_type_id,
802 usage_site_span).finalize(cx)
803 }
804 _ => {
805 cx.sess().bug(&format!("debuginfo: unexpected type in type_metadata: {:?}",
806 sty))
807 }
808 };
809
810 {
811 let mut type_map = debug_context(cx).type_map.borrow_mut();
812
813 if already_stored_in_typemap {
814 // Also make sure that we already have a TypeMap entry for the unique type id.
815 let metadata_for_uid = match type_map.find_metadata_for_unique_id(unique_type_id) {
816 Some(metadata) => metadata,
817 None => {
818 let unique_type_id_str =
819 type_map.get_unique_type_id_as_string(unique_type_id);
820 let error_message = format!("Expected type metadata for unique \
821 type id '{}' to already be in \
822 the debuginfo::TypeMap but it \
823 was not. (Ty = {})",
824 &unique_type_id_str[..],
825 t);
826 cx.sess().span_bug(usage_site_span, &error_message[..]);
827 }
828 };
829
830 match type_map.find_metadata_for_type(t) {
831 Some(metadata) => {
832 if metadata != metadata_for_uid {
833 let unique_type_id_str =
834 type_map.get_unique_type_id_as_string(unique_type_id);
835 let error_message = format!("Mismatch between Ty and \
836 UniqueTypeId maps in \
837 debuginfo::TypeMap. \
838 UniqueTypeId={}, Ty={}",
839 &unique_type_id_str[..],
840 t);
841 cx.sess().span_bug(usage_site_span, &error_message[..]);
842 }
843 }
844 None => {
845 type_map.register_type_with_metadata(cx, t, metadata);
846 }
847 }
848 } else {
849 type_map.register_type_with_metadata(cx, t, metadata);
850 type_map.register_unique_id_with_metadata(cx, unique_type_id, metadata);
851 }
852 }
853
854 metadata
855 }
856
857 pub fn file_metadata(cx: &CrateContext, full_path: &str) -> DIFile {
858 // FIXME (#9639): This needs to handle non-utf8 paths
859 let work_dir = cx.sess().working_dir.to_str().unwrap();
860 let file_name =
861 if full_path.starts_with(work_dir) {
862 &full_path[work_dir.len() + 1..full_path.len()]
863 } else {
864 full_path
865 };
866
867 file_metadata_(cx, full_path, file_name, &work_dir)
868 }
869
870 pub fn unknown_file_metadata(cx: &CrateContext) -> DIFile {
871 // Regular filenames should not be empty, so we abuse an empty name as the
872 // key for the special unknown file metadata
873 file_metadata_(cx, "", "<unknown>", "")
874
875 }
876
877 fn file_metadata_(cx: &CrateContext, key: &str, file_name: &str, work_dir: &str) -> DIFile {
878 match debug_context(cx).created_files.borrow().get(key) {
879 Some(file_metadata) => return *file_metadata,
880 None => ()
881 }
882
883 debug!("file_metadata: file_name: {}, work_dir: {}", file_name, work_dir);
884
885 let file_name = CString::new(file_name).unwrap();
886 let work_dir = CString::new(work_dir).unwrap();
887 let file_metadata = unsafe {
888 llvm::LLVMDIBuilderCreateFile(DIB(cx), file_name.as_ptr(),
889 work_dir.as_ptr())
890 };
891
892 let mut created_files = debug_context(cx).created_files.borrow_mut();
893 created_files.insert(key.to_string(), file_metadata);
894 file_metadata
895 }
896
897 /// Finds the scope metadata node for the given AST node.
898 pub fn scope_metadata(fcx: &FunctionContext,
899 node_id: ast::NodeId,
900 error_reporting_span: Span)
901 -> DIScope {
902 let scope_map = &fcx.debug_context
903 .get_ref(fcx.ccx, error_reporting_span)
904 .scope_map;
905 match scope_map.borrow().get(&node_id).cloned() {
906 Some(scope_metadata) => scope_metadata,
907 None => {
908 let node = fcx.ccx.tcx().map.get(node_id);
909
910 fcx.ccx.sess().span_bug(error_reporting_span,
911 &format!("debuginfo: Could not find scope info for node {:?}",
912 node));
913 }
914 }
915 }
916
917 pub fn diverging_type_metadata(cx: &CrateContext) -> DIType {
918 unsafe {
919 llvm::LLVMDIBuilderCreateBasicType(
920 DIB(cx),
921 "!\0".as_ptr() as *const _,
922 bytes_to_bits(0),
923 bytes_to_bits(0),
924 DW_ATE_unsigned)
925 }
926 }
927
928 fn basic_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
929 t: Ty<'tcx>) -> DIType {
930
931 debug!("basic_type_metadata: {:?}", t);
932
933 let (name, encoding) = match t.sty {
934 ty::TyTuple(ref elements) if elements.is_empty() =>
935 ("()", DW_ATE_unsigned),
936 ty::TyBool => ("bool", DW_ATE_boolean),
937 ty::TyChar => ("char", DW_ATE_unsigned_char),
938 ty::TyInt(int_ty) => {
939 (int_ty.ty_to_string(), DW_ATE_signed)
940 },
941 ty::TyUint(uint_ty) => {
942 (uint_ty.ty_to_string(), DW_ATE_unsigned)
943 },
944 ty::TyFloat(float_ty) => {
945 (float_ty.ty_to_string(), DW_ATE_float)
946 },
947 _ => cx.sess().bug("debuginfo::basic_type_metadata - t is invalid type")
948 };
949
950 let llvm_type = type_of::type_of(cx, t);
951 let (size, align) = size_and_align_of(cx, llvm_type);
952 let name = CString::new(name).unwrap();
953 let ty_metadata = unsafe {
954 llvm::LLVMDIBuilderCreateBasicType(
955 DIB(cx),
956 name.as_ptr(),
957 bytes_to_bits(size),
958 bytes_to_bits(align),
959 encoding)
960 };
961
962 return ty_metadata;
963 }
964
965 fn pointer_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
966 pointer_type: Ty<'tcx>,
967 pointee_type_metadata: DIType)
968 -> DIType {
969 let pointer_llvm_type = type_of::type_of(cx, pointer_type);
970 let (pointer_size, pointer_align) = size_and_align_of(cx, pointer_llvm_type);
971 let name = compute_debuginfo_type_name(cx, pointer_type, false);
972 let name = CString::new(name).unwrap();
973 let ptr_metadata = unsafe {
974 llvm::LLVMDIBuilderCreatePointerType(
975 DIB(cx),
976 pointee_type_metadata,
977 bytes_to_bits(pointer_size),
978 bytes_to_bits(pointer_align),
979 name.as_ptr())
