]> git.proxmox.com Git - rustc.git/blob - src/librustc_typeck/check/callee.rs
0ad15456df98f16daab554c59b289287426b0523
[rustc.git] / src / librustc_typeck / check / callee.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 use super::autoderef;
12 use super::AutorefArgs;
13 use super::check_argument_types;
14 use super::check_expr;
15 use super::check_method_argument_types;
16 use super::demand;
17 use super::DeferredCallResolution;
18 use super::err_args;
19 use super::Expectation;
20 use super::expected_types_for_fn_args;
21 use super::FnCtxt;
22 use super::LvaluePreference;
23 use super::method;
24 use super::structurally_resolved_type;
25 use super::TupleArgumentsFlag;
26 use super::UnresolvedTypeAction;
27 use super::write_call;
28
29 use CrateCtxt;
30 use middle::infer;
31 use middle::ty::{self, Ty, ClosureTyper};
32 use syntax::ast;
33 use syntax::codemap::Span;
34 use syntax::parse::token;
35 use syntax::ptr::P;
36 use util::ppaux::Repr;
37
38 /// Check that it is legal to call methods of the trait corresponding
39 /// to `trait_id` (this only cares about the trait, not the specific
40 /// method that is called)
41 pub fn check_legal_trait_for_method_call(ccx: &CrateCtxt, span: Span, trait_id: ast::DefId) {
42 let tcx = ccx.tcx;
43 let did = Some(trait_id);
44 let li = &tcx.lang_items;
45
46 if did == li.drop_trait() {
47 span_err!(tcx.sess, span, E0040, "explicit use of destructor method");
48 } else if !tcx.sess.features.borrow().unboxed_closures {
49 // the #[feature(unboxed_closures)] feature isn't
50 // activated so we need to enforce the closure
51 // restrictions.
52
53 let method = if did == li.fn_trait() {
54 "call"
55 } else if did == li.fn_mut_trait() {
56 "call_mut"
57 } else if did == li.fn_once_trait() {
58 "call_once"
59 } else {
60 return // not a closure method, everything is OK.
61 };
62
63 span_err!(tcx.sess, span, E0174,
64 "explicit use of unboxed closure method `{}` is experimental",
65 method);
66 span_help!(tcx.sess, span,
67 "add `#![feature(unboxed_closures)]` to the crate attributes to enable");
68 }
69 }
70
71 pub fn check_call<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
72 call_expr: &'tcx ast::Expr,
73 callee_expr: &'tcx ast::Expr,
74 arg_exprs: &'tcx [P<ast::Expr>],
75 expected: Expectation<'tcx>)
76 {
77 check_expr(fcx, callee_expr);
78 let original_callee_ty = fcx.expr_ty(callee_expr);
79 let (callee_ty, _, result) =
80 autoderef(fcx,
81 callee_expr.span,
82 original_callee_ty,
83 Some(callee_expr),
84 UnresolvedTypeAction::Error,
85 LvaluePreference::NoPreference,
86 |adj_ty, idx| {
87 let autoderefref = ty::AutoDerefRef { autoderefs: idx, autoref: None };
88 try_overloaded_call_step(fcx, call_expr, callee_expr,
89 adj_ty, autoderefref)
90 });
91
92 match result {
93 None => {
94 // this will report an error since original_callee_ty is not a fn
95 confirm_builtin_call(fcx, call_expr, original_callee_ty, arg_exprs, expected);
96 }
97
98 Some(CallStep::Builtin) => {
99 confirm_builtin_call(fcx, call_expr, callee_ty, arg_exprs, expected);
100 }
101
102 Some(CallStep::DeferredClosure(fn_sig)) => {
103 confirm_deferred_closure_call(fcx, call_expr, arg_exprs, expected, fn_sig);
104 }
105
106 Some(CallStep::Overloaded(method_callee)) => {
107 confirm_overloaded_call(fcx, call_expr, callee_expr,
108 arg_exprs, expected, method_callee);
109 }
110 }
111 }
112
113 enum CallStep<'tcx> {
114 Builtin,
115 DeferredClosure(ty::FnSig<'tcx>),
116 Overloaded(ty::MethodCallee<'tcx>)
117 }
118
119 fn try_overloaded_call_step<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
120 call_expr: &'tcx ast::Expr,
121 callee_expr: &'tcx ast::Expr,
122 adjusted_ty: Ty<'tcx>,
123 autoderefref: ty::AutoDerefRef<'tcx>)
124 -> Option<CallStep<'tcx>>
125 {
126 debug!("try_overloaded_call_step(call_expr={}, adjusted_ty={}, autoderefref={})",
127 call_expr.repr(fcx.tcx()),
128 adjusted_ty.repr(fcx.tcx()),
129 autoderefref.repr(fcx.tcx()));
130
131 // If the callee is a bare function or a closure, then we're all set.
