]> git.proxmox.com Git - rustc.git/blob - src/libstd/num/f32.rs
Imported Upstream version 1.3.0+dfsg1
[rustc.git] / src / libstd / num / f32.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! The 32-bit floating point type.
12 //!
13 //! *[See also the `f32` primitive type](../primitive.f32.html).*
14
15 #![stable(feature = "rust1", since = "1.0.0")]
16 #![allow(missing_docs)]
17
18 use prelude::v1::*;
19
20 use core::num;
21 #[cfg(not(target_env = "msvc"))]
22 use intrinsics;
23 use libc::c_int;
24 use num::{FpCategory, ParseFloatError};
25
26 pub use core::f32::{RADIX, MANTISSA_DIGITS, DIGITS, EPSILON};
27 pub use core::f32::{MIN_EXP, MAX_EXP, MIN_10_EXP};
28 pub use core::f32::{MAX_10_EXP, NAN, INFINITY, NEG_INFINITY};
29 pub use core::f32::{MIN, MIN_POSITIVE, MAX};
30 pub use core::f32::consts;
31
32 #[allow(dead_code)]
33 mod cmath {
34 use libc::{c_float, c_int};
35
36 extern {
37 pub fn cbrtf(n: c_float) -> c_float;
38 pub fn erff(n: c_float) -> c_float;
39 pub fn erfcf(n: c_float) -> c_float;
40 pub fn expm1f(n: c_float) -> c_float;
41 pub fn fdimf(a: c_float, b: c_float) -> c_float;
42 pub fn fmaxf(a: c_float, b: c_float) -> c_float;
43 pub fn fminf(a: c_float, b: c_float) -> c_float;
44 pub fn fmodf(a: c_float, b: c_float) -> c_float;
45 pub fn nextafterf(x: c_float, y: c_float) -> c_float;
46 pub fn logbf(n: c_float) -> c_float;
47 pub fn log1pf(n: c_float) -> c_float;
48 pub fn ilogbf(n: c_float) -> c_int;
49 pub fn modff(n: c_float, iptr: &mut c_float) -> c_float;
50 pub fn tgammaf(n: c_float) -> c_float;
51
52 #[cfg_attr(all(windows, target_env = "msvc"), link_name = "__lgammaf_r")]
53 pub fn lgammaf_r(n: c_float, sign: &mut c_int) -> c_float;
54 #[cfg_attr(all(windows, target_env = "msvc"), link_name = "_hypotf")]
55 pub fn hypotf(x: c_float, y: c_float) -> c_float;
56 }
57
58 // See the comments in `core::float::Float::floor` for why MSVC is special
59 // here.
60 #[cfg(not(target_env = "msvc"))]
61 extern {
62 pub fn acosf(n: c_float) -> c_float;
63 pub fn asinf(n: c_float) -> c_float;
64 pub fn atan2f(a: c_float, b: c_float) -> c_float;
65 pub fn atanf(n: c_float) -> c_float;
66 pub fn coshf(n: c_float) -> c_float;
67 pub fn frexpf(n: c_float, value: &mut c_int) -> c_float;
68 pub fn ldexpf(x: c_float, n: c_int) -> c_float;
69 pub fn sinhf(n: c_float) -> c_float;
70 pub fn tanf(n: c_float) -> c_float;
71 pub fn tanhf(n: c_float) -> c_float;
72 }
73
74 #[cfg(target_env = "msvc")]
75 pub use self::shims::*;
76 #[cfg(target_env = "msvc")]
77 mod shims {
78 use libc::{c_float, c_int};
79
80 pub unsafe fn acosf(n: c_float) -> c_float {
81 f64::acos(n as f64) as c_float
82 }
83
84 pub unsafe fn asinf(n: c_float) -> c_float {
85 f64::asin(n as f64) as c_float
86 }
87
88 pub unsafe fn atan2f(n: c_float, b: c_float) -> c_float {
89 f64::atan2(n as f64, b as f64) as c_float
90 }
91
92 pub unsafe fn atanf(n: c_float) -> c_float {
93 f64::atan(n as f64) as c_float
94 }
95
96 pub unsafe fn coshf(n: c_float) -> c_float {
97 f64::cosh(n as f64) as c_float
98 }
99
100 pub unsafe fn frexpf(x: c_float, value: &mut c_int) -> c_float {
101 let (a, b) = f64::frexp(x as f64);
102 *value = b as c_int;
103 a as c_float
104 }
105
106 pub unsafe fn ldexpf(x: c_float, n: c_int) -> c_float {
107 f64::ldexp(x as f64, n as isize) as c_float
108 }
109
110 pub unsafe fn sinhf(n: c_float) -> c_float {
111 f64::sinh(n as f64) as c_float
112 }
113
114 pub unsafe fn tanf(n: c_float) -> c_float {
115 f64::tan(n as f64) as c_float
116 }
117
118 pub unsafe fn tanhf(n: c_float) -> c_float {
119 f64::tanh(n as f64) as c_float
120 }
121 }
122 }
123
124 #[cfg(not(test))]
125 #[lang = "f32"]
126 #[stable(feature = "rust1", since = "1.0.0")]
127 impl f32 {
128 /// Parses a float as with a given radix
129 #[unstable(feature = "float_from_str_radix", reason = "recently moved API")]
130 pub fn from_str_radix(s: &str, radix: u32) -> Result<f32, ParseFloatError> {
131 num::Float::from_str_radix(s, radix)
132 }
133
134 /// Returns `true` if this value is `NaN` and false otherwise.
135 ///
136 /// ```
137 /// use std::f32;
138 ///
139 /// let nan = f32::NAN;
140 /// let f = 7.0_f32;
141 ///
142 /// assert!(nan.is_nan());
143 /// assert!(!f.is_nan());
144 /// ```
145 #[stable(feature = "rust1", since = "1.0.0")]
146 #[inline]
147 pub fn is_nan(self) -> bool { num::Float::is_nan(self) }
148
149 /// Returns `true` if this value is positive infinity or negative infinity and
150 /// false otherwise.