980 };
981 return ptr_metadata;
982 }
983
984 pub fn compile_unit_metadata(cx: &CrateContext) -> DIDescriptor {
985 let work_dir = &cx.sess().working_dir;
986 let compile_unit_name = match cx.sess().local_crate_source_file {
987 None => fallback_path(cx),
988 Some(ref abs_path) => {
989 if abs_path.is_relative() {
990 cx.sess().warn("debuginfo: Invalid path to crate's local root source file!");
991 fallback_path(cx)
992 } else {
993 match abs_path.strip_prefix(work_dir) {
994 Ok(ref p) if p.is_relative() => {
995 if p.starts_with(Path::new("./")) {
996 path2cstr(p)
997 } else {
998 path2cstr(&Path::new(".").join(p))
999 }
1000 }
1001 _ => fallback_path(cx)
1002 }
1003 }
1004 }
1005 };
1006
1007 debug!("compile_unit_metadata: {:?}", compile_unit_name);
1008 let producer = format!("rustc version {}",
1009 (option_env!("CFG_VERSION")).expect("CFG_VERSION"));
1010
1011 let compile_unit_name = compile_unit_name.as_ptr();
1012 let work_dir = path2cstr(&work_dir);
1013 let producer = CString::new(producer).unwrap();
1014 let flags = "\0";
1015 let split_name = "\0";
1016 return unsafe {
1017 llvm::LLVMDIBuilderCreateCompileUnit(
1018 debug_context(cx).builder,
1019 DW_LANG_RUST,
1020 compile_unit_name,
1021 work_dir.as_ptr(),
1022 producer.as_ptr(),
1023 cx.sess().opts.optimize != config::OptLevel::No,
1024 flags.as_ptr() as *const _,
1025 0,
1026 split_name.as_ptr() as *const _)
1027 };
1028
1029 fn fallback_path(cx: &CrateContext) -> CString {
1030 CString::new(cx.link_meta().crate_name.clone()).unwrap()
1031 }
1032 }
1033
1034 struct MetadataCreationResult {
1035 metadata: DIType,
1036 already_stored_in_typemap: bool
1037 }
1038
1039 impl MetadataCreationResult {
1040 fn new(metadata: DIType, already_stored_in_typemap: bool) -> MetadataCreationResult {
1041 MetadataCreationResult {
1042 metadata: metadata,
1043 already_stored_in_typemap: already_stored_in_typemap
1044 }
1045 }
1046 }
1047
1048 #[derive(Debug)]
1049 enum MemberOffset {
1050 FixedMemberOffset { bytes: usize },
1051 // For ComputedMemberOffset, the offset is read from the llvm type definition.
1052 ComputedMemberOffset
1053 }
1054
1055 // Description of a type member, which can either be a regular field (as in
1056 // structs or tuples) or an enum variant.
1057 #[derive(Debug)]
1058 struct MemberDescription {
1059 name: String,
1060 llvm_type: Type,
1061 type_metadata: DIType,
1062 offset: MemberOffset,
1063 flags: c_uint
1064 }
1065
1066 // A factory for MemberDescriptions. It produces a list of member descriptions
1067 // for some record-like type. MemberDescriptionFactories are used to defer the
1068 // creation of type member descriptions in order to break cycles arising from
1069 // recursive type definitions.
1070 enum MemberDescriptionFactory<'tcx> {
1071 StructMDF(StructMemberDescriptionFactory<'tcx>),
1072 TupleMDF(TupleMemberDescriptionFactory<'tcx>),
1073 EnumMDF(EnumMemberDescriptionFactory<'tcx>),
1074 VariantMDF(VariantMemberDescriptionFactory<'tcx>)
1075 }
1076
1077 impl<'tcx> MemberDescriptionFactory<'tcx> {
1078 fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
1079 -> Vec<MemberDescription> {
1080 match *self {
1081 StructMDF(ref this) => {
1082 this.create_member_descriptions(cx)
1083 }
1084 TupleMDF(ref this) => {
1085 this.create_member_descriptions(cx)
1086 }
1087 EnumMDF(ref this) => {
1088 this.create_member_descriptions(cx)
1089 }
1090 VariantMDF(ref this) => {
1091 this.create_member_descriptions(cx)
1092 }
1093 }
1094 }
1095 }
1096
1097 //=-----------------------------------------------------------------------------
1098 // Structs
1099 //=-----------------------------------------------------------------------------
1100
1101 // Creates MemberDescriptions for the fields of a struct
1102 struct StructMemberDescriptionFactory<'tcx> {
1103 variant: ty::VariantDef<'tcx>,
1104 substs: &'tcx subst::Substs<'tcx>,
1105 is_simd: bool,
1106 span: Span,
1107 }
1108
1109 impl<'tcx> StructMemberDescriptionFactory<'tcx> {
1110 fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
1111 -> Vec<MemberDescription> {
1112 if let ty::VariantKind::Unit = self.variant.kind() {
1113 return Vec::new();
1114 }
1115
1116 let field_size = if self.is_simd {
1117 let fty = monomorphize::field_ty(cx.tcx(),
1118 self.substs,
1119 &self.variant.fields[0]);
1120 Some(machine::llsize_of_alloc(
1121 cx,
1122 type_of::type_of(cx, fty)
1123 ) as usize)
1124 } else {
1125 None
1126 };
1127
1128 self.variant.fields.iter().enumerate().map(|(i, f)| {
1129 let name = if let ty::VariantKind::Tuple = self.variant.kind() {
1130 format!("__{}", i)
1131 } else {
1132 f.name.to_string()
1133 };
1134 let fty = monomorphize::field_ty(cx.tcx(), self.substs, f);
1135
1136 let offset = if self.is_simd {
1137 FixedMemberOffset { bytes: i * field_size.unwrap() }
1138 } else {
1139 ComputedMemberOffset
1140 };
1141
1142 MemberDescription {
1143 name: name,
1144 llvm_type: type_of::type_of(cx, fty),
1145 type_metadata: type_metadata(cx, fty, self.span),
1146 offset: offset,
1147 flags: FLAGS_NONE,
1148 }
1149 }).collect()
1150 }
1151 }
1152
1153
1154 fn prepare_struct_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
1155 struct_type: Ty<'tcx>,
1156 unique_type_id: UniqueTypeId,
1157 span: Span)
1158 -> RecursiveTypeDescription<'tcx> {
1159 let struct_name = compute_debuginfo_type_name(cx, struct_type, false);
1160 let struct_llvm_type = type_of::in_memory_type_of(cx, struct_type);
1161
1162 let (variant, substs) = match struct_type.sty {
