]> git.proxmox.com Git - rustc.git/blob - src/librustdoc/clean/inline.rs
Imported Upstream version 1.5.0+dfsg1
[rustc.git] / src / librustdoc / clean / inline.rs
1 // Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Support for inlining external documentation into the current AST.
12
13 use std::collections::HashSet;
14
15 use syntax::ast;
16 use syntax::attr::AttrMetaMethods;
17 use rustc_front::hir;
18
19 use rustc::metadata::csearch;
20 use rustc::metadata::decoder;
21 use rustc::middle::def;
22 use rustc::middle::def_id::DefId;
23 use rustc::middle::ty;
24 use rustc::middle::subst;
25 use rustc::middle::stability;
26 use rustc::middle::const_eval;
27
28 use core::DocContext;
29 use doctree;
30 use clean;
31
32 use super::{Clean, ToSource};
33
34 /// Attempt to inline the definition of a local node id into this AST.
35 ///
36 /// This function will fetch the definition of the id specified, and if it is
37 /// from another crate it will attempt to inline the documentation from the
38 /// other crate into this crate.
39 ///
40 /// This is primarily used for `pub use` statements which are, in general,
41 /// implementation details. Inlining the documentation should help provide a
42 /// better experience when reading the documentation in this use case.
43 ///
44 /// The returned value is `None` if the `id` could not be inlined, and `Some`
45 /// of a vector of items if it was successfully expanded.
46 pub fn try_inline(cx: &DocContext, id: ast::NodeId, into: Option<ast::Name>)
47 -> Option<Vec<clean::Item>> {
48 let tcx = match cx.tcx_opt() {
49 Some(tcx) => tcx,
50 None => return None,
51 };
52 let def = match tcx.def_map.borrow().get(&id) {
53 Some(d) => d.full_def(),
54 None => return None,
55 };
56 let did = def.def_id();
57 if did.is_local() { return None }
58 try_inline_def(cx, tcx, def).map(|vec| {
59 vec.into_iter().map(|mut item| {
60 match into {
61 Some(into) if item.name.is_some() => {
62 item.name = Some(into.clean(cx));
63 }
64 _ => {}
65 }
66 item
67 }).collect()
68 })
69 }
70
71 fn try_inline_def(cx: &DocContext, tcx: &ty::ctxt,
72 def: def::Def) -> Option<Vec<clean::Item>> {
73 let mut ret = Vec::new();
74 let did = def.def_id();
75 let inner = match def {
76 def::DefTrait(did) => {
77 record_extern_fqn(cx, did, clean::TypeTrait);
78 clean::TraitItem(build_external_trait(cx, tcx, did))
79 }
80 def::DefFn(did, false) => {
81 // If this function is a tuple struct constructor, we just skip it
82 record_extern_fqn(cx, did, clean::TypeFunction);
83 clean::FunctionItem(build_external_function(cx, tcx, did))
84 }
85 def::DefStruct(did) => {
86 record_extern_fqn(cx, did, clean::TypeStruct);
87 ret.extend(build_impls(cx, tcx, did));
88 clean::StructItem(build_struct(cx, tcx, did))
89 }
90 def::DefTy(did, false) => {
91 record_extern_fqn(cx, did, clean::TypeTypedef);
92 ret.extend(build_impls(cx, tcx, did));
93 build_type(cx, tcx, did)
94 }
95 def::DefTy(did, true) => {
96 record_extern_fqn(cx, did, clean::TypeEnum);
97 ret.extend(build_impls(cx, tcx, did));
98 build_type(cx, tcx, did)
99 }
100 // Assume that the enum type is reexported next to the variant, and
101 // variants don't show up in documentation specially.