151 ///
152 /// ```
153 /// use std::f32;
154 ///
155 /// let f = 7.0f32;
156 /// let inf = f32::INFINITY;
157 /// let neg_inf = f32::NEG_INFINITY;
158 /// let nan = f32::NAN;
159 ///
160 /// assert!(!f.is_infinite());
161 /// assert!(!nan.is_infinite());
162 ///
163 /// assert!(inf.is_infinite());
164 /// assert!(neg_inf.is_infinite());
165 /// ```
166 #[stable(feature = "rust1", since = "1.0.0")]
167 #[inline]
168 pub fn is_infinite(self) -> bool { num::Float::is_infinite(self) }
169
170 /// Returns `true` if this number is neither infinite nor `NaN`.
171 ///
172 /// ```
173 /// use std::f32;
174 ///
175 /// let f = 7.0f32;
176 /// let inf = f32::INFINITY;
177 /// let neg_inf = f32::NEG_INFINITY;
178 /// let nan = f32::NAN;
179 ///
180 /// assert!(f.is_finite());
181 ///
182 /// assert!(!nan.is_finite());
183 /// assert!(!inf.is_finite());
184 /// assert!(!neg_inf.is_finite());
185 /// ```
186 #[stable(feature = "rust1", since = "1.0.0")]
187 #[inline]
188 pub fn is_finite(self) -> bool { num::Float::is_finite(self) }
189
190 /// Returns `true` if the number is neither zero, infinite,
191 /// [subnormal][subnormal], or `NaN`.
192 ///
193 /// ```
194 /// use std::f32;
195 ///
196 /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32
197 /// let max = f32::MAX;
198 /// let lower_than_min = 1.0e-40_f32;
199 /// let zero = 0.0_f32;
200 ///
201 /// assert!(min.is_normal());
202 /// assert!(max.is_normal());
203 ///
204 /// assert!(!zero.is_normal());
205 /// assert!(!f32::NAN.is_normal());
206 /// assert!(!f32::INFINITY.is_normal());
207 /// // Values between `0` and `min` are Subnormal.
208 /// assert!(!lower_than_min.is_normal());
209 /// ```
210 /// [subnormal]: http://en.wikipedia.org/wiki/Denormal_number
211 #[stable(feature = "rust1", since = "1.0.0")]
212 #[inline]
213 pub fn is_normal(self) -> bool { num::Float::is_normal(self) }
214
215 /// Returns the floating point category of the number. If only one property
216 /// is going to be tested, it is generally faster to use the specific
217 /// predicate instead.
218 ///
219 /// ```
220 /// use std::num::FpCategory;
221 /// use std::f32;
222 ///
223 /// let num = 12.4_f32;
224 /// let inf = f32::INFINITY;
225 ///
226 /// assert_eq!(num.classify(), FpCategory::Normal);
227 /// assert_eq!(inf.classify(), FpCategory::Infinite);
228 /// ```
229 #[stable(feature = "rust1", since = "1.0.0")]
230 #[inline]
231 pub fn classify(self) -> FpCategory { num::Float::classify(self) }
232
233 /// Returns the mantissa, base 2 exponent, and sign as integers, respectively.
234 /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`.
235 /// The floating point encoding is documented in the [Reference][floating-point].
236 ///
237 /// ```
238 /// #![feature(float_extras)]
239 ///
240 /// use std::f32;
241 ///
242 /// let num = 2.0f32;
243 ///
244 /// // (8388608, -22, 1)
245 /// let (mantissa, exponent, sign) = num.integer_decode();
246 /// let sign_f = sign as f32;
247 /// let mantissa_f = mantissa as f32;
248 /// let exponent_f = num.powf(exponent as f32);
249 ///
250 /// // 1 * 8388608 * 2^(-22) == 2
251 /// let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs();
252 ///
253 /// assert!(abs_difference <= f32::EPSILON);
254 /// ```
255 /// [floating-point]: ../../../../../reference.html#machine-types
256 #[unstable(feature = "float_extras", reason = "signature is undecided")]
257 #[inline]
258 pub fn integer_decode(self) -> (u64, i16, i8) {
259 num::Float::integer_decode(self)
260 }
261
262 /// Returns the largest integer less than or equal to a number.
263 ///
264 /// ```
265 /// let f = 3.99_f32;
266 /// let g = 3.0_f32;
267 ///
268 /// assert_eq!(f.floor(), 3.0);
269 /// assert_eq!(g.floor(), 3.0);
270 /// ```
271 #[stable(feature = "rust1", since = "1.0.0")]
272 #[inline]
273 pub fn floor(self) -> f32 { num::Float::floor(self) }
274
275 /// Returns the smallest integer greater than or equal to a number.
276 ///
277 /// ```
278 /// let f = 3.01_f32;
279 /// let g = 4.0_f32;
280 ///
281 /// assert_eq!(f.ceil(), 4.0);
282 /// assert_eq!(g.ceil(), 4.0);
283 /// ```
284 #[stable(feature = "rust1", since = "1.0.0")]
285 #[inline]
286 pub fn ceil(self) -> f32 { num::Float::ceil(self) }
287
288 /// Returns the nearest integer to a number. Round half-way cases away from
289 /// `0.0`.
290 ///
291 /// ```
292 /// let f = 3.3_f32;
293 /// let g = -3.3_f32;
294 ///
295 /// assert_eq!(f.round(), 3.0);
296 /// assert_eq!(g.round(), -3.0);
297 /// ```
298 #[stable(feature = "rust1", since = "1.0.0")]
299 #[inline]
300 pub fn round(self) -> f32 { num::Float::round(self) }
301
302 /// Returns the integer part of a number.
