]> git.proxmox.com Git - rustc.git/blob - src/librustc_typeck/check/method/probe.rs
New upstream version 1.43.0+dfsg1
[rustc.git] / src / librustc_typeck / check / method / probe.rs
1 use super::suggest;
2 use super::MethodError;
3 use super::NoMatchData;
4 use super::{CandidateSource, ImplSource, TraitSource};
5
6 use crate::check::autoderef::{self, Autoderef};
7 use crate::check::FnCtxt;
8 use crate::hir::def::DefKind;
9 use crate::hir::def_id::DefId;
10
11 use rustc::lint;
12 use rustc::middle::stability;
13 use rustc::session::config::nightly_options;
14 use rustc::ty::subst::{InternalSubsts, Subst, SubstsRef};
15 use rustc::ty::GenericParamDefKind;
16 use rustc::ty::{
17 self, ParamEnvAnd, ToPolyTraitRef, ToPredicate, Ty, TyCtxt, TypeFoldable, WithConstness,
18 };
19 use rustc_ast::ast;
20 use rustc_ast::util::lev_distance::{find_best_match_for_name, lev_distance};
21 use rustc_data_structures::fx::FxHashSet;
22 use rustc_data_structures::sync::Lrc;
23 use rustc_errors::struct_span_err;
24 use rustc_hir as hir;
25 use rustc_hir::def::Namespace;
26 use rustc_infer::infer::canonical::OriginalQueryValues;
27 use rustc_infer::infer::canonical::{Canonical, QueryResponse};
28 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
29 use rustc_infer::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
30 use rustc_infer::infer::{self, InferOk, TyCtxtInferExt};
31 use rustc_infer::traits::query::method_autoderef::MethodAutoderefBadTy;
32 use rustc_infer::traits::query::method_autoderef::{CandidateStep, MethodAutoderefStepsResult};
33 use rustc_infer::traits::query::CanonicalTyGoal;
34 use rustc_infer::traits::{self, ObligationCause};
35 use rustc_span::{symbol::Symbol, Span, DUMMY_SP};
36 use std::cmp::max;
37 use std::iter;
38 use std::mem;
39 use std::ops::Deref;
40
41 use smallvec::{smallvec, SmallVec};
42
43 use self::CandidateKind::*;
44 pub use self::PickKind::*;
45
46 /// Boolean flag used to indicate if this search is for a suggestion
47 /// or not. If true, we can allow ambiguity and so forth.
48 #[derive(Clone, Copy)]
49 pub struct IsSuggestion(pub bool);
50
51 struct ProbeContext<'a, 'tcx> {
52 fcx: &'a FnCtxt<'a, 'tcx>,
53 span: Span,
54 mode: Mode,
55 method_name: Option<ast::Ident>,
56 return_type: Option<Ty<'tcx>>,
57
58 /// This is the OriginalQueryValues for the steps queries
59 /// that are answered in steps.
60 orig_steps_var_values: OriginalQueryValues<'tcx>,
61 steps: Lrc<Vec<CandidateStep<'tcx>>>,
62
63 inherent_candidates: Vec<Candidate<'tcx>>,
64 extension_candidates: Vec<Candidate<'tcx>>,
65 impl_dups: FxHashSet<DefId>,
66
67 /// Collects near misses when the candidate functions are missing a `self` keyword and is only
68 /// used for error reporting
69 static_candidates: Vec<CandidateSource>,
70
71 /// When probing for names, include names that are close to the
72 /// requested name (by Levensthein distance)
73 allow_similar_names: bool,
74
75 /// Some(candidate) if there is a private candidate
76 private_candidate: Option<(DefKind, DefId)>,
77
78 /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
79 /// for error reporting
80 unsatisfied_predicates: Vec<(ty::Predicate<'tcx>, Option<ty::Predicate<'tcx>>)>,
81
82 is_suggestion: IsSuggestion,
83 }
84
85 impl<'a, 'tcx> Deref for ProbeContext<'a, 'tcx> {
86 type Target = FnCtxt<'a, 'tcx>;
87 fn deref(&self) -> &Self::Target {
88 &self.fcx
89 }
90 }
91
92 #[derive(Debug)]
93 struct Candidate<'tcx> {
94 // Candidates are (I'm not quite sure, but they are mostly) basically
95 // some metadata on top of a `ty::AssocItem` (without substs).
96 //
97 // However, method probing wants to be able to evaluate the predicates
98 // for a function with the substs applied - for example, if a function
99 // has `where Self: Sized`, we don't want to consider it unless `Self`
100 // is actually `Sized`, and similarly, return-type suggestions want
101 // to consider the "actual" return type.
102 //
103 // The way this is handled is through `xform_self_ty`. It contains
104 // the receiver type of this candidate, but `xform_self_ty`,
105 // `xform_ret_ty` and `kind` (which contains the predicates) have the
106 // generic parameters of this candidate substituted with the *same set*
107 // of inference variables, which acts as some weird sort of "query".
108 //
109 // When we check out a candidate, we require `xform_self_ty` to be
110 // a subtype of the passed-in self-type, and this equates the type
111 // variables in the rest of the fields.
112 //
113 // For example, if we have this candidate:
114 // ```
115 // trait Foo {
116 // fn foo(&self) where Self: Sized;
117 // }
118 // ```
119 //
120 // Then `xform_self_ty` will be `&'erased ?X` and `kind` will contain
121 // the predicate `?X: Sized`, so if we are evaluating `Foo` for a
122 // the receiver `&T`, we'll do the subtyping which will make `?X`
123 // get the right value, then when we evaluate the predicate we'll check
124 // if `T: Sized`.
125 xform_self_ty: Ty<'tcx>,
126 xform_ret_ty: Option<Ty<'tcx>>,
127 item: ty::AssocItem,
128 kind: CandidateKind<'tcx>,
129 import_ids: SmallVec<[hir::HirId; 1]>,
130 }
131
132 #[derive(Debug)]
133 enum CandidateKind<'tcx> {
134 InherentImplCandidate(
135 SubstsRef<'tcx>,
136 // Normalize obligations
137 Vec<traits::PredicateObligation<'tcx>>,
138 ),
139 ObjectCandidate,
140 TraitCandidate(ty::TraitRef<'tcx>),
141 WhereClauseCandidate(
142 // Trait
143 ty::PolyTraitRef<'tcx>,
144 ),
145 }
146
147 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
148 enum ProbeResult {
149 NoMatch,
150 BadReturnType,
151 Match,
152 }
153
154 #[derive(Debug, PartialEq, Clone)]
155 pub struct Pick<'tcx> {
156 pub item: ty::AssocItem,
157 pub kind: PickKind<'tcx>,
158 pub import_ids: SmallVec<[hir::HirId; 1]>,
159
160 // Indicates that the source expression should be autoderef'd N times
161 //
162 // A = expr | *expr | **expr | ...
163 pub autoderefs: usize,
164
165 // Indicates that an autoref is applied after the optional autoderefs
166 //
167 // B = A | &A | &mut A
168 pub autoref: Option<hir::Mutability>,
169
170 // Indicates that the source expression should be "unsized" to a
171 // target type. This should probably eventually go away in favor
172 // of just coercing method receivers.
173 //
174 // C = B | unsize(B)
175 pub unsize: Option<Ty<'tcx>>,
176 }
177
178 #[derive(Clone, Debug, PartialEq, Eq)]
179 pub enum PickKind<'tcx> {
180 InherentImplPick,
181 ObjectPick,
182 TraitPick,
183 WhereClausePick(
184 // Trait
185 ty::PolyTraitRef<'tcx>,
186 ),
187 }
188
189 pub type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
190
191 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
192 pub enum Mode {
193 // An expression of the form `receiver.method_name(...)`.
194 // Autoderefs are performed on `receiver`, lookup is done based on the
195 // `self` argument of the method, and static methods aren't considered.
196 MethodCall,
197 // An expression of the form `Type::item` or `<T>::item`.
198 // No autoderefs are performed, lookup is done based on the type each
199 // implementation is for, and static methods are included.
200 Path,
201 }
202
203 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
204 pub enum ProbeScope {
205 // Assemble candidates coming only from traits in scope.
206 TraitsInScope,
207
208 // Assemble candidates coming from all traits.