1163 ty::TyStruct(def, substs) => (def.struct_variant(), substs),
1164 _ => cx.tcx().sess.bug("prepare_struct_metadata on a non-struct")
1165 };
1166
1167 let (containing_scope, _) = get_namespace_and_span_for_item(cx, variant.did);
1168
1169 let struct_metadata_stub = create_struct_stub(cx,
1170 struct_llvm_type,
1171 &struct_name,
1172 unique_type_id,
1173 containing_scope);
1174
1175 create_and_register_recursive_type_forward_declaration(
1176 cx,
1177 struct_type,
1178 unique_type_id,
1179 struct_metadata_stub,
1180 struct_llvm_type,
1181 StructMDF(StructMemberDescriptionFactory {
1182 variant: variant,
1183 substs: substs,
1184 is_simd: struct_type.is_simd(),
1185 span: span,
1186 })
1187 )
1188 }
1189
1190
1191 //=-----------------------------------------------------------------------------
1192 // Tuples
1193 //=-----------------------------------------------------------------------------
1194
1195 // Creates MemberDescriptions for the fields of a tuple
1196 struct TupleMemberDescriptionFactory<'tcx> {
1197 component_types: Vec<Ty<'tcx>>,
1198 span: Span,
1199 }
1200
1201 impl<'tcx> TupleMemberDescriptionFactory<'tcx> {
1202 fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
1203 -> Vec<MemberDescription> {
1204 self.component_types
1205 .iter()
1206 .enumerate()
1207 .map(|(i, &component_type)| {
1208 MemberDescription {
1209 name: format!("__{}", i),
1210 llvm_type: type_of::type_of(cx, component_type),
1211 type_metadata: type_metadata(cx, component_type, self.span),
1212 offset: ComputedMemberOffset,
1213 flags: FLAGS_NONE,
1214 }
1215 }).collect()
1216 }
1217 }
1218
1219 fn prepare_tuple_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
1220 tuple_type: Ty<'tcx>,
1221 component_types: &[Ty<'tcx>],
1222 unique_type_id: UniqueTypeId,
1223 span: Span)
1224 -> RecursiveTypeDescription<'tcx> {
1225 let tuple_name = compute_debuginfo_type_name(cx, tuple_type, false);
1226 let tuple_llvm_type = type_of::type_of(cx, tuple_type);
1227
1228 create_and_register_recursive_type_forward_declaration(
1229 cx,
1230 tuple_type,
1231 unique_type_id,
1232 create_struct_stub(cx,
1233 tuple_llvm_type,
1234 &tuple_name[..],
1235 unique_type_id,
1236 NO_SCOPE_METADATA),
1237 tuple_llvm_type,
1238 TupleMDF(TupleMemberDescriptionFactory {
1239 component_types: component_types.to_vec(),
1240 span: span,
1241 })
1242 )
1243 }
1244
1245
1246 //=-----------------------------------------------------------------------------
1247 // Enums
1248 //=-----------------------------------------------------------------------------
1249
1250 // Describes the members of an enum value: An enum is described as a union of
1251 // structs in DWARF. This MemberDescriptionFactory provides the description for
1252 // the members of this union; so for every variant of the given enum, this
1253 // factory will produce one MemberDescription (all with no name and a fixed
1254 // offset of zero bytes).
1255 struct EnumMemberDescriptionFactory<'tcx> {
1256 enum_type: Ty<'tcx>,
1257 type_rep: Rc<adt::Repr<'tcx>>,
1258 discriminant_type_metadata: Option<DIType>,
1259 containing_scope: DIScope,
1260 file_metadata: DIFile,
1261 span: Span,
1262 }
1263
1264 impl<'tcx> EnumMemberDescriptionFactory<'tcx> {
1265 fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
1266 -> Vec<MemberDescription> {
1267 let adt = &self.enum_type.ty_adt_def().unwrap();
1268 match *self.type_rep {
1269 adt::General(_, ref struct_defs, _) => {
1270 let discriminant_info = RegularDiscriminant(self.discriminant_type_metadata
1271 .expect(""));
1272 struct_defs
1273 .iter()
1274 .enumerate()
1275 .map(|(i, struct_def)| {
1276 let (variant_type_metadata,
1277 variant_llvm_type,
1278 member_desc_factory) =
1279 describe_enum_variant(cx,
1280 self.enum_type,
1281 struct_def,
1282 &adt.variants[i],
1283 discriminant_info,
1284 self.containing_scope,
1285 self.span);
1286
1287 let member_descriptions = member_desc_factory
1288 .create_member_descriptions(cx);
1289
1290 set_members_of_composite_type(cx,
1291 variant_type_metadata,
1292 variant_llvm_type,
1293 &member_descriptions);
1294 MemberDescription {
1295 name: "".to_string(),
1296 llvm_type: variant_llvm_type,
1297 type_metadata: variant_type_metadata,
1298 offset: FixedMemberOffset { bytes: 0 },
1299 flags: FLAGS_NONE
1300 }
1301 }).collect()
1302 },
1303 adt::Univariant(ref struct_def, _) => {
1304 assert!(adt.variants.len() <= 1);
1305
1306 if adt.variants.is_empty() {
1307 vec![]
1308 } else {
1309 let (variant_type_metadata,
1310 variant_llvm_type,
1311 member_description_factory) =
1312 describe_enum_variant(cx,
1313 self.enum_type,
1314 struct_def,
1315 &adt.variants[0],
1316 NoDiscriminant,
1317 self.containing_scope,
1318 self.span);
1319
1320 let member_descriptions =
1321 member_description_factory.create_member_descriptions(cx);
1322
1323 set_members_of_composite_type(cx,
1324 variant_type_metadata,
1325 variant_llvm_type,
1326 &member_descriptions[..]);
1327 vec![
1328 MemberDescription {
1329 name: "".to_string(),
1330 llvm_type: variant_llvm_type,
1331 type_metadata: variant_type_metadata,
1332 offset: FixedMemberOffset { bytes: 0 },
1333 flags: FLAGS_NONE
1334 }
1335 ]
1336 }
1337 }
1338 adt::RawNullablePointer { nndiscr: non_null_variant_index, nnty, .. } => {
1339 // As far as debuginfo is concerned, the pointer this enum
1340 // represents is still wrapped in a struct. This is to make the
1341 // DWARF representation of enums uniform.