303 ///
304 /// ```
305 /// let f = 3.3_f32;
306 /// let g = -3.7_f32;
307 ///
308 /// assert_eq!(f.trunc(), 3.0);
309 /// assert_eq!(g.trunc(), -3.0);
310 /// ```
311 #[stable(feature = "rust1", since = "1.0.0")]
312 #[inline]
313 pub fn trunc(self) -> f32 { num::Float::trunc(self) }
314
315 /// Returns the fractional part of a number.
316 ///
317 /// ```
318 /// use std::f32;
319 ///
320 /// let x = 3.5_f32;
321 /// let y = -3.5_f32;
322 /// let abs_difference_x = (x.fract() - 0.5).abs();
323 /// let abs_difference_y = (y.fract() - (-0.5)).abs();
324 ///
325 /// assert!(abs_difference_x <= f32::EPSILON);
326 /// assert!(abs_difference_y <= f32::EPSILON);
327 /// ```
328 #[stable(feature = "rust1", since = "1.0.0")]
329 #[inline]
330 pub fn fract(self) -> f32 { num::Float::fract(self) }
331
332 /// Computes the absolute value of `self`. Returns `NAN` if the
333 /// number is `NAN`.
334 ///
335 /// ```
336 /// use std::f32;
337 ///
338 /// let x = 3.5_f32;
339 /// let y = -3.5_f32;
340 ///
341 /// let abs_difference_x = (x.abs() - x).abs();
342 /// let abs_difference_y = (y.abs() - (-y)).abs();
343 ///
344 /// assert!(abs_difference_x <= f32::EPSILON);
345 /// assert!(abs_difference_y <= f32::EPSILON);
346 ///
347 /// assert!(f32::NAN.abs().is_nan());
348 /// ```
349 #[stable(feature = "rust1", since = "1.0.0")]
350 #[inline]
351 pub fn abs(self) -> f32 { num::Float::abs(self) }
352
353 /// Returns a number that represents the sign of `self`.
354 ///
355 /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
356 /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
357 /// - `NAN` if the number is `NAN`
358 ///
359 /// ```
360 /// use std::f32;
361 ///
362 /// let f = 3.5_f32;
363 ///
364 /// assert_eq!(f.signum(), 1.0);
365 /// assert_eq!(f32::NEG_INFINITY.signum(), -1.0);
366 ///
367 /// assert!(f32::NAN.signum().is_nan());
368 /// ```
369 #[stable(feature = "rust1", since = "1.0.0")]
370 #[inline]
371 pub fn signum(self) -> f32 { num::Float::signum(self) }
372
373 /// Returns `true` if `self`'s sign bit is positive, including
374 /// `+0.0` and `INFINITY`.
375 ///
376 /// ```
377 /// use std::f32;
378 ///
379 /// let nan = f32::NAN;
380 /// let f = 7.0_f32;
381 /// let g = -7.0_f32;
382 ///
383 /// assert!(f.is_sign_positive());
384 /// assert!(!g.is_sign_positive());
385 /// // Requires both tests to determine if is `NaN`
386 /// assert!(!nan.is_sign_positive() && !nan.is_sign_negative());
387 /// ```
388 #[stable(feature = "rust1", since = "1.0.0")]
389 #[inline]
390 pub fn is_sign_positive(self) -> bool { num::Float::is_positive(self) }
391
392 /// Returns `true` if `self`'s sign is negative, including `-0.0`
393 /// and `NEG_INFINITY`.
394 ///
395 /// ```
396 /// use std::f32;
397 ///
398 /// let nan = f32::NAN;
399 /// let f = 7.0f32;
400 /// let g = -7.0f32;
401 ///
402 /// assert!(!f.is_sign_negative());
403 /// assert!(g.is_sign_negative());
404 /// // Requires both tests to determine if is `NaN`.
405 /// assert!(!nan.is_sign_positive() && !nan.is_sign_negative());
406 /// ```
407 #[stable(feature = "rust1", since = "1.0.0")]
408 #[inline]
409 pub fn is_sign_negative(self) -> bool { num::Float::is_negative(self) }
410
411 /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
412 /// error. This produces a more accurate result with better performance than
413 /// a separate multiplication operation followed by an add.
414 ///
415 /// ```
416 /// use std::f32;
417 ///
418 /// let m = 10.0_f32;
419 /// let x = 4.0_f32;
420 /// let b = 60.0_f32;
421 ///
422 /// // 100.0
423 /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
424 ///
425 /// assert!(abs_difference <= f32::EPSILON);
426 /// ```
427 #[stable(feature = "rust1", since = "1.0.0")]
428 #[inline]
429 pub fn mul_add(self, a: f32, b: f32) -> f32 { num::Float::mul_add(self, a, b) }
430
431 /// Takes the reciprocal (inverse) of a number, `1/x`.
432 ///
433 /// ```
434 /// use std::f32;
435 ///
436 /// let x = 2.0_f32;
437 /// let abs_difference = (x.recip() - (1.0/x)).abs();
438 ///
439 /// assert!(abs_difference <= f32::EPSILON);
440 /// ```
441 #[stable(feature = "rust1", since = "1.0.0")]
442 #[inline]
443 pub fn recip(self) -> f32 { num::Float::recip(self) }
444
445 /// Raises a number to an integer power.
446 ///
447 /// Using this function is generally faster than using `powf`
448 ///
449 /// ```
450 /// use std::f32;
451 ///
452 /// let x = 2.0_f32;
453 /// let abs_difference = (x.powi(2) - x*x).abs();
454 ///
455 /// assert!(abs_difference <= f32::EPSILON);
456 /// ```
457 #[stable(feature = "rust1", since = "1.0.0")]
458 #[inline]
459 pub fn powi(self, n: i32) -> f32 { num::Float::powi(self, n) }
460
461 /// Raises a number to a floating point power.