209 AllTraits,
210 }
211
212 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
213 /// This is used to offer suggestions to users. It returns methods
214 /// that could have been called which have the desired return
215 /// type. Some effort is made to rule out methods that, if called,
216 /// would result in an error (basically, the same criteria we
217 /// would use to decide if a method is a plausible fit for
218 /// ambiguity purposes).
219 pub fn probe_for_return_type(
220 &self,
221 span: Span,
222 mode: Mode,
223 return_type: Ty<'tcx>,
224 self_ty: Ty<'tcx>,
225 scope_expr_id: hir::HirId,
226 ) -> Vec<ty::AssocItem> {
227 debug!(
228 "probe(self_ty={:?}, return_type={}, scope_expr_id={})",
229 self_ty, return_type, scope_expr_id
230 );
231 let method_names = self
232 .probe_op(
233 span,
234 mode,
235 None,
236 Some(return_type),
237 IsSuggestion(true),
238 self_ty,
239 scope_expr_id,
240 ProbeScope::AllTraits,
241 |probe_cx| Ok(probe_cx.candidate_method_names()),
242 )
243 .unwrap_or(vec![]);
244 method_names
245 .iter()
246 .flat_map(|&method_name| {
247 self.probe_op(
248 span,
249 mode,
250 Some(method_name),
251 Some(return_type),
252 IsSuggestion(true),
253 self_ty,
254 scope_expr_id,
255 ProbeScope::AllTraits,
256 |probe_cx| probe_cx.pick(),
257 )
258 .ok()
259 .map(|pick| pick.item)
260 })
261 .collect()
262 }
263
264 pub fn probe_for_name(
265 &self,
266 span: Span,
267 mode: Mode,
268 item_name: ast::Ident,
269 is_suggestion: IsSuggestion,
270 self_ty: Ty<'tcx>,
271 scope_expr_id: hir::HirId,
272 scope: ProbeScope,
273 ) -> PickResult<'tcx> {
274 debug!(
275 "probe(self_ty={:?}, item_name={}, scope_expr_id={})",
276 self_ty, item_name, scope_expr_id
277 );
278 self.probe_op(
279 span,
280 mode,
281 Some(item_name),
282 None,
283 is_suggestion,
284 self_ty,
285 scope_expr_id,
286 scope,
287 |probe_cx| probe_cx.pick(),
288 )
289 }
290
291 fn probe_op<OP, R>(
292 &'a self,
293 span: Span,
294 mode: Mode,
295 method_name: Option<ast::Ident>,
296 return_type: Option<Ty<'tcx>>,
297 is_suggestion: IsSuggestion,
298 self_ty: Ty<'tcx>,
299 scope_expr_id: hir::HirId,
300 scope: ProbeScope,
301 op: OP,
302 ) -> Result<R, MethodError<'tcx>>
303 where
304 OP: FnOnce(ProbeContext<'a, 'tcx>) -> Result<R, MethodError<'tcx>>,
305 {
306 let mut orig_values = OriginalQueryValues::default();
307 let param_env_and_self_ty = self.infcx.canonicalize_query(
308 &ParamEnvAnd { param_env: self.param_env, value: self_ty },
309 &mut orig_values,
310 );
311
312 let steps = if mode == Mode::MethodCall {
313 self.tcx.method_autoderef_steps(param_env_and_self_ty)
314 } else {
315 self.infcx.probe(|_| {
316 // Mode::Path - the deref steps is "trivial". This turns
317 // our CanonicalQuery into a "trivial" QueryResponse. This
318 // is a bit inefficient, but I don't think that writing
319 // special handling for this "trivial case" is a good idea.
320
321 let infcx = &self.infcx;
322 let (ParamEnvAnd { param_env: _, value: self_ty }, canonical_inference_vars) =
323 infcx.instantiate_canonical_with_fresh_inference_vars(
324 span,
325 &param_env_and_self_ty,
326 );
327 debug!(
328 "probe_op: Mode::Path, param_env_and_self_ty={:?} self_ty={:?}",
329 param_env_and_self_ty, self_ty
330 );
331 MethodAutoderefStepsResult {
332 steps: Lrc::new(vec![CandidateStep {
333 self_ty: self.make_query_response_ignoring_pending_obligations(
334 canonical_inference_vars,
335 self_ty,
336 ),
337 autoderefs: 0,
338 from_unsafe_deref: false,
339 unsize: false,
340 }]),
341 opt_bad_ty: None,
342 reached_recursion_limit: false,
343 }
344 })
345 };
346
347 // If our autoderef loop had reached the recursion limit,
348 // report an overflow error, but continue going on with
349 // the truncated autoderef list.
350 if steps.reached_recursion_limit {
351 self.probe(|_| {
352 let ty = &steps
353 .steps
354 .last()
355 .unwrap_or_else(|| span_bug!(span, "reached the recursion limit in 0 steps?"))
356 .self_ty;
357 let ty = self
358 .probe_instantiate_query_response(span, &orig_values, ty)
359 .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
360 autoderef::report_autoderef_recursion_limit_error(self.tcx, span, ty.value);
361 });
362 }
363
364 // If we encountered an `_` type or an error type during autoderef, this is
365 // ambiguous.
366 if let Some(bad_ty) = &steps.opt_bad_ty {
367 if is_suggestion.0 {
368 // Ambiguity was encountered during a suggestion. Just keep going.
369 debug!("ProbeContext: encountered ambiguity in suggestion");
370 } else if bad_ty.reached_raw_pointer && !self.tcx.features().arbitrary_self_types {
371 // this case used to be allowed by the compiler,
372 // so we do a future-compat lint here for the 2015 edition
373 // (see https://github.com/rust-lang/rust/issues/46906)
374 if self.tcx.sess.rust_2018() {
375 struct_span_err!(
376 self.tcx.sess,
377 span,
378 E0699,
379 "the type of this value must be known \
380 to call a method on a raw pointer on it"
381 )
382 .emit();
383 } else {
384 self.tcx.struct_span_lint_hir(
385 lint::builtin::TYVAR_BEHIND_RAW_POINTER,
386 scope_expr_id,
387 span,
388 |lint| lint.build("type annotations needed").emit(),
389 );
390 }
391 } else {
392 // Encountered a real ambiguity, so abort the lookup. If `ty` is not
393 // an `Err`, report the right "type annotations needed" error pointing
394 // to it.
395 let ty = &bad_ty.ty;
396 let ty = self
397 .probe_instantiate_query_response(span, &orig_values, ty)
398 .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
399 let ty = self.structurally_resolved_type(span, ty.value);
400 assert_eq!(ty, self.tcx.types.err);
401 return Err(MethodError::NoMatch(NoMatchData::new(
402 Vec::new(),
403 Vec::new(),
404 Vec::new(),
405 None,
406 mode,
407 )));
408 }
409 }
410
411 debug!("ProbeContext: steps for self_ty={:?} are {:?}", self_ty, steps);
412
413 // this creates one big transaction so that all type variables etc
414 // that we create during the probe process are removed later
415 self.probe(|_| {
416 let mut probe_cx = ProbeContext::new(
417 self,
418 span,
419 mode,
420 method_name,
421 return_type,
422 orig_values,
423 steps.steps,
424 is_suggestion,
425 );
426
427 probe_cx.assemble_inherent_candidates();
428 match scope {
429 ProbeScope::TraitsInScope => {
430 probe_cx.assemble_extension_candidates_for_traits_in_scope(scope_expr_id)?