1342
1343 // First create a description of the artificial wrapper struct:
1344 let non_null_variant = &adt.variants[non_null_variant_index.0 as usize];
1345 let non_null_variant_name = non_null_variant.name.as_str();
1346
1347 // The llvm type and metadata of the pointer
1348 let non_null_llvm_type = type_of::type_of(cx, nnty);
1349 let non_null_type_metadata = type_metadata(cx, nnty, self.span);
1350
1351 // The type of the artificial struct wrapping the pointer
1352 let artificial_struct_llvm_type = Type::struct_(cx,
1353 &[non_null_llvm_type],
1354 false);
1355
1356 // For the metadata of the wrapper struct, we need to create a
1357 // MemberDescription of the struct's single field.
1358 let sole_struct_member_description = MemberDescription {
1359 name: match non_null_variant.kind() {
1360 ty::VariantKind::Tuple => "__0".to_string(),
1361 ty::VariantKind::Struct => {
1362 non_null_variant.fields[0].name.to_string()
1363 }
1364 ty::VariantKind::Unit => unreachable!()
1365 },
1366 llvm_type: non_null_llvm_type,
1367 type_metadata: non_null_type_metadata,
1368 offset: FixedMemberOffset { bytes: 0 },
1369 flags: FLAGS_NONE
1370 };
1371
1372 let unique_type_id = debug_context(cx).type_map
1373 .borrow_mut()
1374 .get_unique_type_id_of_enum_variant(
1375 cx,
1376 self.enum_type,
1377 &non_null_variant_name);
1378
1379 // Now we can create the metadata of the artificial struct
1380 let artificial_struct_metadata =
1381 composite_type_metadata(cx,
1382 artificial_struct_llvm_type,
1383 &non_null_variant_name,
1384 unique_type_id,
1385 &[sole_struct_member_description],
1386 self.containing_scope,
1387 self.file_metadata,
1388 codemap::DUMMY_SP);
1389
1390 // Encode the information about the null variant in the union
1391 // member's name.
1392 let null_variant_index = (1 - non_null_variant_index.0) as usize;
1393 let null_variant_name = adt.variants[null_variant_index].name;
1394 let union_member_name = format!("RUST$ENCODED$ENUM${}${}",
1395 0,
1396 null_variant_name);
1397
1398 // Finally create the (singleton) list of descriptions of union
1399 // members.
1400 vec![
1401 MemberDescription {
1402 name: union_member_name,
1403 llvm_type: artificial_struct_llvm_type,
1404 type_metadata: artificial_struct_metadata,
1405 offset: FixedMemberOffset { bytes: 0 },
1406 flags: FLAGS_NONE
1407 }
1408 ]
1409 },
1410 adt::StructWrappedNullablePointer { nonnull: ref struct_def,
1411 nndiscr,
1412 ref discrfield, ..} => {
1413 // Create a description of the non-null variant
1414 let (variant_type_metadata, variant_llvm_type, member_description_factory) =
1415 describe_enum_variant(cx,
1416 self.enum_type,
1417 struct_def,
1418 &adt.variants[nndiscr.0 as usize],
1419 OptimizedDiscriminant,
1420 self.containing_scope,
1421 self.span);
1422
1423 let variant_member_descriptions =
1424 member_description_factory.create_member_descriptions(cx);
1425
1426 set_members_of_composite_type(cx,
1427 variant_type_metadata,
1428 variant_llvm_type,
1429 &variant_member_descriptions[..]);
1430
1431 // Encode the information about the null variant in the union
1432 // member's name.
1433 let null_variant_index = (1 - nndiscr.0) as usize;
1434 let null_variant_name = adt.variants[null_variant_index].name;
1435 let discrfield = discrfield.iter()
1436 .skip(1)
1437 .map(|x| x.to_string())
1438 .collect::<Vec<_>>().join("$");
1439 let union_member_name = format!("RUST$ENCODED$ENUM${}${}",
1440 discrfield,
1441 null_variant_name);
1442
1443 // Create the (singleton) list of descriptions of union members.
1444 vec![
1445 MemberDescription {
1446 name: union_member_name,
1447 llvm_type: variant_llvm_type,
1448 type_metadata: variant_type_metadata,
1449 offset: FixedMemberOffset { bytes: 0 },
1450 flags: FLAGS_NONE
1451 }
1452 ]
1453 },
1454 adt::CEnum(..) => cx.sess().span_bug(self.span, "This should be unreachable.")
1455 }
1456 }
1457 }
1458
1459 // Creates MemberDescriptions for the fields of a single enum variant.
1460 struct VariantMemberDescriptionFactory<'tcx> {
1461 args: Vec<(String, Ty<'tcx>)>,
1462 discriminant_type_metadata: Option<DIType>,
1463 span: Span,
1464 }
1465
1466 impl<'tcx> VariantMemberDescriptionFactory<'tcx> {
1467 fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
1468 -> Vec<MemberDescription> {
1469 self.args.iter().enumerate().map(|(i, &(ref name, ty))| {
1470 MemberDescription {
1471 name: name.to_string(),
1472 llvm_type: type_of::type_of(cx, ty),
1473 type_metadata: match self.discriminant_type_metadata {
1474 Some(metadata) if i == 0 => metadata,
1475 _ => type_metadata(cx, ty, self.span)
1476 },
1477 offset: ComputedMemberOffset,
1478 flags: FLAGS_NONE
1479 }
1480 }).collect()
1481 }
1482 }
1483
1484 #[derive(Copy, Clone)]
1485 enum EnumDiscriminantInfo {
1486 RegularDiscriminant(DIType),
1487 OptimizedDiscriminant,
1488 NoDiscriminant
1489 }
1490
1491 // Returns a tuple of (1) type_metadata_stub of the variant, (2) the llvm_type
1492 // of the variant, and (3) a MemberDescriptionFactory for producing the
1493 // descriptions of the fields of the variant. This is a rudimentary version of a
1494 // full RecursiveTypeDescription.