462 ///
463 /// ```
464 /// use std::f32;
465 ///
466 /// let x = 2.0_f32;
467 /// let abs_difference = (x.powf(2.0) - x*x).abs();
468 ///
469 /// assert!(abs_difference <= f32::EPSILON);
470 /// ```
471 #[stable(feature = "rust1", since = "1.0.0")]
472 #[inline]
473 pub fn powf(self, n: f32) -> f32 { num::Float::powf(self, n) }
474
475 /// Takes the square root of a number.
476 ///
477 /// Returns NaN if `self` is a negative number.
478 ///
479 /// ```
480 /// use std::f32;
481 ///
482 /// let positive = 4.0_f32;
483 /// let negative = -4.0_f32;
484 ///
485 /// let abs_difference = (positive.sqrt() - 2.0).abs();
486 ///
487 /// assert!(abs_difference <= f32::EPSILON);
488 /// assert!(negative.sqrt().is_nan());
489 /// ```
490 #[stable(feature = "rust1", since = "1.0.0")]
491 #[inline]
492 pub fn sqrt(self) -> f32 { num::Float::sqrt(self) }
493
494 /// Returns `e^(self)`, (the exponential function).
495 ///
496 /// ```
497 /// use std::f32;
498 ///
499 /// let one = 1.0f32;
500 /// // e^1
501 /// let e = one.exp();
502 ///
503 /// // ln(e) - 1 == 0
504 /// let abs_difference = (e.ln() - 1.0).abs();
505 ///
506 /// assert!(abs_difference <= f32::EPSILON);
507 /// ```
508 #[stable(feature = "rust1", since = "1.0.0")]
509 #[inline]
510 pub fn exp(self) -> f32 { num::Float::exp(self) }
511
512 /// Returns `2^(self)`.
513 ///
514 /// ```
515 /// use std::f32;
516 ///
517 /// let f = 2.0f32;
518 ///
519 /// // 2^2 - 4 == 0
520 /// let abs_difference = (f.exp2() - 4.0).abs();
521 ///
522 /// assert!(abs_difference <= f32::EPSILON);
523 /// ```
524 #[stable(feature = "rust1", since = "1.0.0")]
525 #[inline]
526 pub fn exp2(self) -> f32 { num::Float::exp2(self) }
527
528 /// Returns the natural logarithm of the number.
529 ///
530 /// ```
531 /// use std::f32;
532 ///
533 /// let one = 1.0f32;
534 /// // e^1
535 /// let e = one.exp();
536 ///
537 /// // ln(e) - 1 == 0
538 /// let abs_difference = (e.ln() - 1.0).abs();
539 ///
540 /// assert!(abs_difference <= f32::EPSILON);
541 /// ```
542 #[stable(feature = "rust1", since = "1.0.0")]
543 #[inline]
544 pub fn ln(self) -> f32 { num::Float::ln(self) }
545
546 /// Returns the logarithm of the number with respect to an arbitrary base.
547 ///
548 /// ```
549 /// use std::f32;
550 ///
551 /// let ten = 10.0f32;
552 /// let two = 2.0f32;
553 ///
554 /// // log10(10) - 1 == 0
555 /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs();
556 ///
557 /// // log2(2) - 1 == 0
558 /// let abs_difference_2 = (two.log(2.0) - 1.0).abs();
559 ///
560 /// assert!(abs_difference_10 <= f32::EPSILON);
561 /// assert!(abs_difference_2 <= f32::EPSILON);
562 /// ```
563 #[stable(feature = "rust1", since = "1.0.0")]
564 #[inline]
565 pub fn log(self, base: f32) -> f32 { num::Float::log(self, base) }
566
567 /// Returns the base 2 logarithm of the number.
568 ///
569 /// ```
570 /// use std::f32;
571 ///
572 /// let two = 2.0f32;
573 ///
574 /// // log2(2) - 1 == 0
575 /// let abs_difference = (two.log2() - 1.0).abs();
576 ///
577 /// assert!(abs_difference <= f32::EPSILON);
578 /// ```
579 #[stable(feature = "rust1", since = "1.0.0")]
580 #[inline]
581 pub fn log2(self) -> f32 { num::Float::log2(self) }
582
583 /// Returns the base 10 logarithm of the number.
584 ///
585 /// ```
586 /// use std::f32;
587 ///
588 /// let ten = 10.0f32;
589 ///
590 /// // log10(10) - 1 == 0
591 /// let abs_difference = (ten.log10() - 1.0).abs();
592 ///
593 /// assert!(abs_difference <= f32::EPSILON);
594 /// ```
595 #[stable(feature = "rust1", since = "1.0.0")]
596 #[inline]
597 pub fn log10(self) -> f32 { num::Float::log10(self) }
598
599 /// Converts radians to degrees.
600 ///
601 /// ```
602 /// #![feature(float_extras)]
603 ///
604 /// use std::f32::{self, consts};
605 ///
606 /// let angle = consts::PI;
607 ///
608 /// let abs_difference = (angle.to_degrees() - 180.0).abs();
609 ///
610 /// assert!(abs_difference <= f32::EPSILON);
611 /// ```
612 #[unstable(feature = "float_extras", reason = "desirability is unclear")]
613 #[inline]
614 pub fn to_degrees(self) -> f32 { num::Float::to_degrees(self) }
615
616 /// Converts degrees to radians.
617 ///
618 /// ```
619 /// #![feature(float_extras)]
620 ///
621 /// use std::f32::{self, consts};
622 ///
623 /// let angle = 180.0f32;
624 ///
625 /// let abs_difference = (angle.to_radians() - consts::PI).abs();
626 ///
627 /// assert!(abs_difference <= f32::EPSILON);
628 /// ```
629 #[unstable(feature = "float_extras", reason = "desirability is unclear")]
630 #[inline]
631 pub fn to_radians(self) -> f32 { num::Float::to_radians(self) }
632
633 /// Constructs a floating point number of `x*2^exp`.