431 }
432 ProbeScope::AllTraits => probe_cx.assemble_extension_candidates_for_all_traits()?,
433 };
434 op(probe_cx)
435 })
436 }
437 }
438
439 pub fn provide(providers: &mut ty::query::Providers<'_>) {
440 providers.method_autoderef_steps = method_autoderef_steps;
441 }
442
443 fn method_autoderef_steps<'tcx>(
444 tcx: TyCtxt<'tcx>,
445 goal: CanonicalTyGoal<'tcx>,
446 ) -> MethodAutoderefStepsResult<'tcx> {
447 debug!("method_autoderef_steps({:?})", goal);
448
449 tcx.infer_ctxt().enter_with_canonical(DUMMY_SP, &goal, |ref infcx, goal, inference_vars| {
450 let ParamEnvAnd { param_env, value: self_ty } = goal;
451
452 let mut autoderef = Autoderef::new(infcx, param_env, hir::DUMMY_HIR_ID, DUMMY_SP, self_ty)
453 .include_raw_pointers()
454 .silence_errors();
455 let mut reached_raw_pointer = false;
456 let mut steps: Vec<_> = autoderef
457 .by_ref()
458 .map(|(ty, d)| {
459 let step = CandidateStep {
460 self_ty: infcx.make_query_response_ignoring_pending_obligations(
461 inference_vars.clone(),
462 ty,
463 ),
464 autoderefs: d,
465 from_unsafe_deref: reached_raw_pointer,
466 unsize: false,
467 };
468 if let ty::RawPtr(_) = ty.kind {
469 // all the subsequent steps will be from_unsafe_deref
470 reached_raw_pointer = true;
471 }
472 step
473 })
474 .collect();
475
476 let final_ty = autoderef.maybe_ambiguous_final_ty();
477 let opt_bad_ty = match final_ty.kind {
478 ty::Infer(ty::TyVar(_)) | ty::Error => Some(MethodAutoderefBadTy {
479 reached_raw_pointer,
480 ty: infcx
481 .make_query_response_ignoring_pending_obligations(inference_vars, final_ty),
482 }),
483 ty::Array(elem_ty, _) => {
484 let dereferences = steps.len() - 1;
485
486 steps.push(CandidateStep {
487 self_ty: infcx.make_query_response_ignoring_pending_obligations(
488 inference_vars,
489 infcx.tcx.mk_slice(elem_ty),
490 ),
491 autoderefs: dereferences,
492 // this could be from an unsafe deref if we had
493 // a *mut/const [T; N]
494 from_unsafe_deref: reached_raw_pointer,
495 unsize: true,
496 });
497
498 None
499 }
500 _ => None,
501 };
502
503 debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
504
505 MethodAutoderefStepsResult {
506 steps: Lrc::new(steps),
507 opt_bad_ty: opt_bad_ty.map(Lrc::new),
508 reached_recursion_limit: autoderef.reached_recursion_limit(),
509 }
510 })
511 }
512
513 impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
514 fn new(
515 fcx: &'a FnCtxt<'a, 'tcx>,
516 span: Span,
517 mode: Mode,
518 method_name: Option<ast::Ident>,
519 return_type: Option<Ty<'tcx>>,
520 orig_steps_var_values: OriginalQueryValues<'tcx>,
521 steps: Lrc<Vec<CandidateStep<'tcx>>>,
522 is_suggestion: IsSuggestion,
523 ) -> ProbeContext<'a, 'tcx> {
524 ProbeContext {
525 fcx,
526 span,
527 mode,
528 method_name,
529 return_type,
530 inherent_candidates: Vec::new(),
531 extension_candidates: Vec::new(),
532 impl_dups: FxHashSet::default(),
533 orig_steps_var_values,
534 steps,
535 static_candidates: Vec::new(),
536 allow_similar_names: false,
537 private_candidate: None,
538 unsatisfied_predicates: Vec::new(),
539 is_suggestion,
540 }
541 }
542
543 fn reset(&mut self) {
544 self.inherent_candidates.clear();
545 self.extension_candidates.clear();
546 self.impl_dups.clear();
547 self.static_candidates.clear();
548 self.private_candidate = None;
549 }
550
551 ///////////////////////////////////////////////////////////////////////////
552 // CANDIDATE ASSEMBLY
553
554 fn push_candidate(&mut self, candidate: Candidate<'tcx>, is_inherent: bool) {
555 let is_accessible = if let Some(name) = self.method_name {
556 let item = candidate.item;
557 let def_scope =
558 self.tcx.adjust_ident_and_get_scope(name, item.container.id(), self.body_id).1;
559 item.vis.is_accessible_from(def_scope, self.tcx)
560 } else {
561 true
562 };
563 if is_accessible {
564 if is_inherent {
565 self.inherent_candidates.push(candidate);
566 } else {
567 self.extension_candidates.push(candidate);
568 }
569 } else if self.private_candidate.is_none() {
570 self.private_candidate = Some((candidate.item.def_kind(), candidate.item.def_id));
571 }
572 }
573
574 fn assemble_inherent_candidates(&mut self) {
575 let steps = Lrc::clone(&self.steps);
576 for step in steps.iter() {
577 self.assemble_probe(&step.self_ty);
578 }
579 }
580
581 fn assemble_probe(&mut self, self_ty: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>) {
582 debug!("assemble_probe: self_ty={:?}", self_ty);
583 let lang_items = self.tcx.lang_items();
584
585 match self_ty.value.value.kind {
586 ty::Dynamic(ref data, ..) => {
587 if let Some(p) = data.principal() {
588 // Subtle: we can't use `instantiate_query_response` here: using it will
589 // commit to all of the type equalities assumed by inference going through
590 // autoderef (see the `method-probe-no-guessing` test).
591 //
592 // However, in this code, it is OK if we end up with an object type that is
593 // "more general" than the object type that we are evaluating. For *every*
594 // object type `MY_OBJECT`, a function call that goes through a trait-ref
595 // of the form `<MY_OBJECT as SuperTraitOf(MY_OBJECT)>::func` is a valid
596 // `ObjectCandidate`, and it should be discoverable "exactly" through one
597 // of the iterations in the autoderef loop, so there is no problem with it
598 // being discoverable in another one of these iterations.
599 //
600 // Using `instantiate_canonical_with_fresh_inference_vars` on our
601 // `Canonical<QueryResponse<Ty<'tcx>>>` and then *throwing away* the
602 // `CanonicalVarValues` will exactly give us such a generalization - it
603 // will still match the original object type, but it won't pollute our
604 // type variables in any form, so just do that!
605 let (QueryResponse { value: generalized_self_ty, .. }, _ignored_var_values) =
606 self.fcx
607 .instantiate_canonical_with_fresh_inference_vars(self.span, &self_ty);
608
609 self.assemble_inherent_candidates_from_object(generalized_self_ty);
610 self.assemble_inherent_impl_candidates_for_type(p.def_id());
611 }
612 }
613 ty::Adt(def, _) => {
614 self.assemble_inherent_impl_candidates_for_type(def.did);
615 }
616 ty::Foreign(did) => {
617 self.assemble_inherent_impl_candidates_for_type(did);
618 }
619 ty::Param(p) => {
620 self.assemble_inherent_candidates_from_param(p);
621 }
622 ty::Bool => {
623 let lang_def_id = lang_items.bool_impl();
624 self.assemble_inherent_impl_for_primitive(lang_def_id);
625 }
626 ty::Char => {
627 let lang_def_id = lang_items.char_impl();
628 self.assemble_inherent_impl_for_primitive(lang_def_id);
629 }
630 ty::Str => {
631 let lang_def_id = lang_items.str_impl();
632 self.assemble_inherent_impl_for_primitive(lang_def_id);
633
634 let lang_def_id = lang_items.str_alloc_impl();
635 self.assemble_inherent_impl_for_primitive(lang_def_id);
636 }
637 ty::Slice(_) => {
638 for &lang_def_id in &[
639 lang_items.slice_impl(),
640 lang_items.slice_u8_impl(),
641 lang_items.slice_alloc_impl(),
642 lang_items.slice_u8_alloc_impl(),
643 ] {
644 self.assemble_inherent_impl_for_primitive(lang_def_id);
645 }
646 }
647 ty::RawPtr(ty::TypeAndMut { ty: _, mutbl }) => {
648 let lang_def_id = match mutbl {
649 hir::Mutability::Not => lang_items.const_ptr_impl(),
650 hir::Mutability::Mut => lang_items.mut_ptr_impl(),
651 };
652 self.assemble_inherent_impl_for_primitive(lang_def_id);
653 }
654 ty::Int(i) => {
655 let lang_def_id = match i {
656 ast::IntTy::I8 => lang_items.i8_impl(),
657 ast::IntTy::I16 => lang_items.i16_impl(),
658 ast::IntTy::I32 => lang_items.i32_impl(),
659 ast::IntTy::I64 => lang_items.i64_impl(),
660 ast::IntTy::I128 => lang_items.i128_impl(),
661 ast::IntTy::Isize => lang_items.isize_impl(),
662 };
663 self.assemble_inherent_impl_for_primitive(lang_def_id);
664 }
665 ty::Uint(i) => {
666 let lang_def_id = match i {
667 ast::UintTy::U8 => lang_items.u8_impl(),
668 ast::UintTy::U16 => lang_items.u16_impl(),
669 ast::UintTy::U32 => lang_items.u32_impl(),
670 ast::UintTy::U64 => lang_items.u64_impl(),
671 ast::UintTy::U128 => lang_items.u128_impl(),
672 ast::UintTy::Usize => lang_items.usize_impl(),
673 };
674 self.assemble_inherent_impl_for_primitive(lang_def_id);
675 }
676 ty::Float(f) => {
677 let (lang_def_id1, lang_def_id2) = match f {
678 ast::FloatTy::F32 => (lang_items.f32_impl(), lang_items.f32_runtime_impl()),
679 ast::FloatTy::F64 => (lang_items.f64_impl(), lang_items.f64_runtime_impl()),
680 };
681 self.assemble_inherent_impl_for_primitive(lang_def_id1);
682 self.assemble_inherent_impl_for_primitive(lang_def_id2);
683 }
684 _ => {}
685 }
686 }
687
688 fn assemble_inherent_impl_for_primitive(&mut self, lang_def_id: Option<DefId>) {
689 if let Some(impl_def_id) = lang_def_id {
690 self.assemble_inherent_impl_probe(impl_def_id);
691 }
692 }
693
694 fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId) {
695 let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id);
696 for &impl_def_id in impl_def_ids.iter() {
697 self.assemble_inherent_impl_probe(impl_def_id);
698 }
699 }
700
701 fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId) {
702 if !self.impl_dups.insert(impl_def_id) {
703 return; // already visited
704 }
705
706 debug!("assemble_inherent_impl_probe {:?}", impl_def_id);
707
708 for item in self.impl_or_trait_item(impl_def_id) {
709 if !self.has_applicable_self(&item) {
710 // No receiver declared. Not a candidate.