132 match structurally_resolved_type(fcx, callee_expr.span, adjusted_ty).sty {
133 ty::ty_bare_fn(..) => {
134 fcx.write_adjustment(callee_expr.id,
135 callee_expr.span,
136 ty::AdjustDerefRef(autoderefref));
137 return Some(CallStep::Builtin);
138 }
139
140 ty::ty_closure(def_id, _, substs) => {
141 assert_eq!(def_id.krate, ast::LOCAL_CRATE);
142
143 // Check whether this is a call to a closure where we
144 // haven't yet decided on whether the closure is fn vs
145 // fnmut vs fnonce. If so, we have to defer further processing.
146 if fcx.closure_kind(def_id).is_none() {
147 let closure_ty =
148 fcx.closure_type(def_id, substs);
149 let fn_sig =
150 fcx.infcx().replace_late_bound_regions_with_fresh_var(call_expr.span,
151 infer::FnCall,
152 &closure_ty.sig).0;
153 fcx.record_deferred_call_resolution(
154 def_id,
155 box CallResolution {call_expr: call_expr,
156 callee_expr: callee_expr,
157 adjusted_ty: adjusted_ty,
158 autoderefref: autoderefref,
159 fn_sig: fn_sig.clone(),
160 closure_def_id: def_id});
161 return Some(CallStep::DeferredClosure(fn_sig));
162 }
163 }
164
165 _ => {}
166 }
167
168 try_overloaded_call_traits(fcx, call_expr, callee_expr, adjusted_ty, autoderefref)
169 .map(|method_callee| CallStep::Overloaded(method_callee))
170 }
171
172 fn try_overloaded_call_traits<'a,'tcx>(fcx: &FnCtxt<'a, 'tcx>,
173 call_expr: &ast::Expr,
174 callee_expr: &ast::Expr,
175 adjusted_ty: Ty<'tcx>,
176 autoderefref: ty::AutoDerefRef<'tcx>)
177 -> Option<ty::MethodCallee<'tcx>>
178 {
179 // Try the options that are least restrictive on the caller first.
180 for &(opt_trait_def_id, method_name) in [
181 (fcx.tcx().lang_items.fn_trait(), token::intern("call")),
182 (fcx.tcx().lang_items.fn_mut_trait(), token::intern("call_mut")),
183 (fcx.tcx().lang_items.fn_once_trait(), token::intern("call_once")),
184 ].iter() {
185 let trait_def_id = match opt_trait_def_id {
186 Some(def_id) => def_id,
187 None => continue,
188 };
189
190 match method::lookup_in_trait_adjusted(fcx,
191 call_expr.span,
192 Some(&*callee_expr),
193 method_name,
194 trait_def_id,
195 autoderefref.clone(),
196 adjusted_ty,
197 None) {
198 None => continue,
199 Some(method_callee) => {
200 return Some(method_callee);
201 }
202 }
203 }
204
205 None
206 }
207
208 fn confirm_builtin_call<'a,'tcx>(fcx: &FnCtxt<'a,'tcx>,
209 call_expr: &ast::Expr,
210 callee_ty: Ty<'tcx>,
211 arg_exprs: &'tcx [P<ast::Expr>],
212 expected: Expectation<'tcx>)
213 {
214 let error_fn_sig;
215
216 let fn_sig = match callee_ty.sty {
217 ty::ty_bare_fn(_, &ty::BareFnTy {ref sig, ..}) => {
218 sig
219 }
220 _ => {
221 fcx.type_error_message(call_expr.span, |actual| {
222 format!("expected function, found `{}`", actual)
223 }, callee_ty, None);
224
225 // This is the "default" function signature, used in case of error.
226 // In that case, we check each argument against "error" in order to
227 // set up all the node type bindings.
228 error_fn_sig = ty::Binder(ty::FnSig {
229 inputs: err_args(fcx.tcx(), arg_exprs.len()),
230 output: ty::FnConverging(fcx.tcx().types.err),
231 variadic: false
232 });
233
234 &error_fn_sig
235 }
236 };
237
238 // Replace any late-bound regions that appear in the function
239 // signature with region variables. We also have to
240 // renormalize the associated types at this point, since they
241 // previously appeared within a `Binder<>` and hence would not
242 // have been normalized before.
243 let fn_sig =
244 fcx.infcx().replace_late_bound_regions_with_fresh_var(call_expr.span,
245 infer::FnCall,
246 fn_sig).0;
247 let fn_sig =
248 fcx.normalize_associated_types_in(call_expr.span, &fn_sig);
249
250 // Call the generic checker.
251 let expected_arg_tys = expected_types_for_fn_args(fcx,
252 call_expr.span,
253 expected,
254 fn_sig.output,
255 &fn_sig.inputs);
256 check_argument_types(fcx,
257 call_expr.span,
258 &fn_sig.inputs,
259 &expected_arg_tys[..],
260 arg_exprs,
261 AutorefArgs::No,
262 fn_sig.variadic,
263 TupleArgumentsFlag::DontTupleArguments);
264
265 write_call(fcx, call_expr, fn_sig.output);
266 }
267
268 fn confirm_deferred_closure_call<'a,'tcx>(fcx: &FnCtxt<'a,'tcx>,
269 call_expr: &ast::Expr,
270 arg_exprs: &'tcx [P<ast::Expr>],
271 expected: Expectation<'tcx>,
272 fn_sig: ty::FnSig<'tcx>)
273 {
274 // `fn_sig` is the *signature* of the cosure being called. We
275 // don't know the full details yet (`Fn` vs `FnMut` etc), but we
276 // do know the types expected for each argument and the return
277 // type.