634 ///
635 /// ```
636 /// #![feature(float_extras)]
637 ///
638 /// use std::f32;
639 /// // 3*2^2 - 12 == 0
640 /// let abs_difference = (f32::ldexp(3.0, 2) - 12.0).abs();
641 ///
642 /// assert!(abs_difference <= f32::EPSILON);
643 /// ```
644 #[unstable(feature = "float_extras",
645 reason = "pending integer conventions")]
646 #[inline]
647 pub fn ldexp(x: f32, exp: isize) -> f32 {
648 unsafe { cmath::ldexpf(x, exp as c_int) }
649 }
650
651 /// Breaks the number into a normalized fraction and a base-2 exponent,
652 /// satisfying:
653 ///
654 /// * `self = x * 2^exp`
655 /// * `0.5 <= abs(x) < 1.0`
656 ///
657 /// ```
658 /// #![feature(float_extras)]
659 ///
660 /// use std::f32;
661 ///
662 /// let x = 4.0f32;
663 ///
664 /// // (1/2)*2^3 -> 1 * 8/2 -> 4.0
665 /// let f = x.frexp();
666 /// let abs_difference_0 = (f.0 - 0.5).abs();
667 /// let abs_difference_1 = (f.1 as f32 - 3.0).abs();
668 ///
669 /// assert!(abs_difference_0 <= f32::EPSILON);
670 /// assert!(abs_difference_1 <= f32::EPSILON);
671 /// ```
672 #[unstable(feature = "float_extras",
673 reason = "pending integer conventions")]
674 #[inline]
675 pub fn frexp(self) -> (f32, isize) {
676 unsafe {
677 let mut exp = 0;
678 let x = cmath::frexpf(self, &mut exp);
679 (x, exp as isize)
680 }
681 }
682
683 /// Returns the next representable floating-point value in the direction of
684 /// `other`.
685 ///
686 /// ```
687 /// #![feature(float_extras)]
688 ///
689 /// use std::f32;
690 ///
691 /// let x = 1.0f32;
692 ///
693 /// let abs_diff = (x.next_after(2.0) - 1.00000011920928955078125_f32).abs();
694 ///
695 /// assert!(abs_diff <= f32::EPSILON);
696 /// ```
697 #[unstable(feature = "float_extras",
698 reason = "unsure about its place in the world")]
699 #[inline]
700 pub fn next_after(self, other: f32) -> f32 {
701 unsafe { cmath::nextafterf(self, other) }
702 }
703
704 /// Returns the maximum of the two numbers.
705 ///
706 /// ```
707 /// let x = 1.0f32;
708 /// let y = 2.0f32;
709 ///
710 /// assert_eq!(x.max(y), y);
711 /// ```
712 ///
713 /// If one of the arguments is NaN, then the other argument is returned.
714 #[stable(feature = "rust1", since = "1.0.0")]
715 #[inline]
716 pub fn max(self, other: f32) -> f32 {
717 unsafe { cmath::fmaxf(self, other) }
718 }
719
720 /// Returns the minimum of the two numbers.
721 ///
722 /// ```
723 /// let x = 1.0f32;
724 /// let y = 2.0f32;
725 ///
726 /// assert_eq!(x.min(y), x);
727 /// ```
728 ///
729 /// If one of the arguments is NaN, then the other argument is returned.
730 #[stable(feature = "rust1", since = "1.0.0")]
731 #[inline]
732 pub fn min(self, other: f32) -> f32 {
733 unsafe { cmath::fminf(self, other) }
734 }
735
736 /// The positive difference of two numbers.
737 ///
738 /// * If `self <= other`: `0:0`
739 /// * Else: `self - other`
740 ///
741 /// ```
742 /// use std::f32;
743 ///
744 /// let x = 3.0f32;
745 /// let y = -3.0f32;
746 ///
747 /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
748 /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
749 ///
750 /// assert!(abs_difference_x <= f32::EPSILON);
751 /// assert!(abs_difference_y <= f32::EPSILON);
752 /// ```
753 #[stable(feature = "rust1", since = "1.0.0")]
754 #[inline]
755 pub fn abs_sub(self, other: f32) -> f32 {
756 unsafe { cmath::fdimf(self, other) }
757 }
758
759 /// Takes the cubic root of a number.
760 ///
761 /// ```
762 /// use std::f32;
763 ///
764 /// let x = 8.0f32;
765 ///
766 /// // x^(1/3) - 2 == 0
767 /// let abs_difference = (x.cbrt() - 2.0).abs();
768 ///
769 /// assert!(abs_difference <= f32::EPSILON);
770 /// ```
771 #[stable(feature = "rust1", since = "1.0.0")]
772 #[inline]
773 pub fn cbrt(self) -> f32 {
774 unsafe { cmath::cbrtf(self) }
775 }
776
777 /// Calculates the length of the hypotenuse of a right-angle triangle given
778 /// legs of length `x` and `y`.
779 ///
780 /// ```
781 /// use std::f32;
782 ///
783 /// let x = 2.0f32;
784 /// let y = 3.0f32;
785 ///
786 /// // sqrt(x^2 + y^2)
787 /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
788 ///
789 /// assert!(abs_difference <= f32::EPSILON);
790 /// ```
791 #[stable(feature = "rust1", since = "1.0.0")]
792 #[inline]
793 pub fn hypot(self, other: f32) -> f32 {
794 unsafe { cmath::hypotf(self, other) }
795 }
796
797 /// Computes the sine of a number (in radians).