102 def::DefVariant(..) => return Some(Vec::new()),
103 def::DefMod(did) => {
104 record_extern_fqn(cx, did, clean::TypeModule);
105 clean::ModuleItem(build_module(cx, tcx, did))
106 }
107 def::DefStatic(did, mtbl) => {
108 record_extern_fqn(cx, did, clean::TypeStatic);
109 clean::StaticItem(build_static(cx, tcx, did, mtbl))
110 }
111 def::DefConst(did) | def::DefAssociatedConst(did) => {
112 record_extern_fqn(cx, did, clean::TypeConst);
113 clean::ConstantItem(build_const(cx, tcx, did))
114 }
115 _ => return None,
116 };
117 cx.inlined.borrow_mut().as_mut().unwrap().insert(did);
118 ret.push(clean::Item {
119 source: clean::Span::empty(),
120 name: Some(tcx.item_name(did).to_string()),
121 attrs: load_attrs(cx, tcx, did),
122 inner: inner,
123 visibility: Some(hir::Public),
124 stability: stability::lookup(tcx, did).clean(cx),
125 def_id: did,
126 });
127 Some(ret)
128 }
129
130 pub fn load_attrs(cx: &DocContext, tcx: &ty::ctxt,
131 did: DefId) -> Vec<clean::Attribute> {
132 let attrs = csearch::get_item_attrs(&tcx.sess.cstore, did);
133 attrs.into_iter().map(|a| a.clean(cx)).collect()
134 }
135
136 /// Record an external fully qualified name in the external_paths cache.
137 ///
138 /// These names are used later on by HTML rendering to generate things like
139 /// source links back to the original item.
140 pub fn record_extern_fqn(cx: &DocContext, did: DefId, kind: clean::TypeKind) {
141 match cx.tcx_opt() {
142 Some(tcx) => {
143 let fqn = csearch::get_item_path(tcx, did);
144 let fqn = fqn.into_iter().map(|i| i.to_string()).collect();
145 cx.external_paths.borrow_mut().as_mut().unwrap().insert(did, (fqn, kind));
146 }
147 None => {}
148 }
149 }
150
151 pub fn build_external_trait(cx: &DocContext, tcx: &ty::ctxt,
152 did: DefId) -> clean::Trait {
153 let def = tcx.lookup_trait_def(did);
154 let trait_items = tcx.trait_items(did).clean(cx);
155 let predicates = tcx.lookup_predicates(did);
156 let generics = (&def.generics, &predicates, subst::TypeSpace).clean(cx);
157 let generics = filter_non_trait_generics(did, generics);
158 let (generics, supertrait_bounds) = separate_supertrait_bounds(generics);
159 clean::Trait {
160 unsafety: def.unsafety,
161 generics: generics,
162 items: trait_items,
163 bounds: supertrait_bounds,
164 }
165 }
166
167 fn build_external_function(cx: &DocContext, tcx: &ty::ctxt, did: DefId) -> clean::Function {
168 let t = tcx.lookup_item_type(did);
169 let (decl, style, abi) = match t.ty.sty {
170 ty::TyBareFn(_, ref f) => ((did, &f.sig).clean(cx), f.unsafety, f.abi),
171 _ => panic!("bad function"),
172 };
173 let predicates = tcx.lookup_predicates(did);
174 clean::Function {
175 decl: decl,
176 generics: (&t.generics, &predicates, subst::FnSpace).clean(cx),
177 unsafety: style,
178 constness: hir::Constness::NotConst,
179 abi: abi,
180 }
181 }
182
183 fn build_struct(cx: &DocContext, tcx: &ty::ctxt, did: DefId) -> clean::Struct {
184 use syntax::parse::token::special_idents::unnamed_field;
185
186 let t = tcx.lookup_item_type(did);
187 let predicates = tcx.lookup_predicates(did);
188 let variant = tcx.lookup_adt_def(did).struct_variant();
189
190 clean::Struct {
191 struct_type: match &*variant.fields {
192 [] => doctree::Unit,
193 [ref f] if f.name == unnamed_field.name => doctree::Newtype,
194 [ref f, ..] if f.name == unnamed_field.name => doctree::Tuple,
195 _ => doctree::Plain,
196 },
197 generics: (&t.generics, &predicates, subst::TypeSpace).clean(cx),
198 fields: variant.fields.clean(cx),
199 fields_stripped: false,
200 }
201 }
202
203 fn build_type(cx: &DocContext, tcx: &ty::ctxt, did: DefId) -> clean::ItemEnum {