278
279 let expected_arg_tys =
280 expected_types_for_fn_args(fcx,
281 call_expr.span,
282 expected,
283 fn_sig.output.clone(),
284 &*fn_sig.inputs);
285
286 check_argument_types(fcx,
287 call_expr.span,
288 &*fn_sig.inputs,
289 &*expected_arg_tys,
290 arg_exprs,
291 AutorefArgs::No,
292 fn_sig.variadic,
293 TupleArgumentsFlag::TupleArguments);
294
295 write_call(fcx, call_expr, fn_sig.output);
296 }
297
298 fn confirm_overloaded_call<'a,'tcx>(fcx: &FnCtxt<'a, 'tcx>,
299 call_expr: &ast::Expr,
300 callee_expr: &'tcx ast::Expr,
301 arg_exprs: &'tcx [P<ast::Expr>],
302 expected: Expectation<'tcx>,
303 method_callee: ty::MethodCallee<'tcx>)
304 {
305 let output_type =
306 check_method_argument_types(fcx,
307 call_expr.span,
308 method_callee.ty,
309 callee_expr,
310 arg_exprs,
311 AutorefArgs::No,
312 TupleArgumentsFlag::TupleArguments,
313 expected);
314 write_call(fcx, call_expr, output_type);
315
316 write_overloaded_call_method_map(fcx, call_expr, method_callee);
317 }
318
319 fn write_overloaded_call_method_map<'a,'tcx>(fcx: &FnCtxt<'a, 'tcx>,
320 call_expr: &ast::Expr,
321 method_callee: ty::MethodCallee<'tcx>) {
322 let method_call = ty::MethodCall::expr(call_expr.id);
323 fcx.inh.method_map.borrow_mut().insert(method_call, method_callee);
324 }
325
326 struct CallResolution<'tcx> {
327 call_expr: &'tcx ast::Expr,
328 callee_expr: &'tcx ast::Expr,
329 adjusted_ty: Ty<'tcx>,
330 autoderefref: ty::AutoDerefRef<'tcx>,
331 fn_sig: ty::FnSig<'tcx>,
332 closure_def_id: ast::DefId,
333 }
334
335 impl<'tcx> Repr<'tcx> for CallResolution<'tcx> {
336 fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
337 format!("CallResolution(call_expr={}, callee_expr={}, adjusted_ty={}, \
338 autoderefref={}, fn_sig={}, closure_def_id={})",
339 self.call_expr.repr(tcx),
340 self.callee_expr.repr(tcx),
341 self.adjusted_ty.repr(tcx),
342 self.autoderefref.repr(tcx),
343 self.fn_sig.repr(tcx),
344 self.closure_def_id.repr(tcx))
345 }
346 }
347
348 impl<'tcx> DeferredCallResolution<'tcx> for CallResolution<'tcx> {
349 fn resolve<'a>(&mut self, fcx: &FnCtxt<'a,'tcx>) {
350 debug!("DeferredCallResolution::resolve() {}",
351 self.repr(fcx.tcx()));
352
353 // we should not be invoked until the closure kind has been
354 // determined by upvar inference
355 assert!(fcx.closure_kind(self.closure_def_id).is_some());
356
357 // We may now know enough to figure out fn vs fnmut etc.
358 match try_overloaded_call_traits(fcx, self.call_expr, self.callee_expr,
359 self.adjusted_ty, self.autoderefref.clone()) {
360 Some(method_callee) => {
361 // One problem is that when we get here, we are going
362 // to have a newly instantiated function signature
363 // from the call trait. This has to be reconciled with
364 // the older function signature we had before. In
365 // principle we *should* be able to fn_sigs(), but we
366 // can't because of the annoying need for a TypeTrace.
367 // (This always bites me, should find a way to
368 // refactor it.)
369 let method_sig =
370 ty::no_late_bound_regions(fcx.tcx(),
371 ty::ty_fn_sig(method_callee.ty)).unwrap();
372
373 debug!("attempt_resolution: method_callee={}",
374 method_callee.repr(fcx.tcx()));
375
376 for (&method_arg_ty, &self_arg_ty) in
377 method_sig.inputs[1..].iter().zip(self.fn_sig.inputs.iter())
378 {
379 demand::eqtype(fcx, self.call_expr.span, self_arg_ty, method_arg_ty);
380 }
381
382 demand::eqtype(fcx,
383 self.call_expr.span,
384 method_sig.output.unwrap(),
385 self.fn_sig.output.unwrap());
386
387 write_overloaded_call_method_map(fcx, self.call_expr, method_callee);
388 }
389 None => {
390 fcx.tcx().sess.span_bug(
391 self.call_expr.span,
392 "failed to find an overloaded call trait for closure call");
393 }
394 }
395 }
396 }