798 ///
799 /// ```
800 /// use std::f32;
801 ///
802 /// let x = f32::consts::PI/2.0;
803 ///
804 /// let abs_difference = (x.sin() - 1.0).abs();
805 ///
806 /// assert!(abs_difference <= f32::EPSILON);
807 /// ```
808 #[stable(feature = "rust1", since = "1.0.0")]
809 #[inline]
810 pub fn sin(self) -> f32 {
811 return sinf(self);
812
813 // see notes in `core::f32::Float::floor`
814 #[cfg(target_env = "msvc")]
815 fn sinf(f: f32) -> f32 { (f as f64).sin() as f32 }
816 #[cfg(not(target_env = "msvc"))]
817 fn sinf(f: f32) -> f32 { unsafe { intrinsics::sinf32(f) } }
818 }
819
820 /// Computes the cosine of a number (in radians).
821 ///
822 /// ```
823 /// use std::f32;
824 ///
825 /// let x = 2.0*f32::consts::PI;
826 ///
827 /// let abs_difference = (x.cos() - 1.0).abs();
828 ///
829 /// assert!(abs_difference <= f32::EPSILON);
830 /// ```
831 #[stable(feature = "rust1", since = "1.0.0")]
832 #[inline]
833 pub fn cos(self) -> f32 {
834 return cosf(self);
835
836 // see notes in `core::f32::Float::floor`
837 #[cfg(target_env = "msvc")]
838 fn cosf(f: f32) -> f32 { (f as f64).cos() as f32 }
839 #[cfg(not(target_env = "msvc"))]
840 fn cosf(f: f32) -> f32 { unsafe { intrinsics::cosf32(f) } }
841 }
842
843 /// Computes the tangent of a number (in radians).
844 ///
845 /// ```
846 /// use std::f64;
847 ///
848 /// let x = f64::consts::PI/4.0;
849 /// let abs_difference = (x.tan() - 1.0).abs();
850 ///
851 /// assert!(abs_difference < 1e-10);
852 /// ```
853 #[stable(feature = "rust1", since = "1.0.0")]
854 #[inline]
855 pub fn tan(self) -> f32 {
856 unsafe { cmath::tanf(self) }
857 }
858
859 /// Computes the arcsine of a number. Return value is in radians in
860 /// the range [-pi/2, pi/2] or NaN if the number is outside the range
861 /// [-1, 1].
862 ///
863 /// ```
864 /// use std::f32;
865 ///
866 /// let f = f32::consts::PI / 2.0;
867 ///
868 /// // asin(sin(pi/2))
869 /// let abs_difference = f.sin().asin().abs_sub(f32::consts::PI / 2.0);
870 ///
871 /// assert!(abs_difference <= f32::EPSILON);
872 /// ```
873 #[stable(feature = "rust1", since = "1.0.0")]
874 #[inline]
875 pub fn asin(self) -> f32 {
876 unsafe { cmath::asinf(self) }
877 }
878
879 /// Computes the arccosine of a number. Return value is in radians in
880 /// the range [0, pi] or NaN if the number is outside the range
881 /// [-1, 1].
882 ///
883 /// ```
884 /// use std::f32;
885 ///
886 /// let f = f32::consts::PI / 4.0;
887 ///
888 /// // acos(cos(pi/4))
889 /// let abs_difference = f.cos().acos().abs_sub(f32::consts::PI / 4.0);
890 ///
891 /// assert!(abs_difference <= f32::EPSILON);
892 /// ```
893 #[stable(feature = "rust1", since = "1.0.0")]
894 #[inline]
895 pub fn acos(self) -> f32 {
896 unsafe { cmath::acosf(self) }
897 }
898
899 /// Computes the arctangent of a number. Return value is in radians in the
900 /// range [-pi/2, pi/2];
901 ///
902 /// ```
903 /// use std::f32;
904 ///
905 /// let f = 1.0f32;
906 ///
907 /// // atan(tan(1))
908 /// let abs_difference = f.tan().atan().abs_sub(1.0);
909 ///
910 /// assert!(abs_difference <= f32::EPSILON);
911 /// ```
912 #[stable(feature = "rust1", since = "1.0.0")]
913 #[inline]
914 pub fn atan(self) -> f32 {
915 unsafe { cmath::atanf(self) }
916 }
917
918 /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`).
919 ///
920 /// * `x = 0`, `y = 0`: `0`
921 /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
922 /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
923 /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
924 ///
925 /// ```
926 /// use std::f32;
927 ///
928 /// let pi = f32::consts::PI;
929 /// // All angles from horizontal right (+x)
930 /// // 45 deg counter-clockwise
931 /// let x1 = 3.0f32;
932 /// let y1 = -3.0f32;
933 ///
934 /// // 135 deg clockwise
935 /// let x2 = -3.0f32;
936 /// let y2 = 3.0f32;
937 ///
938 /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
939 /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();
940 ///
941 /// assert!(abs_difference_1 <= f32::EPSILON);
942 /// assert!(abs_difference_2 <= f32::EPSILON);
943 /// ```
944 #[stable(feature = "rust1", since = "1.0.0")]
945 #[inline]
946 pub fn atan2(self, other: f32) -> f32 {
947 unsafe { cmath::atan2f(self, other) }
948 }
949
950 /// Simultaneously computes the sine and cosine of the number, `x`. Returns
951 /// `(sin(x), cos(x))`.
952 ///
953 /// ```
954 /// use std::f32;
955 ///
956 /// let x = f32::consts::PI/4.0;
957 /// let f = x.sin_cos();
958 ///
959 /// let abs_difference_0 = (f.0 - x.sin()).abs();
960 /// let abs_difference_1 = (f.1 - x.cos()).abs();
961 ///
962 /// assert!(abs_difference_0 <= f32::EPSILON);
963 /// assert!(abs_difference_0 <= f32::EPSILON);
964 /// ```
965 #[stable(feature = "rust1", since = "1.0.0")]
966 #[inline]
967 pub fn sin_cos(self) -> (f32, f32) {
968 (self.sin(), self.cos())
969 }
970
971 /// Returns `e^(self) - 1` in a way that is accurate even if the
972 /// number is close to zero.