204 let t = tcx.lookup_item_type(did);
205 let predicates = tcx.lookup_predicates(did);
206 match t.ty.sty {
207 ty::TyEnum(edef, _) if !csearch::is_typedef(&tcx.sess.cstore, did) => {
208 return clean::EnumItem(clean::Enum {
209 generics: (&t.generics, &predicates, subst::TypeSpace).clean(cx),
210 variants_stripped: false,
211 variants: edef.variants.clean(cx),
212 })
213 }
214 _ => {}
215 }
216
217 clean::TypedefItem(clean::Typedef {
218 type_: t.ty.clean(cx),
219 generics: (&t.generics, &predicates, subst::TypeSpace).clean(cx),
220 }, false)
221 }
222
223 pub fn build_impls(cx: &DocContext, tcx: &ty::ctxt,
224 did: DefId) -> Vec<clean::Item> {
225 tcx.populate_inherent_implementations_for_type_if_necessary(did);
226 let mut impls = Vec::new();
227
228 match tcx.inherent_impls.borrow().get(&did) {
229 None => {}
230 Some(i) => {
231 for &did in i.iter() {
232 build_impl(cx, tcx, did, &mut impls);
233 }
234 }
235 }
236
237 // If this is the first time we've inlined something from this crate, then
238 // we inline *all* impls from the crate into this crate. Note that there's
239 // currently no way for us to filter this based on type, and we likely need
240 // many impls for a variety of reasons.
241 //
242 // Primarily, the impls will be used to populate the documentation for this
243 // type being inlined, but impls can also be used when generating
244 // documentation for primitives (no way to find those specifically).
245 if cx.populated_crate_impls.borrow_mut().insert(did.krate) {
246 csearch::each_top_level_item_of_crate(&tcx.sess.cstore,
247 did.krate,
248 |def, _, _| {
249 populate_impls(cx, tcx, def, &mut impls)
250 });
251
252 fn populate_impls(cx: &DocContext, tcx: &ty::ctxt,
253 def: decoder::DefLike,
254 impls: &mut Vec<clean::Item>) {
255 match def {
256 decoder::DlImpl(did) => build_impl(cx, tcx, did, impls),
257 decoder::DlDef(def::DefMod(did)) => {
258 csearch::each_child_of_item(&tcx.sess.cstore,
259 did,
260 |def, _, _| {
261 populate_impls(cx, tcx, def, impls)
262 })
263 }
264 _ => {}
265 }
266 }
267 }
268
269 return impls;
270 }
271
272 pub fn build_impl(cx: &DocContext,
273 tcx: &ty::ctxt,
274 did: DefId,
275 ret: &mut Vec<clean::Item>) {
276 if !cx.inlined.borrow_mut().as_mut().unwrap().insert(did) {
277 return
278 }
279
280 let attrs = load_attrs(cx, tcx, did);
281 let associated_trait = csearch::get_impl_trait(tcx, did);
282 if let Some(ref t) = associated_trait {
283 // If this is an impl for a #[doc(hidden)] trait, be sure to not inline
284 let trait_attrs = load_attrs(cx, tcx, t.def_id);
285 if trait_attrs.iter().any(|a| is_doc_hidden(a)) {
286 return
287 }
288 }
289
290 // If this is a defaulted impl, then bail out early here
291 if csearch::is_default_impl(&tcx.sess.cstore, did) {
292 return ret.push(clean::Item {
293 inner: clean::DefaultImplItem(clean::DefaultImpl {
294 // FIXME: this should be decoded
295 unsafety: hir::Unsafety::Normal,
296 trait_: match associated_trait.as_ref().unwrap().clean(cx) {
297 clean::TraitBound(polyt, _) => polyt.trait_,
298 clean::RegionBound(..) => unreachable!(),
299 },
300 }),
301 source: clean::Span::empty(),
302 name: None,
303 attrs: attrs,
304 visibility: Some(hir::Inherited),
305 stability: stability::lookup(tcx, did).clean(cx),
306 def_id: did,
307 });
308 }
309
310 let predicates = tcx.lookup_predicates(did);
311 let trait_items = csearch::get_impl_items(&tcx.sess.cstore, did)
312 .iter()
313 .filter_map(|did| {
314 let did = did.def_id();
315 let impl_item = tcx.impl_or_trait_item(did);
316 match impl_item {
317 ty::ConstTraitItem(ref assoc_const) => {
318 let did = assoc_const.def_id;