1495 fn describe_enum_variant<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
1496 enum_type: Ty<'tcx>,
1497 struct_def: &adt::Struct<'tcx>,
1498 variant: ty::VariantDef<'tcx>,
1499 discriminant_info: EnumDiscriminantInfo,
1500 containing_scope: DIScope,
1501 span: Span)
1502 -> (DICompositeType, Type, MemberDescriptionFactory<'tcx>) {
1503 let variant_llvm_type =
1504 Type::struct_(cx, &struct_def.fields
1505 .iter()
1506 .map(|&t| type_of::type_of(cx, t))
1507 .collect::<Vec<_>>()
1508 ,
1509 struct_def.packed);
1510 // Could do some consistency checks here: size, align, field count, discr type
1511
1512 let variant_name = variant.name.as_str();
1513 let unique_type_id = debug_context(cx).type_map
1514 .borrow_mut()
1515 .get_unique_type_id_of_enum_variant(
1516 cx,
1517 enum_type,
1518 &variant_name);
1519
1520 let metadata_stub = create_struct_stub(cx,
1521 variant_llvm_type,
1522 &variant_name,
1523 unique_type_id,
1524 containing_scope);
1525
1526 // Get the argument names from the enum variant info
1527 let mut arg_names: Vec<_> = match variant.kind() {
1528 ty::VariantKind::Unit => vec![],
1529 ty::VariantKind::Tuple => {
1530 variant.fields
1531 .iter()
1532 .enumerate()
1533 .map(|(i, _)| format!("__{}", i))
1534 .collect()
1535 }
1536 ty::VariantKind::Struct => {
1537 variant.fields
1538 .iter()
1539 .map(|f| f.name.to_string())
1540 .collect()
1541 }
1542 };
1543
1544 // If this is not a univariant enum, there is also the discriminant field.
1545 match discriminant_info {
1546 RegularDiscriminant(_) => arg_names.insert(0, "RUST$ENUM$DISR".to_string()),
1547 _ => { /* do nothing */ }
1548 };
1549
1550 // Build an array of (field name, field type) pairs to be captured in the factory closure.
1551 let args: Vec<(String, Ty)> = arg_names.iter()
1552 .zip(&struct_def.fields)
1553 .map(|(s, &t)| (s.to_string(), t))
1554 .collect();
1555
1556 let member_description_factory =
1557 VariantMDF(VariantMemberDescriptionFactory {
1558 args: args,
1559 discriminant_type_metadata: match discriminant_info {
1560 RegularDiscriminant(discriminant_type_metadata) => {
1561 Some(discriminant_type_metadata)
1562 }
1563 _ => None
1564 },
1565 span: span,
1566 });
1567
1568 (metadata_stub, variant_llvm_type, member_description_factory)
1569 }
1570
1571 fn prepare_enum_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
1572 enum_type: Ty<'tcx>,
1573 enum_def_id: DefId,
1574 unique_type_id: UniqueTypeId,
1575 span: Span)
1576 -> RecursiveTypeDescription<'tcx> {
1577 let enum_name = compute_debuginfo_type_name(cx, enum_type, false);
1578
1579 let (containing_scope, _) = get_namespace_and_span_for_item(cx, enum_def_id);
1580 // FIXME: This should emit actual file metadata for the enum, but we
1581 // currently can't get the necessary information when it comes to types
1582 // imported from other crates. Formerly we violated the ODR when performing
1583 // LTO because we emitted debuginfo for the same type with varying file
1584 // metadata, so as a workaround we pretend that the type comes from
1585 // <unknown>
1586 let file_metadata = unknown_file_metadata(cx);
1587
1588 let variants = &enum_type.ty_adt_def().unwrap().variants;
1589
1590 let enumerators_metadata: Vec<DIDescriptor> = variants
1591 .iter()
1592 .map(|v| {
1593 let token = v.name.as_str();
1594 let name = CString::new(token.as_bytes()).unwrap();
1595 unsafe {
1596 llvm::LLVMDIBuilderCreateEnumerator(
1597 DIB(cx),
1598 name.as_ptr(),
1599 v.disr_val as u64)
1600 }
1601 })
1602 .collect();
1603
1604 let discriminant_type_metadata = |inttype: syntax::attr::IntType| {
1605 let disr_type_key = (enum_def_id, inttype);
1606 let cached_discriminant_type_metadata = debug_context(cx).created_enum_disr_types
1607 .borrow()
1608 .get(&disr_type_key).cloned();
1609 match cached_discriminant_type_metadata {
1610 Some(discriminant_type_metadata) => discriminant_type_metadata,
1611 None => {
1612 let discriminant_llvm_type = adt::ll_inttype(cx, inttype);
1613 let (discriminant_size, discriminant_align) =
1614 size_and_align_of(cx, discriminant_llvm_type);
1615 let discriminant_base_type_metadata =
1616 type_metadata(cx,
1617 adt::ty_of_inttype(cx.tcx(), inttype),
1618 codemap::DUMMY_SP);
1619 let discriminant_name = get_enum_discriminant_name(cx, enum_def_id);
1620
1621 let name = CString::new(discriminant_name.as_bytes()).unwrap();
1622 let discriminant_type_metadata = unsafe {
1623 llvm::LLVMDIBuilderCreateEnumerationType(
1624 DIB(cx),
1625 containing_scope,
1626 name.as_ptr(),
1627 NO_FILE_METADATA,
1628 UNKNOWN_LINE_NUMBER,
1629 bytes_to_bits(discriminant_size),
1630 bytes_to_bits(discriminant_align),
1631 create_DIArray(DIB(cx), &enumerators_metadata),
1632 discriminant_base_type_metadata)
1633 };
1634
1635 debug_context(cx).created_enum_disr_types
1636 .borrow_mut()
1637 .insert(disr_type_key, discriminant_type_metadata);
1638
1639 discriminant_type_metadata
1640 }
1641 }
1642 };
1643
1644 let type_rep = adt::represent_type(cx, enum_type);
1645
1646 let discriminant_type_metadata = match *type_rep {
1647 adt::CEnum(inttype, _, _) => {
1648 return FinalMetadata(discriminant_type_metadata(inttype))
1649 },
1650 adt::RawNullablePointer { .. } |
1651 adt::StructWrappedNullablePointer { .. } |
1652 adt::Univariant(..) => None,
1653 adt::General(inttype, _, _) => Some(discriminant_type_metadata(inttype)),
1654 };
1655
1656 let enum_llvm_type = type_of::type_of(cx, enum_type);
1657 let (enum_type_size, enum_type_align) = size_and_align_of(cx, enum_llvm_type);