711 self.record_static_candidate(ImplSource(impl_def_id));
712 continue;
713 }
714
715 let (impl_ty, impl_substs) = self.impl_ty_and_substs(impl_def_id);
716 let impl_ty = impl_ty.subst(self.tcx, impl_substs);
717
718 // Determine the receiver type that the method itself expects.
719 let xform_tys = self.xform_self_ty(&item, impl_ty, impl_substs);
720
721 // We can't use normalize_associated_types_in as it will pollute the
722 // fcx's fulfillment context after this probe is over.
723 let cause = traits::ObligationCause::misc(self.span, self.body_id);
724 let selcx = &mut traits::SelectionContext::new(self.fcx);
725 let traits::Normalized { value: (xform_self_ty, xform_ret_ty), obligations } =
726 traits::normalize(selcx, self.param_env, cause, &xform_tys);
727 debug!(
728 "assemble_inherent_impl_probe: xform_self_ty = {:?}/{:?}",
729 xform_self_ty, xform_ret_ty
730 );
731
732 self.push_candidate(
733 Candidate {
734 xform_self_ty,
735 xform_ret_ty,
736 item,
737 kind: InherentImplCandidate(impl_substs, obligations),
738 import_ids: smallvec![],
739 },
740 true,
741 );
742 }
743 }
744
745 fn assemble_inherent_candidates_from_object(&mut self, self_ty: Ty<'tcx>) {
746 debug!("assemble_inherent_candidates_from_object(self_ty={:?})", self_ty);
747
748 let principal = match self_ty.kind {
749 ty::Dynamic(ref data, ..) => Some(data),
750 _ => None,
751 }
752 .and_then(|data| data.principal())
753 .unwrap_or_else(|| {
754 span_bug!(
755 self.span,
756 "non-object {:?} in assemble_inherent_candidates_from_object",
757 self_ty
758 )
759 });
760
761 // It is illegal to invoke a method on a trait instance that
762 // refers to the `Self` type. An error will be reported by
763 // `enforce_object_limitations()` if the method refers to the
764 // `Self` type anywhere other than the receiver. Here, we use
765 // a substitution that replaces `Self` with the object type
766 // itself. Hence, a `&self` method will wind up with an
767 // argument type like `&Trait`.
768 let trait_ref = principal.with_self_ty(self.tcx, self_ty);
769 self.elaborate_bounds(iter::once(trait_ref), |this, new_trait_ref, item| {
770 let new_trait_ref = this.erase_late_bound_regions(&new_trait_ref);
771
772 let (xform_self_ty, xform_ret_ty) =
773 this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
774 this.push_candidate(
775 Candidate {
776 xform_self_ty,
777 xform_ret_ty,
778 item,
779 kind: ObjectCandidate,
780 import_ids: smallvec![],
781 },
782 true,
783 );
784 });
785 }
786
787 fn assemble_inherent_candidates_from_param(&mut self, param_ty: ty::ParamTy) {
788 // FIXME: do we want to commit to this behavior for param bounds?
789
790 let bounds = self.param_env.caller_bounds.iter().filter_map(|predicate| match *predicate {
791 ty::Predicate::Trait(ref trait_predicate, _) => {
792 match trait_predicate.skip_binder().trait_ref.self_ty().kind {
793 ty::Param(ref p) if *p == param_ty => Some(trait_predicate.to_poly_trait_ref()),
794 _ => None,
795 }
796 }
797 ty::Predicate::Subtype(..)
798 | ty::Predicate::Projection(..)
799 | ty::Predicate::RegionOutlives(..)
800 | ty::Predicate::WellFormed(..)
801 | ty::Predicate::ObjectSafe(..)
802 | ty::Predicate::ClosureKind(..)
803 | ty::Predicate::TypeOutlives(..)
804 | ty::Predicate::ConstEvaluatable(..) => None,
805 });
806
807 self.elaborate_bounds(bounds, |this, poly_trait_ref, item| {
808 let trait_ref = this.erase_late_bound_regions(&poly_trait_ref);
809
810 let (xform_self_ty, xform_ret_ty) =
811 this.xform_self_ty(&item, trait_ref.self_ty(), trait_ref.substs);
812
813 // Because this trait derives from a where-clause, it
814 // should not contain any inference variables or other
815 // artifacts. This means it is safe to put into the
816 // `WhereClauseCandidate` and (eventually) into the
817 // `WhereClausePick`.
818 assert!(!trait_ref.substs.needs_infer());
819
820 this.push_candidate(
821 Candidate {
822 xform_self_ty,
823 xform_ret_ty,
824 item,
825 kind: WhereClauseCandidate(poly_trait_ref),
826 import_ids: smallvec![],
827 },
828 true,
829 );
830 });
831 }
832
833 // Do a search through a list of bounds, using a callback to actually
834 // create the candidates.