319 let type_scheme = tcx.lookup_item_type(did);
320 let default = if assoc_const.has_value {
321 Some(const_eval::lookup_const_by_id(tcx, did, None)
322 .unwrap().span.to_src(cx))
323 } else {
324 None
325 };
326 Some(clean::Item {
327 name: Some(assoc_const.name.clean(cx)),
328 inner: clean::AssociatedConstItem(
329 type_scheme.ty.clean(cx),
330 default,
331 ),
332 source: clean::Span::empty(),
333 attrs: vec![],
334 visibility: None,
335 stability: stability::lookup(tcx, did).clean(cx),
336 def_id: did
337 })
338 }
339 ty::MethodTraitItem(method) => {
340 if method.vis != hir::Public && associated_trait.is_none() {
341 return None
342 }
343 let mut item = method.clean(cx);
344 item.inner = match item.inner.clone() {
345 clean::TyMethodItem(clean::TyMethod {
346 unsafety, decl, self_, generics, abi
347 }) => {
348 clean::MethodItem(clean::Method {
349 unsafety: unsafety,
350 constness: hir::Constness::NotConst,
351 decl: decl,
352 self_: self_,
353 generics: generics,
354 abi: abi
355 })
356 }
357 _ => panic!("not a tymethod"),
358 };
359 Some(item)
360 }
361 ty::TypeTraitItem(ref assoc_ty) => {
362 let did = assoc_ty.def_id;
363 let type_scheme = ty::TypeScheme {
364 ty: assoc_ty.ty.unwrap(),
365 generics: ty::Generics::empty()
366 };
367 // Not sure the choice of ParamSpace actually matters here,
368 // because an associated type won't have generics on the LHS
369 let typedef = (type_scheme, ty::GenericPredicates::empty(),
370 subst::ParamSpace::TypeSpace).clean(cx);
371 Some(clean::Item {
372 name: Some(assoc_ty.name.clean(cx)),
373 inner: clean::TypedefItem(typedef, true),
374 source: clean::Span::empty(),
375 attrs: vec![],
376 visibility: None,
377 stability: stability::lookup(tcx, did).clean(cx),
378 def_id: did
379 })
380 }
381 }
382 }).collect::<Vec<_>>();
383 let polarity = csearch::get_impl_polarity(tcx, did);
384 let ty = tcx.lookup_item_type(did);
385 let trait_ = associated_trait.clean(cx).map(|bound| {
386 match bound {
387 clean::TraitBound(polyt, _) => polyt.trait_,
388 clean::RegionBound(..) => unreachable!(),
389 }
390 });
391 if let Some(clean::ResolvedPath { did, .. }) = trait_ {
392 if Some(did) == cx.deref_trait_did.get() {
393 super::build_deref_target_impls(cx, &trait_items, ret);
394 }
395 }
396 ret.push(clean::Item {
397 inner: clean::ImplItem(clean::Impl {
398 unsafety: hir::Unsafety::Normal, // FIXME: this should be decoded
399 derived: clean::detect_derived(&attrs),
400 trait_: trait_,
401 for_: ty.ty.clean(cx),
402 generics: (&ty.generics, &predicates, subst::TypeSpace).clean(cx),
403 items: trait_items,
404 polarity: polarity.map(|p| { p.clean(cx) }),
405 }),
406 source: clean::Span::empty(),
407 name: None,
408 attrs: attrs,
409 visibility: Some(hir::Inherited),
410 stability: stability::lookup(tcx, did).clean(cx),
411 def_id: did,
412 });
413
414 fn is_doc_hidden(a: &clean::Attribute) -> bool {
415 match *a {
416 clean::List(ref name, ref inner) if *name == "doc" => {
417 inner.iter().any(|a| {
418 match *a {
419 clean::Word(ref s) => *s == "hidden",
420 _ => false,
421 }
422 })
423 }
424 _ => false
425 }
426 }
427 }
428
429 fn build_module(cx: &DocContext, tcx: &ty::ctxt,
430 did: DefId) -> clean::Module {
431 let mut items = Vec::new();
432 fill_in(cx, tcx, did, &mut items);
433 return clean::Module {
434 items: items,
435 is_crate: false,
436 };
437
438 fn fill_in(cx: &DocContext, tcx: &ty::ctxt, did: DefId,
439 items: &mut Vec<clean::Item>) {
440 // If we're reexporting a reexport it may actually reexport something in
441 // two namespaces, so the target may be listed twice. Make sure we only
442 // visit each node at most once.