973 ///
974 /// ```
975 /// let x = 7.0f64;
976 ///
977 /// // e^(ln(7)) - 1
978 /// let abs_difference = x.ln().exp_m1().abs_sub(6.0);
979 ///
980 /// assert!(abs_difference < 1e-10);
981 /// ```
982 #[stable(feature = "rust1", since = "1.0.0")]
983 #[inline]
984 pub fn exp_m1(self) -> f32 {
985 unsafe { cmath::expm1f(self) }
986 }
987
988 /// Returns `ln(1+n)` (natural logarithm) more accurately than if
989 /// the operations were performed separately.
990 ///
991 /// ```
992 /// use std::f32;
993 ///
994 /// let x = f32::consts::E - 1.0;
995 ///
996 /// // ln(1 + (e - 1)) == ln(e) == 1
997 /// let abs_difference = (x.ln_1p() - 1.0).abs();
998 ///
999 /// assert!(abs_difference <= f32::EPSILON);
1000 /// ```
1001 #[stable(feature = "rust1", since = "1.0.0")]
1002 #[inline]
1003 pub fn ln_1p(self) -> f32 {
1004 unsafe { cmath::log1pf(self) }
1005 }
1006
1007 /// Hyperbolic sine function.
1008 ///
1009 /// ```
1010 /// use std::f32;
1011 ///
1012 /// let e = f32::consts::E;
1013 /// let x = 1.0f32;
1014 ///
1015 /// let f = x.sinh();
1016 /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
1017 /// let g = (e*e - 1.0)/(2.0*e);
1018 /// let abs_difference = (f - g).abs();
1019 ///
1020 /// assert!(abs_difference <= f32::EPSILON);
1021 /// ```
1022 #[stable(feature = "rust1", since = "1.0.0")]
1023 #[inline]
1024 pub fn sinh(self) -> f32 {
1025 unsafe { cmath::sinhf(self) }
1026 }
1027
1028 /// Hyperbolic cosine function.
1029 ///
1030 /// ```
1031 /// use std::f32;
1032 ///
1033 /// let e = f32::consts::E;
1034 /// let x = 1.0f32;
1035 /// let f = x.cosh();
1036 /// // Solving cosh() at 1 gives this result
1037 /// let g = (e*e + 1.0)/(2.0*e);
1038 /// let abs_difference = f.abs_sub(g);
1039 ///
1040 /// // Same result
1041 /// assert!(abs_difference <= f32::EPSILON);
1042 /// ```
1043 #[stable(feature = "rust1", since = "1.0.0")]
1044 #[inline]
1045 pub fn cosh(self) -> f32 {
1046 unsafe { cmath::coshf(self) }
1047 }
1048
1049 /// Hyperbolic tangent function.
1050 ///
1051 /// ```
1052 /// use std::f32;
1053 ///
1054 /// let e = f32::consts::E;
1055 /// let x = 1.0f32;
1056 ///
1057 /// let f = x.tanh();
1058 /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
1059 /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
1060 /// let abs_difference = (f - g).abs();
1061 ///
1062 /// assert!(abs_difference <= f32::EPSILON);
1063 /// ```
1064 #[stable(feature = "rust1", since = "1.0.0")]
1065 #[inline]
1066 pub fn tanh(self) -> f32 {
1067 unsafe { cmath::tanhf(self) }
1068 }
1069
1070 /// Inverse hyperbolic sine function.
1071 ///
1072 /// ```
1073 /// use std::f32;
1074 ///
1075 /// let x = 1.0f32;
1076 /// let f = x.sinh().asinh();
1077 ///
1078 /// let abs_difference = (f - x).abs();
1079 ///
1080 /// assert!(abs_difference <= f32::EPSILON);
1081 /// ```
1082 #[stable(feature = "rust1", since = "1.0.0")]
1083 #[inline]
1084 pub fn asinh(self) -> f32 {
1085 match self {
1086 NEG_INFINITY => NEG_INFINITY,
1087 x => (x + ((x * x) + 1.0).sqrt()).ln(),
1088 }
1089 }
1090
1091 /// Inverse hyperbolic cosine function.
1092 ///
1093 /// ```
1094 /// use std::f32;
1095 ///
1096 /// let x = 1.0f32;
1097 /// let f = x.cosh().acosh();
1098 ///
1099 /// let abs_difference = (f - x).abs();
1100 ///
1101 /// assert!(abs_difference <= f32::EPSILON);
1102 /// ```
1103 #[stable(feature = "rust1", since = "1.0.0")]
1104 #[inline]
1105 pub fn acosh(self) -> f32 {
1106 match self {
1107 x if x < 1.0 => ::f32::NAN,
1108 x => (x + ((x * x) - 1.0).sqrt()).ln(),
1109 }
1110 }
1111
1112 /// Inverse hyperbolic tangent function.