835 fn elaborate_bounds<F>(
836 &mut self,
837 bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
838 mut mk_cand: F,
839 ) where
840 F: for<'b> FnMut(&mut ProbeContext<'b, 'tcx>, ty::PolyTraitRef<'tcx>, ty::AssocItem),
841 {
842 let tcx = self.tcx;
843 for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
844 debug!("elaborate_bounds(bound_trait_ref={:?})", bound_trait_ref);
845 for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
846 if !self.has_applicable_self(&item) {
847 self.record_static_candidate(TraitSource(bound_trait_ref.def_id()));
848 } else {
849 mk_cand(self, bound_trait_ref, item);
850 }
851 }
852 }
853 }
854
855 fn assemble_extension_candidates_for_traits_in_scope(
856 &mut self,
857 expr_hir_id: hir::HirId,
858 ) -> Result<(), MethodError<'tcx>> {
859 if expr_hir_id == hir::DUMMY_HIR_ID {
860 return Ok(());
861 }
862 let mut duplicates = FxHashSet::default();
863 let opt_applicable_traits = self.tcx.in_scope_traits(expr_hir_id);
864 if let Some(applicable_traits) = opt_applicable_traits {
865 for trait_candidate in applicable_traits.iter() {
866 let trait_did = trait_candidate.def_id;
867 if duplicates.insert(trait_did) {
868 let result = self.assemble_extension_candidates_for_trait(
869 &trait_candidate.import_ids,
870 trait_did,
871 );
872 result?;
873 }
874 }
875 }
876 Ok(())
877 }
878
879 fn assemble_extension_candidates_for_all_traits(&mut self) -> Result<(), MethodError<'tcx>> {
880 let mut duplicates = FxHashSet::default();
881 for trait_info in suggest::all_traits(self.tcx) {
882 if duplicates.insert(trait_info.def_id) {
883 self.assemble_extension_candidates_for_trait(&smallvec![], trait_info.def_id)?;
884 }
885 }
886 Ok(())
887 }
888
889 pub fn matches_return_type(
890 &self,
891 method: &ty::AssocItem,
892 self_ty: Option<Ty<'tcx>>,
893 expected: Ty<'tcx>,
894 ) -> bool {
895 match method.kind {
896 ty::AssocKind::Method => {
897 let fty = self.tcx.fn_sig(method.def_id);
898 self.probe(|_| {
899 let substs = self.fresh_substs_for_item(self.span, method.def_id);
900 let fty = fty.subst(self.tcx, substs);
901 let (fty, _) =
902 self.replace_bound_vars_with_fresh_vars(self.span, infer::FnCall, &fty);
903
904 if let Some(self_ty) = self_ty {
905 if self
906 .at(&ObligationCause::dummy(), self.param_env)
907 .sup(fty.inputs()[0], self_ty)
908 .is_err()
909 {
910 return false;
911 }
912 }
913 self.can_sub(self.param_env, fty.output(), expected).is_ok()
914 })
915 }
916 _ => false,
917 }
918 }
919
920 fn assemble_extension_candidates_for_trait(
921 &mut self,
922 import_ids: &SmallVec<[hir::HirId; 1]>,
923 trait_def_id: DefId,
924 ) -> Result<(), MethodError<'tcx>> {
925 debug!("assemble_extension_candidates_for_trait(trait_def_id={:?})", trait_def_id);
926 let trait_substs = self.fresh_item_substs(trait_def_id);
927 let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
928
929 if self.tcx.is_trait_alias(trait_def_id) {
930 // For trait aliases, assume all super-traits are relevant.
931 let bounds = iter::once(trait_ref.to_poly_trait_ref());
932 self.elaborate_bounds(bounds, |this, new_trait_ref, item| {
933 let new_trait_ref = this.erase_late_bound_regions(&new_trait_ref);
934
935 let (xform_self_ty, xform_ret_ty) =
936 this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
937 this.push_candidate(
938 Candidate {
939 xform_self_ty,
940 xform_ret_ty,
941 item,
942 import_ids: import_ids.clone(),
943 kind: TraitCandidate(new_trait_ref),
944 },
945 true,
946 );
947 });
948 } else {
949 debug_assert!(self.tcx.is_trait(trait_def_id));
950 for item in self.impl_or_trait_item(trait_def_id) {
951 // Check whether `trait_def_id` defines a method with suitable name.
952 if !self.has_applicable_self(&item) {
953 debug!("method has inapplicable self");
954 self.record_static_candidate(TraitSource(trait_def_id));
955 continue;
956 }
957
958 let (xform_self_ty, xform_ret_ty) =
959 self.xform_self_ty(&item, trait_ref.self_ty(), trait_substs);
960 self.push_candidate(
961 Candidate {
962 xform_self_ty,
963 xform_ret_ty,
964 item,
965 import_ids: import_ids.clone(),
966 kind: TraitCandidate(trait_ref),
967 },
968 false,
969 );
970 }
971 }
972 Ok(())
973 }
974
975 fn candidate_method_names(&self) -> Vec<ast::Ident> {
976 let mut set = FxHashSet::default();
977 let mut names: Vec<_> = self
978 .inherent_candidates
979 .iter()
980 .chain(&self.extension_candidates)
981 .filter(|candidate| {
982 if let Some(return_ty) = self.return_type {
983 self.matches_return_type(&candidate.item, None, return_ty)
984 } else {
985 true
986 }
987 })
988 .map(|candidate| candidate.item.ident)
989 .filter(|&name| set.insert(name))
990 .collect();
991
992 // Sort them by the name so we have a stable result.
993 names.sort_by_cached_key(|n| n.as_str());
994 names
995 }
996
997 ///////////////////////////////////////////////////////////////////////////
998 // THE ACTUAL SEARCH
999
1000 fn pick(mut self) -> PickResult<'tcx> {
1001 assert!(self.method_name.is_some());
1002
1003 if let Some(r) = self.pick_core() {
1004 return r;
1005 }
1006
1007 debug!("pick: actual search failed, assemble diagnostics");
1008
1009 let static_candidates = mem::take(&mut self.static_candidates);
1010 let private_candidate = self.private_candidate.take();
1011 let unsatisfied_predicates = mem::take(&mut self.unsatisfied_predicates);
1012
1013 // things failed, so lets look at all traits, for diagnostic purposes now:
1014 self.reset();
1015
1016 let span = self.span;
1017 let tcx = self.tcx;
1018
1019 self.assemble_extension_candidates_for_all_traits()?;
1020
1021 let out_of_scope_traits = match self.pick_core() {
1022 Some(Ok(p)) => vec![p.item.container.id()],
1023 //Some(Ok(p)) => p.iter().map(|p| p.item.container().id()).collect(),
1024 Some(Err(MethodError::Ambiguity(v))) => v
1025 .into_iter()
1026 .map(|source| match source {
1027 TraitSource(id) => id,
1028 ImplSource(impl_id) => match tcx.trait_id_of_impl(impl_id) {
1029 Some(id) => id,
1030 None => span_bug!(span, "found inherent method when looking at traits"),
1031 },
1032 })
1033 .collect(),
1034 Some(Err(MethodError::NoMatch(NoMatchData {
1035 out_of_scope_traits: others, ..
1036 }))) => {
1037 assert!(others.is_empty());
1038 vec![]
1039 }
1040 _ => vec![],
1041 };
1042
1043 if let Some((kind, def_id)) = private_candidate {
1044 return Err(MethodError::PrivateMatch(kind, def_id, out_of_scope_traits));
1045 }
1046 let lev_candidate = self.probe_for_lev_candidate()?;
1047
1048 Err(MethodError::NoMatch(NoMatchData::new(
1049 static_candidates,
1050 unsatisfied_predicates,
1051 out_of_scope_traits,
1052 lev_candidate,
1053 self.mode,
1054 )))
1055 }
1056
1057 fn pick_core(&mut self) -> Option<PickResult<'tcx>> {
1058 let steps = self.steps.clone();
1059
1060 // find the first step that works
1061 steps
1062 .iter()
1063 .filter(|step| {
1064 debug!("pick_core: step={:?}", step);
1065 // skip types that are from a type error or that would require dereferencing
1066 // a raw pointer
1067 !step.self_ty.references_error() && !step.from_unsafe_deref
1068 })
1069 .flat_map(|step| {
1070 let InferOk { value: self_ty, obligations: _ } = self
1071 .fcx
1072 .probe_instantiate_query_response(
1073 self.span,
1074 &self.orig_steps_var_values,
1075 &step.self_ty,
1076 )
1077 .unwrap_or_else(|_| {
1078 span_bug!(self.span, "{:?} was applicable but now isn't?", step.self_ty)
1079 });
1080 self.pick_by_value_method(step, self_ty).or_else(|| {
1081 self.pick_autorefd_method(step, self_ty, hir::Mutability::Not)
1082 .or_else(|| self.pick_autorefd_method(step, self_ty, hir::Mutability::Mut))
1083 })
1084 })
1085 .next()
1086 }
1087
1088 fn pick_by_value_method(
1089 &mut self,
1090 step: &CandidateStep<'tcx>,
1091 self_ty: Ty<'tcx>,
1092 ) -> Option<PickResult<'tcx>> {
1093 //! For each type `T` in the step list, this attempts to find a
1094 //! method where the (transformed) self type is exactly `T`. We
1095 //! do however do one transformation on the adjustment: if we
1096 //! are passing a region pointer in, we will potentially
1097 //! *reborrow* it to a shorter lifetime. This allows us to
1098 //! transparently pass `&mut` pointers, in particular, without
1099 //! consuming them for their entire lifetime.