443 let mut visited = HashSet::new();
444 csearch::each_child_of_item(&tcx.sess.cstore, did, |def, _, vis| {
445 match def {
446 decoder::DlDef(def::DefForeignMod(did)) => {
447 fill_in(cx, tcx, did, items);
448 }
449 decoder::DlDef(def) if vis == hir::Public => {
450 if !visited.insert(def) { return }
451 match try_inline_def(cx, tcx, def) {
452 Some(i) => items.extend(i),
453 None => {}
454 }
455 }
456 decoder::DlDef(..) => {}
457 // All impls were inlined above
458 decoder::DlImpl(..) => {}
459 decoder::DlField => panic!("unimplemented field"),
460 }
461 });
462 }
463 }
464
465 fn build_const(cx: &DocContext, tcx: &ty::ctxt,
466 did: DefId) -> clean::Constant {
467 use rustc::middle::const_eval;
468 use rustc_front::print::pprust;
469
470 let expr = const_eval::lookup_const_by_id(tcx, did, None).unwrap_or_else(|| {
471 panic!("expected lookup_const_by_id to succeed for {:?}", did);
472 });
473 debug!("converting constant expr {:?} to snippet", expr);
474 let sn = pprust::expr_to_string(expr);
475 debug!("got snippet {}", sn);
476
477 clean::Constant {
478 type_: tcx.lookup_item_type(did).ty.clean(cx),
479 expr: sn
480 }
481 }
482
483 fn build_static(cx: &DocContext, tcx: &ty::ctxt,
484 did: DefId,
485 mutable: bool) -> clean::Static {
486 clean::Static {
487 type_: tcx.lookup_item_type(did).ty.clean(cx),
488 mutability: if mutable {clean::Mutable} else {clean::Immutable},
489 expr: "\n\n\n".to_string(), // trigger the "[definition]" links
490 }
491 }
492
493 /// A trait's generics clause actually contains all of the predicates for all of
494 /// its associated types as well. We specifically move these clauses to the
495 /// associated types instead when displaying, so when we're genering the
496 /// generics for the trait itself we need to be sure to remove them.
497 ///
498 /// The inverse of this filtering logic can be found in the `Clean`
499 /// implementation for `AssociatedType`
500 fn filter_non_trait_generics(trait_did: DefId, mut g: clean::Generics)
501 -> clean::Generics {
502 g.where_predicates.retain(|pred| {
503 match *pred {
504 clean::WherePredicate::BoundPredicate {
505 ty: clean::QPath {
506 self_type: box clean::Generic(ref s),
507 trait_: box clean::ResolvedPath { did, .. },
508 name: ref _name,
509 }, ..
510 } => *s != "Self" || did != trait_did,
511 _ => true,
512 }
513 });
514 return g;
515 }
516
517 /// Supertrait bounds for a trait are also listed in the generics coming from
518 /// the metadata for a crate, so we want to separate those out and create a new
519 /// list of explicit supertrait bounds to render nicely.
520 fn separate_supertrait_bounds(mut g: clean::Generics)
521 -> (clean::Generics, Vec<clean::TyParamBound>) {
522 let mut ty_bounds = Vec::new();
523 g.where_predicates.retain(|pred| {
524 match *pred {
525 clean::WherePredicate::BoundPredicate {
526 ty: clean::Generic(ref s),
527 ref bounds
528 } if *s == "Self" => {
529 ty_bounds.extend(bounds.iter().cloned());
530 false
531 }
532 _ => true,
533 }
534 });
535 (g, ty_bounds)
536 }