1658
1659 let unique_type_id_str = debug_context(cx)
1660 .type_map
1661 .borrow()
1662 .get_unique_type_id_as_string(unique_type_id);
1663
1664 let enum_name = CString::new(enum_name).unwrap();
1665 let unique_type_id_str = CString::new(unique_type_id_str.as_bytes()).unwrap();
1666 let enum_metadata = unsafe {
1667 llvm::LLVMDIBuilderCreateUnionType(
1668 DIB(cx),
1669 containing_scope,
1670 enum_name.as_ptr(),
1671 file_metadata,
1672 UNKNOWN_LINE_NUMBER,
1673 bytes_to_bits(enum_type_size),
1674 bytes_to_bits(enum_type_align),
1675 0, // Flags
1676 ptr::null_mut(),
1677 0, // RuntimeLang
1678 unique_type_id_str.as_ptr())
1679 };
1680
1681 return create_and_register_recursive_type_forward_declaration(
1682 cx,
1683 enum_type,
1684 unique_type_id,
1685 enum_metadata,
1686 enum_llvm_type,
1687 EnumMDF(EnumMemberDescriptionFactory {
1688 enum_type: enum_type,
1689 type_rep: type_rep.clone(),
1690 discriminant_type_metadata: discriminant_type_metadata,
1691 containing_scope: containing_scope,
1692 file_metadata: file_metadata,
1693 span: span,
1694 }),
1695 );
1696
1697 fn get_enum_discriminant_name(cx: &CrateContext,
1698 def_id: DefId)
1699 -> token::InternedString {
1700 cx.tcx().item_name(def_id).as_str()
1701 }
1702 }
1703
1704 /// Creates debug information for a composite type, that is, anything that
1705 /// results in a LLVM struct.
1706 ///
1707 /// Examples of Rust types to use this are: structs, tuples, boxes, vecs, and enums.
1708 fn composite_type_metadata(cx: &CrateContext,
1709 composite_llvm_type: Type,
1710 composite_type_name: &str,
1711 composite_type_unique_id: UniqueTypeId,
1712 member_descriptions: &[MemberDescription],
1713 containing_scope: DIScope,
1714
1715 // Ignore source location information as long as it
1716 // can't be reconstructed for non-local crates.
1717 _file_metadata: DIFile,
1718 _definition_span: Span)
1719 -> DICompositeType {
1720 // Create the (empty) struct metadata node ...
1721 let composite_type_metadata = create_struct_stub(cx,
1722 composite_llvm_type,
1723 composite_type_name,
1724 composite_type_unique_id,
1725 containing_scope);
1726 // ... and immediately create and add the member descriptions.
1727 set_members_of_composite_type(cx,
1728 composite_type_metadata,
1729 composite_llvm_type,
1730 member_descriptions);
1731
1732 return composite_type_metadata;
1733 }
1734
1735 fn set_members_of_composite_type(cx: &CrateContext,
1736 composite_type_metadata: DICompositeType,
1737 composite_llvm_type: Type,
1738 member_descriptions: &[MemberDescription]) {
1739 // In some rare cases LLVM metadata uniquing would lead to an existing type
1740 // description being used instead of a new one created in
1741 // create_struct_stub. This would cause a hard to trace assertion in
1742 // DICompositeType::SetTypeArray(). The following check makes sure that we
1743 // get a better error message if this should happen again due to some
1744 // regression.
1745 {
1746 let mut composite_types_completed =
1747 debug_context(cx).composite_types_completed.borrow_mut();
1748 if composite_types_completed.contains(&composite_type_metadata) {
1749 cx.sess().bug("debuginfo::set_members_of_composite_type() - \
1750 Already completed forward declaration re-encountered.");
1751 } else {
1752 composite_types_completed.insert(composite_type_metadata);
1753 }
1754 }
1755
1756 let member_metadata: Vec<DIDescriptor> = member_descriptions
1757 .iter()
1758 .enumerate()
1759 .map(|(i, member_description)| {
1760 let (member_size, member_align) = size_and_align_of(cx, member_description.llvm_type);
1761 let member_offset = match member_description.offset {
1762 FixedMemberOffset { bytes } => bytes as u64,
1763 ComputedMemberOffset => machine::llelement_offset(cx, composite_llvm_type, i)
1764 };
1765
1766 let member_name = member_description.name.as_bytes();
1767 let member_name = CString::new(member_name).unwrap();
1768 unsafe {
1769 llvm::LLVMDIBuilderCreateMemberType(
1770 DIB(cx),
1771 composite_type_metadata,
1772 member_name.as_ptr(),
1773 NO_FILE_METADATA,
1774 UNKNOWN_LINE_NUMBER,
1775 bytes_to_bits(member_size),
1776 bytes_to_bits(member_align),
1777 bytes_to_bits(member_offset),
1778 member_description.flags,
1779 member_description.type_metadata)
1780 }
1781 })
1782 .collect();
1783
1784 unsafe {
1785 let type_array = create_DIArray(DIB(cx), &member_metadata[..]);
1786 llvm::LLVMDICompositeTypeSetTypeArray(DIB(cx), composite_type_metadata, type_array);
1787 }
1788 }
1789
1790 // A convenience wrapper around LLVMDIBuilderCreateStructType(). Does not do any
1791 // caching, does not add any fields to the struct. This can be done later with
1792 // set_members_of_composite_type().
1793 fn create_struct_stub(cx: &CrateContext,
1794 struct_llvm_type: Type,
1795 struct_type_name: &str,
1796 unique_type_id: UniqueTypeId,
1797 containing_scope: DIScope)
1798 -> DICompositeType {
1799 let (struct_size, struct_align) = size_and_align_of(cx, struct_llvm_type);
1800
1801 let unique_type_id_str = debug_context(cx).type_map
1802 .borrow()
1803 .get_unique_type_id_as_string(unique_type_id);
1804 let name = CString::new(struct_type_name).unwrap();
1805 let unique_type_id = CString::new(unique_type_id_str.as_bytes()).unwrap();
1806 let metadata_stub = unsafe {
1807 // LLVMDIBuilderCreateStructType() wants an empty array. A null
1808 // pointer will lead to hard to trace and debug LLVM assertions
1809 // later on in llvm/lib/IR/Value.cpp.