1100
1101 if step.unsize {
1102 return None;
1103 }
1104
1105 self.pick_method(self_ty).map(|r| {
1106 r.map(|mut pick| {
1107 pick.autoderefs = step.autoderefs;
1108
1109 // Insert a `&*` or `&mut *` if this is a reference type:
1110 if let ty::Ref(_, _, mutbl) = step.self_ty.value.value.kind {
1111 pick.autoderefs += 1;
1112 pick.autoref = Some(mutbl);
1113 }
1114
1115 pick
1116 })
1117 })
1118 }
1119
1120 fn pick_autorefd_method(
1121 &mut self,
1122 step: &CandidateStep<'tcx>,
1123 self_ty: Ty<'tcx>,
1124 mutbl: hir::Mutability,
1125 ) -> Option<PickResult<'tcx>> {
1126 let tcx = self.tcx;
1127
1128 // In general, during probing we erase regions. See
1129 // `impl_self_ty()` for an explanation.
1130 let region = tcx.lifetimes.re_erased;
1131
1132 let autoref_ty = tcx.mk_ref(region, ty::TypeAndMut { ty: self_ty, mutbl });
1133 self.pick_method(autoref_ty).map(|r| {
1134 r.map(|mut pick| {
1135 pick.autoderefs = step.autoderefs;
1136 pick.autoref = Some(mutbl);
1137 pick.unsize = step.unsize.then_some(self_ty);
1138 pick
1139 })
1140 })
1141 }
1142
1143 fn pick_method(&mut self, self_ty: Ty<'tcx>) -> Option<PickResult<'tcx>> {
1144 debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
1145
1146 let mut possibly_unsatisfied_predicates = Vec::new();
1147 let mut unstable_candidates = Vec::new();
1148
1149 for (kind, candidates) in
1150 &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1151 {
1152 debug!("searching {} candidates", kind);
1153 let res = self.consider_candidates(
1154 self_ty,
1155 candidates.iter(),
1156 &mut possibly_unsatisfied_predicates,
1157 Some(&mut unstable_candidates),
1158 );
1159 if let Some(pick) = res {
1160 if !self.is_suggestion.0 && !unstable_candidates.is_empty() {
1161 if let Ok(p) = &pick {
1162 // Emit a lint if there are unstable candidates alongside the stable ones.
1163 //
1164 // We suppress warning if we're picking the method only because it is a
1165 // suggestion.
1166 self.emit_unstable_name_collision_hint(p, &unstable_candidates);
1167 }
1168 }
1169 return Some(pick);
1170 }
1171 }
1172
1173 debug!("searching unstable candidates");
1174 let res = self.consider_candidates(
1175 self_ty,
1176 unstable_candidates.into_iter().map(|(c, _)| c),
1177 &mut possibly_unsatisfied_predicates,
1178 None,
1179 );
1180 if res.is_none() {
1181 self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1182 }
1183 res
1184 }
1185
1186 fn consider_candidates<'b, ProbesIter>(
1187 &self,
1188 self_ty: Ty<'tcx>,
1189 probes: ProbesIter,
1190 possibly_unsatisfied_predicates: &mut Vec<(
1191 ty::Predicate<'tcx>,
1192 Option<ty::Predicate<'tcx>>,
1193 )>,
1194 unstable_candidates: Option<&mut Vec<(&'b Candidate<'tcx>, Symbol)>>,
1195 ) -> Option<PickResult<'tcx>>
1196 where
1197 ProbesIter: Iterator<Item = &'b Candidate<'tcx>> + Clone,
1198 {
1199 let mut applicable_candidates: Vec<_> = probes
1200 .clone()
1201 .map(|probe| {
1202 (probe, self.consider_probe(self_ty, probe, possibly_unsatisfied_predicates))
1203 })
1204 .filter(|&(_, status)| status != ProbeResult::NoMatch)
1205 .collect();
1206
1207 debug!("applicable_candidates: {:?}", applicable_candidates);
1208
1209 if applicable_candidates.len() > 1 {
1210 if let Some(pick) = self.collapse_candidates_to_trait_pick(&applicable_candidates[..]) {
1211 return Some(Ok(pick));
1212 }
1213 }
1214
1215 if let Some(uc) = unstable_candidates {
1216 applicable_candidates.retain(|&(p, _)| {
1217 if let stability::EvalResult::Deny { feature, .. } =
1218 self.tcx.eval_stability(p.item.def_id, None, self.span)
1219 {
1220 uc.push((p, feature));
1221 return false;
1222 }
1223 true
1224 });
1225 }
1226
1227 if applicable_candidates.len() > 1 {
1228 let sources = probes.map(|p| self.candidate_source(p, self_ty)).collect();
1229 return Some(Err(MethodError::Ambiguity(sources)));
1230 }
1231
1232 applicable_candidates.pop().map(|(probe, status)| {
1233 if status == ProbeResult::Match {
1234 Ok(probe.to_unadjusted_pick())
1235 } else {
1236 Err(MethodError::BadReturnType)
1237 }
1238 })
1239 }
1240
1241 fn emit_unstable_name_collision_hint(
1242 &self,
1243 stable_pick: &Pick<'_>,
1244 unstable_candidates: &[(&Candidate<'tcx>, Symbol)],
1245 ) {
1246 self.tcx.struct_span_lint_hir(
1247 lint::builtin::UNSTABLE_NAME_COLLISIONS,
1248 self.fcx.body_id,
1249 self.span,
1250 |lint| {
1251 let mut diag = lint.build(
1252 "a method with this name may be added to the standard library in the future",
1253 );
1254 // FIXME: This should be a `span_suggestion` instead of `help`
1255 // However `self.span` only
1256 // highlights the method name, so we can't use it. Also consider reusing the code from
1257 // `report_method_error()`.
1258 diag.help(&format!(
1259 "call with fully qualified syntax `{}(...)` to keep using the current method",
1260 self.tcx.def_path_str(stable_pick.item.def_id),
1261 ));
1262
1263 if nightly_options::is_nightly_build() {
1264 for (candidate, feature) in unstable_candidates {
1265 diag.help(&format!(
1266 "add `#![feature({})]` to the crate attributes to enable `{}`",
1267 feature,
1268 self.tcx.def_path_str(candidate.item.def_id),
1269 ));
1270 }
1271 }
1272
1273 diag.emit();
1274 },
1275 );
1276 }
1277
1278 fn select_trait_candidate(
1279 &self,
1280 trait_ref: ty::TraitRef<'tcx>,
1281 ) -> traits::SelectionResult<'tcx, traits::Selection<'tcx>> {
1282 let cause = traits::ObligationCause::misc(self.span, self.body_id);
1283 let predicate = trait_ref.to_poly_trait_ref().to_poly_trait_predicate();
1284 let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1285 traits::SelectionContext::new(self).select(&obligation)
1286 }
1287
1288 fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>) -> CandidateSource {
1289 match candidate.kind {
1290 InherentImplCandidate(..) => ImplSource(candidate.item.container.id()),
1291 ObjectCandidate | WhereClauseCandidate(_) => TraitSource(candidate.item.container.id()),
1292 TraitCandidate(trait_ref) => self.probe(|_| {
1293 let _ = self
1294 .at(&ObligationCause::dummy(), self.param_env)
1295 .sup(candidate.xform_self_ty, self_ty);
1296 match self.select_trait_candidate(trait_ref) {
1297 Ok(Some(traits::Vtable::VtableImpl(ref impl_data))) => {
1298 // If only a single impl matches, make the error message point
1299 // to that impl.
1300 ImplSource(impl_data.impl_def_id)
1301 }
1302 _ => TraitSource(candidate.item.container.id()),
1303 }
1304 }),
1305 }
1306 }
1307
1308 fn consider_probe(
1309 &self,
1310 self_ty: Ty<'tcx>,
1311 probe: &Candidate<'tcx>,
1312 possibly_unsatisfied_predicates: &mut Vec<(
1313 ty::Predicate<'tcx>,
1314 Option<ty::Predicate<'tcx>>,
1315 )>,
1316 ) -> ProbeResult {
1317 debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
1318
1319 self.probe(|_| {
1320 // First check that the self type can be related.
1321 let sub_obligations = match self
1322 .at(&ObligationCause::dummy(), self.param_env)
1323 .sup(probe.xform_self_ty, self_ty)
1324 {
1325 Ok(InferOk { obligations, value: () }) => obligations,
1326 Err(_) => {
1327 debug!("--> cannot relate self-types");
1328 return ProbeResult::NoMatch;
1329 }
1330 };
1331
1332 let mut result = ProbeResult::Match;
1333 let selcx = &mut traits::SelectionContext::new(self);
1334 let cause = traits::ObligationCause::misc(self.span, self.body_id);
1335
1336 // If so, impls may carry other conditions (e.g., where
1337 // clauses) that must be considered. Make sure that those
1338 // match as well (or at least may match, sometimes we
1339 // don't have enough information to fully evaluate).
1340 let candidate_obligations: Vec<_> = match probe.kind {
1341 InherentImplCandidate(ref substs, ref ref_obligations) => {
1342 // Check whether the impl imposes obligations we have to worry about.
1343 let impl_def_id = probe.item.container.id();
1344 let impl_bounds = self.tcx.predicates_of(impl_def_id);
1345 let impl_bounds = impl_bounds.instantiate(self.tcx, substs);
1346 let traits::Normalized { value: impl_bounds, obligations: norm_obligations } =
1347 traits::normalize(selcx, self.param_env, cause.clone(), &impl_bounds);
1348
1349 // Convert the bounds into obligations.
1350 let impl_obligations =
1351 traits::predicates_for_generics(cause, self.param_env, &impl_bounds);
1352
1353 debug!("impl_obligations={:?}", impl_obligations);
1354 impl_obligations
1355 .into_iter()
1356 .chain(norm_obligations.into_iter())
1357 .chain(ref_obligations.iter().cloned())
1358 .collect()
1359 }
1360
1361 ObjectCandidate | WhereClauseCandidate(..) => {
1362 // These have no additional conditions to check.
1363 vec![]
1364 }
1365
1366 TraitCandidate(trait_ref) => {
1367 let predicate = trait_ref.without_const().to_predicate();
1368 let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1369 if !self.predicate_may_hold(&obligation) {
1370 result = ProbeResult::NoMatch;
1371 if self.probe(|_| {
1372 match self.select_trait_candidate(trait_ref) {
1373 Err(_) => return true,
1374 Ok(Some(vtable))
1375 if !vtable.borrow_nested_obligations().is_empty() =>
1376 {
1377 for obligation in vtable.borrow_nested_obligations() {
1378 // Determine exactly which obligation wasn't met, so
1379 // that we can give more context in the error.
1380 if !self.predicate_may_hold(&obligation) {
1381 let o = self.resolve_vars_if_possible(obligation);
1382 let predicate =
1383 self.resolve_vars_if_possible(&predicate);
1384 let p = if predicate == o.predicate {
1385 // Avoid "`MyStruct: Foo` which is required by
1386 // `MyStruct: Foo`" in E0599.
1387 None
1388 } else {
1389 Some(predicate)
1390 };
1391 possibly_unsatisfied_predicates.push((o.predicate, p));
1392 }
1393 }
1394 }
1395 _ => {
1396 // Some nested subobligation of this predicate
1397 // failed.
1398 let predicate = self.resolve_vars_if_possible(&predicate);
1399 possibly_unsatisfied_predicates.push((predicate, None));
1400 }
1401 }
1402 false
1403 }) {
1404 // This candidate's primary obligation doesn't even
1405 // select - don't bother registering anything in
1406 // `potentially_unsatisfied_predicates`.
1407 return ProbeResult::NoMatch;
1408 }
1409 }
1410 vec![]
1411 }
1412 };
1413
1414 debug!(
1415 "consider_probe - candidate_obligations={:?} sub_obligations={:?}",
1416 candidate_obligations, sub_obligations
1417 );
1418
1419 // Evaluate those obligations to see if they might possibly hold.
1420 for o in candidate_obligations.into_iter().chain(sub_obligations) {
1421 let o = self.resolve_vars_if_possible(&o);
1422 if !self.predicate_may_hold(&o) {
1423 result = ProbeResult::NoMatch;
1424 possibly_unsatisfied_predicates.push((o.predicate, None));
1425 }
1426 }
1427
1428 if let ProbeResult::Match = result {
1429 if let (Some(return_ty), Some(xform_ret_ty)) =
1430 (self.return_type, probe.xform_ret_ty)
1431 {
1432 let xform_ret_ty = self.resolve_vars_if_possible(&xform_ret_ty);
1433 debug!(
1434 "comparing return_ty {:?} with xform ret ty {:?}",
1435 return_ty, probe.xform_ret_ty
1436 );
1437 if self
1438 .at(&ObligationCause::dummy(), self.param_env)
1439 .sup(return_ty, xform_ret_ty)
1440 .is_err()
1441 {
1442 return ProbeResult::BadReturnType;
1443 }
1444 }
1445 }
1446
1447 result
1448 })
1449 }
1450
1451 /// Sometimes we get in a situation where we have multiple probes that are all impls of the
1452 /// same trait, but we don't know which impl to use. In this case, since in all cases the
1453 /// external interface of the method can be determined from the trait, it's ok not to decide.
1454 /// We can basically just collapse all of the probes for various impls into one where-clause
1455 /// probe. This will result in a pending obligation so when more type-info is available we can
1456 /// make the final decision.
1457 ///
1458 /// Example (`src/test/ui/method-two-trait-defer-resolution-1.rs`):
1459 ///
1460 /// ```
1461 /// trait Foo { ... }
1462 /// impl Foo for Vec<int> { ... }
1463 /// impl Foo for Vec<usize> { ... }
1464 /// ```
1465 ///
1466 /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
1467 /// use, so it's ok to just commit to "using the method from the trait Foo".
1468 fn collapse_candidates_to_trait_pick(
1469 &self,
1470 probes: &[(&Candidate<'tcx>, ProbeResult)],
1471 ) -> Option<Pick<'tcx>> {
1472 // Do all probes correspond to the same trait?
1473 let container = probes[0].0.item.container;
1474 if let ty::ImplContainer(_) = container {
1475 return None;
1476 }
1477 if probes[1..].iter().any(|&(p, _)| p.item.container != container) {
1478 return None;
1479 }
1480
1481 // FIXME: check the return type here somehow.
1482 // If so, just use this trait and call it a day.
1483 Some(Pick {
1484 item: probes[0].0.item,
1485 kind: TraitPick,
1486 import_ids: probes[0].0.import_ids.clone(),
1487 autoderefs: 0,
1488 autoref: None,
1489 unsize: None,
1490 })
1491 }
1492
1493 /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
1494 /// candidate method where the method name may have been misspelt. Similarly to other
1495 /// Levenshtein based suggestions, we provide at most one such suggestion.
1496 fn probe_for_lev_candidate(&mut self) -> Result<Option<ty::AssocItem>, MethodError<'tcx>> {
1497 debug!("probing for method names similar to {:?}", self.method_name);
1498
1499 let steps = self.steps.clone();
1500 self.probe(|_| {
1501 let mut pcx = ProbeContext::new(
1502 self.fcx,
1503 self.span,
1504 self.mode,
1505 self.method_name,
1506 self.return_type,
1507 self.orig_steps_var_values.clone(),
1508 steps,
1509 IsSuggestion(true),
1510 );
1511 pcx.allow_similar_names = true;
1512 pcx.assemble_inherent_candidates();
1513 pcx.assemble_extension_candidates_for_traits_in_scope(hir::DUMMY_HIR_ID)?;
1514
1515 let method_names = pcx.candidate_method_names();
1516 pcx.allow_similar_names = false;
1517 let applicable_close_candidates: Vec<ty::AssocItem> = method_names
1518 .iter()
1519 .filter_map(|&method_name| {
1520 pcx.reset();
1521 pcx.method_name = Some(method_name);
1522 pcx.assemble_inherent_candidates();
1523 pcx.assemble_extension_candidates_for_traits_in_scope(hir::DUMMY_HIR_ID)
1524 .map_or(None, |_| {
1525 pcx.pick_core().and_then(|pick| pick.ok()).map(|pick| pick.item)
1526 })
1527 })
1528 .collect();
1529
1530 if applicable_close_candidates.is_empty() {
1531 Ok(None)
1532 } else {
1533 let best_name = {
1534 let names = applicable_close_candidates.iter().map(|cand| &cand.ident.name);
1535 find_best_match_for_name(names, &self.method_name.unwrap().as_str(), None)
1536 }
1537 .unwrap();
1538 Ok(applicable_close_candidates
1539 .into_iter()
1540 .find(|method| method.ident.name == best_name))
1541 }
1542 })
1543 }
1544
1545 ///////////////////////////////////////////////////////////////////////////
1546 // MISCELLANY
1547 fn has_applicable_self(&self, item: &ty::AssocItem) -> bool {
1548 // "Fast track" -- check for usage of sugar when in method call
1549 // mode.