1810 let empty_array = create_DIArray(DIB(cx), &[]);
1811
1812 llvm::LLVMDIBuilderCreateStructType(
1813 DIB(cx),
1814 containing_scope,
1815 name.as_ptr(),
1816 NO_FILE_METADATA,
1817 UNKNOWN_LINE_NUMBER,
1818 bytes_to_bits(struct_size),
1819 bytes_to_bits(struct_align),
1820 0,
1821 ptr::null_mut(),
1822 empty_array,
1823 0,
1824 ptr::null_mut(),
1825 unique_type_id.as_ptr())
1826 };
1827
1828 return metadata_stub;
1829 }
1830
1831 /// Creates debug information for the given global variable.
1832 ///
1833 /// Adds the created metadata nodes directly to the crate's IR.
1834 pub fn create_global_var_metadata(cx: &CrateContext,
1835 node_id: ast::NodeId,
1836 global: ValueRef) {
1837 if cx.dbg_cx().is_none() {
1838 return;
1839 }
1840
1841 // Don't create debuginfo for globals inlined from other crates. The other
1842 // crate should already contain debuginfo for it. More importantly, the
1843 // global might not even exist in un-inlined form anywhere which would lead
1844 // to a linker errors.
1845 if cx.external_srcs().borrow().contains_key(&node_id) {
1846 return;
1847 }
1848
1849 let var_item = cx.tcx().map.get(node_id);
1850
1851 let (name, span) = match var_item {
1852 hir_map::NodeItem(item) => {
1853 match item.node {
1854 hir::ItemStatic(..) => (item.name, item.span),
1855 hir::ItemConst(..) => (item.name, item.span),
1856 _ => {
1857 cx.sess()
1858 .span_bug(item.span,
1859 &format!("debuginfo::\
1860 create_global_var_metadata() -
1861 Captured var-id refers to \
1862 unexpected ast_item variant: {:?}",
1863 var_item))
1864 }
1865 }
1866 },
1867 _ => cx.sess().bug(&format!("debuginfo::create_global_var_metadata() \
1868 - Captured var-id refers to unexpected \
1869 hir_map variant: {:?}",
1870 var_item))
1871 };
1872
1873 let (file_metadata, line_number) = if span != codemap::DUMMY_SP {
1874 let loc = span_start(cx, span);
1875 (file_metadata(cx, &loc.file.name), loc.line as c_uint)
1876 } else {
1877 (NO_FILE_METADATA, UNKNOWN_LINE_NUMBER)
1878 };
1879
1880 let is_local_to_unit = is_node_local_to_unit(cx, node_id);
1881 let variable_type = cx.tcx().node_id_to_type(node_id);
1882 let type_metadata = type_metadata(cx, variable_type, span);
1883 let node_def_id = cx.tcx().map.local_def_id(node_id);
1884 let namespace_node = namespace_for_item(cx, node_def_id);
1885 let var_name = name.to_string();
1886 let linkage_name =
1887 namespace_node.mangled_name_of_contained_item(&var_name[..]);
1888 let var_scope = namespace_node.scope;
1889
1890 let var_name = CString::new(var_name).unwrap();
1891 let linkage_name = CString::new(linkage_name).unwrap();
1892 unsafe {
1893 llvm::LLVMDIBuilderCreateStaticVariable(DIB(cx),
1894 var_scope,
1895 var_name.as_ptr(),
1896 linkage_name.as_ptr(),
1897 file_metadata,
1898 line_number,
1899 type_metadata,
1900 is_local_to_unit,
1901 global,
1902 ptr::null_mut());
1903 }
1904 }
1905
1906 /// Creates debug information for the given local variable.
1907 ///
1908 /// This function assumes that there's a datum for each pattern component of the
1909 /// local in `bcx.fcx.lllocals`.
1910 /// Adds the created metadata nodes directly to the crate's IR.
1911 pub fn create_local_var_metadata(bcx: Block, local: &hir::Local) {
1912 if bcx.unreachable.get() ||
1913 fn_should_be_ignored(bcx.fcx) ||
1914 bcx.sess().opts.debuginfo != FullDebugInfo {
1915 return;
1916 }
1917
1918 let cx = bcx.ccx();
1919 let def_map = &cx.tcx().def_map;
1920 let locals = bcx.fcx.lllocals.borrow();
1921
1922 pat_util::pat_bindings(def_map, &local.pat, |_, node_id, span, var_name| {
1923 let datum = match locals.get(&node_id) {
1924 Some(datum) => datum,
1925 None => {
1926 bcx.sess().span_bug(span,
1927 &format!("no entry in lllocals table for {}",
1928 node_id));
1929 }
1930 };
1931
1932 if unsafe { llvm::LLVMIsAAllocaInst(datum.val) } == ptr::null_mut() {
1933 cx.sess().span_bug(span, "debuginfo::create_local_var_metadata() - \
1934 Referenced variable location is not an alloca!");
1935 }
1936
1937 let scope_metadata = scope_metadata(bcx.fcx, node_id, span);
1938
1939 declare_local(bcx,
1940 var_name.node,
1941 datum.ty,
1942 scope_metadata,
1943 VariableAccess::DirectVariable { alloca: datum.val },
1944 VariableKind::LocalVariable,
1945 span);
1946 })
1947 }
1948
1949 /// Creates debug information for a variable captured in a closure.
1950 ///
1951 /// Adds the created metadata nodes directly to the crate's IR.
1952 pub fn create_captured_var_metadata<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
1953 node_id: ast::NodeId,
1954 env_pointer: ValueRef,
1955 env_index: usize,
1956 captured_by_ref: bool,
1957 span: Span) {
1958 if bcx.unreachable.get() ||
1959 fn_should_be_ignored(bcx.fcx) ||
1960 bcx.sess().opts.debuginfo != FullDebugInfo {
1961 return;
1962 }
1963
1964 let cx = bcx.ccx();
1965
1966 let ast_item = cx.tcx().map.find(node_id);
1967
1968 let variable_name = match ast_item {
1969 None => {
1970 cx.sess().span_bug(span, "debuginfo::create_captured_var_metadata: node not found");
1971 }
1972 Some(hir_map::NodeLocal(pat)) => {
1973 match pat.node {
1974 PatKind::Ident(_, ref path1, _) => {
1975 path1.node.name
1976 }
1977 _ => {
1978 cx.sess()
1979 .span_bug(span,
1980 &format!(
1981 "debuginfo::create_captured_var_metadata() - \
1982 Captured var-id refers to unexpected \
1983 hir_map variant: {:?}",
1984 ast_item));
1985 }
1986 }
1987 }
1988 _ => {
1989 cx.sess()
1990 .span_bug(span,
1991 &format!("debuginfo::create_captured_var_metadata() - \
1992 Captured var-id refers to unexpected \
1993 hir_map variant: {:?}",
1994 ast_item));
1995 }
1996 };
1997
1998 let variable_type = common::node_id_type(bcx, node_id);
1999 let scope_metadata = bcx.fcx.debug_context.get_ref(cx, span).fn_metadata;
2000
2001 // env_pointer is the alloca containing the pointer to the environment,
2002 // so it's type is **EnvironmentType. In order to find out the type of
2003 // the environment we have to "dereference" two times.
2004 let llvm_env_data_type = common::val_ty(env_pointer).element_type()
2005 .element_type();
2006 let byte_offset_of_var_in_env = machine::llelement_offset(cx,
2007 llvm_env_data_type,
2008 env_index);
2009
2010 let address_operations = unsafe {
2011 [llvm::LLVMDIBuilderCreateOpDeref(),
2012 llvm::LLVMDIBuilderCreateOpPlus(),
2013 byte_offset_of_var_in_env as i64,
2014 llvm::LLVMDIBuilderCreateOpDeref()]
2015 };
2016
2017 let address_op_count = if captured_by_ref {
2018 address_operations.len()
2019 } else {
2020 address_operations.len() - 1
2021 };
2022
2023 let variable_access = VariableAccess::IndirectVariable {
2024 alloca: env_pointer,
2025 address_operations: &address_operations[..address_op_count]
2026 };
2027
2028 declare_local(bcx,
2029 variable_name,
2030 variable_type,
2031 scope_metadata,
2032 variable_access,
2033 VariableKind::CapturedVariable,
2034 span);
2035 }
2036
2037 /// Creates debug information for a local variable introduced in the head of a
2038 /// match-statement arm.
2039 ///
2040 /// Adds the created metadata nodes directly to the crate's IR.
2041 pub fn create_match_binding_metadata<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
2042 variable_name: ast::Name,
2043 binding: BindingInfo<'tcx>) {
2044 if bcx.unreachable.get() ||
2045 fn_should_be_ignored(bcx.fcx) ||
2046 bcx.sess().opts.debuginfo != FullDebugInfo {
2047 return;
2048 }
2049
2050 let scope_metadata = scope_metadata(bcx.fcx, binding.id, binding.span);
2051 let aops = unsafe {
2052 [llvm::LLVMDIBuilderCreateOpDeref()]
2053 };
2054 // Regardless of the actual type (`T`) we're always passed the stack slot
2055 // (alloca) for the binding. For ByRef bindings that's a `T*` but for ByMove
2056 // bindings we actually have `T**`. So to get the actual variable we need to
2057 // dereference once more. For ByCopy we just use the stack slot we created
2058 // for the binding.
2059 let var_access = match binding.trmode {
2060 TransBindingMode::TrByCopy(llbinding) |
2061 TransBindingMode::TrByMoveIntoCopy(llbinding) => VariableAccess::DirectVariable {
2062 alloca: llbinding
2063 },
2064 TransBindingMode::TrByMoveRef => VariableAccess::IndirectVariable {
2065 alloca: binding.llmatch,
2066 address_operations: &aops
2067 },
2068 TransBindingMode::TrByRef => VariableAccess::DirectVariable {
2069 alloca: binding.llmatch
2070 }
2071 };
2072
2073 declare_local(bcx,
2074 variable_name,
2075 binding.ty,
2076 scope_metadata,
2077 var_access,
2078 VariableKind::LocalVariable,
2079 binding.span);
2080 }
2081
2082 /// Creates debug information for the given function argument.
2083 ///
2084 /// This function assumes that there's a datum for each pattern component of the
2085 /// argument in `bcx.fcx.lllocals`.
2086 /// Adds the created metadata nodes directly to the crate's IR.
2087 pub fn create_argument_metadata(bcx: Block, arg: &hir::Arg) {
2088 if bcx.unreachable.get() ||
2089 fn_should_be_ignored(bcx.fcx) ||
2090 bcx.sess().opts.debuginfo != FullDebugInfo {
2091 return;
2092 }
2093
2094 let def_map = &bcx.tcx().def_map;
2095 let scope_metadata = bcx
2096 .fcx
2097 .debug_context
2098 .get_ref(bcx.ccx(), arg.pat.span)
2099 .fn_metadata;
2100 let locals = bcx.fcx.lllocals.borrow();
2101
2102 pat_util::pat_bindings(def_map, &arg.pat, |_, node_id, span, var_name| {
2103 let datum = match locals.get(&node_id) {
2104 Some(v) => v,
2105 None => {
2106 bcx.sess().span_bug(span,
2107 &format!("no entry in lllocals table for {}",
2108 node_id));
2109 }
2110 };
2111
2112 if unsafe { llvm::LLVMIsAAllocaInst(datum.val) } == ptr::null_mut() {
2113 bcx.sess().span_bug(span, "debuginfo::create_argument_metadata() - \
2114 Referenced variable location is not an alloca!");
2115 }
2116
2117 let argument_index = {
2118 let counter = &bcx
2119 .fcx
2120 .debug_context
2121 .get_ref(bcx.ccx(), span)
2122 .argument_counter;
2123 let argument_index = counter.get();
2124 counter.set(argument_index + 1);
2125 argument_index
2126 };
2127
2128 declare_local(bcx,
2129 var_name.node,
2130 datum.ty,
2131 scope_metadata,
2132 VariableAccess::DirectVariable { alloca: datum.val },
2133 VariableKind::ArgumentVariable(argument_index),
2134 span);
2135 })
2136 }