1550 //
1551 // In Path mode (i.e., resolving a value like `T::next`), consider any
1552 // associated value (i.e., methods, constants) but not types.
1553 match self.mode {
1554 Mode::MethodCall => item.method_has_self_argument,
1555 Mode::Path => match item.kind {
1556 ty::AssocKind::OpaqueTy | ty::AssocKind::Type => false,
1557 ty::AssocKind::Method | ty::AssocKind::Const => true,
1558 },
1559 }
1560 // FIXME -- check for types that deref to `Self`,
1561 // like `Rc<Self>` and so on.
1562 //
1563 // Note also that the current code will break if this type
1564 // includes any of the type parameters defined on the method
1565 // -- but this could be overcome.
1566 }
1567
1568 fn record_static_candidate(&mut self, source: CandidateSource) {
1569 self.static_candidates.push(source);
1570 }
1571
1572 fn xform_self_ty(
1573 &self,
1574 item: &ty::AssocItem,
1575 impl_ty: Ty<'tcx>,
1576 substs: SubstsRef<'tcx>,
1577 ) -> (Ty<'tcx>, Option<Ty<'tcx>>) {
1578 if item.kind == ty::AssocKind::Method && self.mode == Mode::MethodCall {
1579 let sig = self.xform_method_sig(item.def_id, substs);
1580 (sig.inputs()[0], Some(sig.output()))
1581 } else {
1582 (impl_ty, None)
1583 }
1584 }
1585
1586 fn xform_method_sig(&self, method: DefId, substs: SubstsRef<'tcx>) -> ty::FnSig<'tcx> {
1587 let fn_sig = self.tcx.fn_sig(method);
1588 debug!("xform_self_ty(fn_sig={:?}, substs={:?})", fn_sig, substs);
1589
1590 assert!(!substs.has_escaping_bound_vars());
1591
1592 // It is possible for type parameters or early-bound lifetimes
1593 // to appear in the signature of `self`. The substitutions we
1594 // are given do not include type/lifetime parameters for the
1595 // method yet. So create fresh variables here for those too,
1596 // if there are any.
1597 let generics = self.tcx.generics_of(method);
1598 assert_eq!(substs.len(), generics.parent_count as usize);
1599
1600 // Erase any late-bound regions from the method and substitute
1601 // in the values from the substitution.
1602 let xform_fn_sig = self.erase_late_bound_regions(&fn_sig);
1603
1604 if generics.params.is_empty() {
1605 xform_fn_sig.subst(self.tcx, substs)
1606 } else {
1607 let substs = InternalSubsts::for_item(self.tcx, method, |param, _| {
1608 let i = param.index as usize;
1609 if i < substs.len() {
1610 substs[i]
1611 } else {
1612 match param.kind {
1613 GenericParamDefKind::Lifetime => {
1614 // In general, during probe we erase regions. See
1615 // `impl_self_ty()` for an explanation.
1616 self.tcx.lifetimes.re_erased.into()
1617 }
1618 GenericParamDefKind::Type { .. } | GenericParamDefKind::Const => {
1619 self.var_for_def(self.span, param)
1620 }
1621 }
1622 }
1623 });
1624 xform_fn_sig.subst(self.tcx, substs)
1625 }
1626 }
1627
1628 /// Gets the type of an impl and generate substitutions with placeholders.
1629 fn impl_ty_and_substs(&self, impl_def_id: DefId) -> (Ty<'tcx>, SubstsRef<'tcx>) {
1630 (self.tcx.type_of(impl_def_id), self.fresh_item_substs(impl_def_id))
1631 }
1632
1633 fn fresh_item_substs(&self, def_id: DefId) -> SubstsRef<'tcx> {
1634 InternalSubsts::for_item(self.tcx, def_id, |param, _| match param.kind {
1635 GenericParamDefKind::Lifetime => self.tcx.lifetimes.re_erased.into(),
1636 GenericParamDefKind::Type { .. } => self
1637 .next_ty_var(TypeVariableOrigin {
1638 kind: TypeVariableOriginKind::SubstitutionPlaceholder,
1639 span: self.tcx.def_span(def_id),
1640 })
1641 .into(),
1642 GenericParamDefKind::Const { .. } => {
1643 let span = self.tcx.def_span(def_id);
1644 let origin = ConstVariableOrigin {
1645 kind: ConstVariableOriginKind::SubstitutionPlaceholder,
1646 span,
1647 };
1648 self.next_const_var(self.tcx.type_of(param.def_id), origin).into()
1649 }
1650 })
1651 }
1652
1653 /// Replaces late-bound-regions bound by `value` with `'static` using
1654 /// `ty::erase_late_bound_regions`.
1655 ///
1656 /// This is only a reasonable thing to do during the *probe* phase, not the *confirm* phase, of
1657 /// method matching. It is reasonable during the probe phase because we don't consider region
1658 /// relationships at all. Therefore, we can just replace all the region variables with 'static
1659 /// rather than creating fresh region variables. This is nice for two reasons:
1660 ///
1661 /// 1. Because the numbers of the region variables would otherwise be fairly unique to this
1662 /// particular method call, it winds up creating fewer types overall, which helps for memory
1663 /// usage. (Admittedly, this is a rather small effect, though measurable.)
1664 ///
1665 /// 2. It makes it easier to deal with higher-ranked trait bounds, because we can replace any
1666 /// late-bound regions with 'static. Otherwise, if we were going to replace late-bound
1667 /// regions with actual region variables as is proper, we'd have to ensure that the same
1668 /// region got replaced with the same variable, which requires a bit more coordination
1669 /// and/or tracking the substitution and
1670 /// so forth.
1671 fn erase_late_bound_regions<T>(&self, value: &ty::Binder<T>) -> T
1672 where
1673 T: TypeFoldable<'tcx>,
1674 {
1675 self.tcx.erase_late_bound_regions(value)
1676 }
1677
1678 /// Finds the method with the appropriate name (or return type, as the case may be). If
1679 /// `allow_similar_names` is set, find methods with close-matching names.
1680 fn impl_or_trait_item(&self, def_id: DefId) -> Vec<ty::AssocItem> {
1681 if let Some(name) = self.method_name {
1682 if self.allow_similar_names {
1683 let max_dist = max(name.as_str().len(), 3) / 3;
1684 self.tcx
1685 .associated_items(def_id)
1686 .in_definition_order()
1687 .filter(|x| {
1688 let dist = lev_distance(&*name.as_str(), &x.ident.as_str());
1689 x.kind.namespace() == Namespace::ValueNS && dist > 0 && dist <= max_dist
1690 })
1691 .copied()
1692 .collect()
1693 } else {
1694 self.fcx
1695 .associated_item(def_id, name, Namespace::ValueNS)
1696 .map_or(Vec::new(), |x| vec![x])
1697 }
1698 } else {
1699 self.tcx.associated_items(def_id).in_definition_order().copied().collect()
1700 }
1701 }
1702 }
1703
1704 impl<'tcx> Candidate<'tcx> {
1705 fn to_unadjusted_pick(&self) -> Pick<'tcx> {
1706 Pick {
1707 item: self.item,
1708 kind: match self.kind {
1709 InherentImplCandidate(..) => InherentImplPick,
1710 ObjectCandidate => ObjectPick,
1711 TraitCandidate(_) => TraitPick,
1712 WhereClauseCandidate(ref trait_ref) => {
1713 // Only trait derived from where-clauses should
1714 // appear here, so they should not contain any
1715 // inference variables or other artifacts. This
1716 // means they are safe to put into the
1717 // `WhereClausePick`.
1718 assert!(
1719 !trait_ref.skip_binder().substs.needs_infer()
1720 && !trait_ref.skip_binder().substs.has_placeholders()
1721 );
1722
1723 WhereClausePick(*trait_ref)
1724 }
1725 },
1726 import_ids: self.import_ids.clone(),
1727 autoderefs: 0,
1728 autoref: None,
1729 unsize: None,
1730 }
1731 }
1732 }