1113 ///
1114 /// ```
1115 /// use std::f32;
1116 ///
1117 /// let e = f32::consts::E;
1118 /// let f = e.tanh().atanh();
1119 ///
1120 /// let abs_difference = f.abs_sub(e);
1121 ///
1122 /// assert!(abs_difference <= f32::EPSILON);
1123 /// ```
1124 #[stable(feature = "rust1", since = "1.0.0")]
1125 #[inline]
1126 pub fn atanh(self) -> f32 {
1127 0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
1128 }
1129 }
1130
1131 #[cfg(test)]
1132 mod tests {
1133 use f32;
1134 use f32::*;
1135 use num::*;
1136 use num::FpCategory as Fp;
1137
1138 #[test]
1139 fn test_num_f32() {
1140 test_num(10f32, 2f32);
1141 }
1142
1143 #[test]
1144 fn test_min_nan() {
1145 assert_eq!(NAN.min(2.0), 2.0);
1146 assert_eq!(2.0f32.min(NAN), 2.0);
1147 }
1148
1149 #[test]
1150 fn test_max_nan() {
1151 assert_eq!(NAN.max(2.0), 2.0);
1152 assert_eq!(2.0f32.max(NAN), 2.0);
1153 }
1154
1155 #[test]
1156 fn test_nan() {
1157 let nan: f32 = f32::NAN;
1158 assert!(nan.is_nan());
1159 assert!(!nan.is_infinite());
1160 assert!(!nan.is_finite());
1161 assert!(!nan.is_normal());
1162 assert!(!nan.is_sign_positive());
1163 assert!(!nan.is_sign_negative());
1164 assert_eq!(Fp::Nan, nan.classify());
1165 }
1166
1167 #[test]
1168 fn test_infinity() {
1169 let inf: f32 = f32::INFINITY;
1170 assert!(inf.is_infinite());
1171 assert!(!inf.is_finite());
1172 assert!(inf.is_sign_positive());
1173 assert!(!inf.is_sign_negative());
1174 assert!(!inf.is_nan());
1175 assert!(!inf.is_normal());
1176 assert_eq!(Fp::Infinite, inf.classify());
1177 }
1178
1179 #[test]
1180 fn test_neg_infinity() {
1181 let neg_inf: f32 = f32::NEG_INFINITY;
1182 assert!(neg_inf.is_infinite());
1183 assert!(!neg_inf.is_finite());
1184 assert!(!neg_inf.is_sign_positive());
1185 assert!(neg_inf.is_sign_negative());
1186 assert!(!neg_inf.is_nan());
1187 assert!(!neg_inf.is_normal());
1188 assert_eq!(Fp::Infinite, neg_inf.classify());
1189 }
1190
1191 #[test]
1192 fn test_zero() {
1193 let zero: f32 = 0.0f32;
1194 assert_eq!(0.0, zero);
1195 assert!(!zero.is_infinite());
1196 assert!(zero.is_finite());
1197 assert!(zero.is_sign_positive());
1198 assert!(!zero.is_sign_negative());
1199 assert!(!zero.is_nan());
1200 assert!(!zero.is_normal());
1201 assert_eq!(Fp::Zero, zero.classify());
1202 }
1203
1204 #[test]
1205 fn test_neg_zero() {
1206 let neg_zero: f32 = -0.0;
1207 assert_eq!(0.0, neg_zero);
1208 assert!(!neg_zero.is_infinite());
1209 assert!(neg_zero.is_finite());
1210 assert!(!neg_zero.is_sign_positive());
1211 assert!(neg_zero.is_sign_negative());
1212 assert!(!neg_zero.is_nan());
1213 assert!(!neg_zero.is_normal());
1214 assert_eq!(Fp::Zero, neg_zero.classify());
1215 }
1216
1217 #[test]
1218 fn test_one() {
1219 let one: f32 = 1.0f32;
1220 assert_eq!(1.0, one);
1221 assert!(!one.is_infinite());
1222 assert!(one.is_finite());
1223 assert!(one.is_sign_positive());
1224 assert!(!one.is_sign_negative());
1225 assert!(!one.is_nan());
1226 assert!(one.is_normal());
1227 assert_eq!(Fp::Normal, one.classify());
1228 }
1229
1230 #[test]
1231 fn test_is_nan() {
1232 let nan: f32 = f32::NAN;
1233 let inf: f32 = f32::INFINITY;
1234 let neg_inf: f32 = f32::NEG_INFINITY;
1235 assert!(nan.is_nan());
1236 assert!(!0.0f32.is_nan());
1237 assert!(!5.3f32.is_nan());
1238 assert!(!(-10.732f32).is_nan());
1239 assert!(!inf.is_nan());
1240 assert!(!neg_inf.is_nan());
1241 }
1242
1243 #[test]
1244 fn test_is_infinite() {
1245 let nan: f32 = f32::NAN;
1246 let inf: f32 = f32::INFINITY;
1247 let neg_inf: f32 = f32::NEG_INFINITY;
1248 assert!(!nan.is_infinite());
1249 assert!(inf.is_infinite());
1250 assert!(neg_inf.is_infinite());
1251 assert!(!0.0f32.is_infinite());
1252 assert!(!42.8f32.is_infinite());
1253 assert!(!(-109.2f32).is_infinite());
1254 }
1255
1256 #[test]
1257 fn test_is_finite() {
1258 let nan: f32 = f32::NAN;
1259 let inf: f32 = f32::INFINITY;
1260 let neg_inf: f32 = f32::NEG_INFINITY;
1261 assert!(!nan.is_finite());
1262 assert!(!inf.is_finite());
1263 assert!(!neg_inf.is_finite());
1264 assert!(0.0f32.is_finite());
1265 assert!(42.8f32.is_finite());
1266 assert!((-109.2f32).is_finite());
1267 }
1268
1269 #[test]
1270 fn test_is_normal() {
1271 let nan: f32 = f32::NAN;
1272 let inf: f32 = f32::INFINITY;
1273 let neg_inf: f32 = f32::NEG_INFINITY;
1274 let zero: f32 = 0.0f32;
1275 let neg_zero: f32 = -0.0;
1276 assert!(!nan.is_normal());
1277 assert!(!inf.is_normal());
1278 assert!(!neg_inf.is_normal());
1279 assert!(!zero.is_normal());
1280 assert!(!neg_zero.is_normal());
1281 assert!(1f32.is_normal());
1282 assert!(1e-37f32.is_normal());
1283 assert!(!1e-38f32.is_normal());
1284 }
1285
1286 #[test]
1287 fn test_classify() {
1288 let nan: f32 = f32::NAN;
1289 let inf: f32 = f32::INFINITY;
1290 let neg_inf: f32 = f32::NEG_INFINITY;
1291 let zero: f32 = 0.0f32;
1292 let neg_zero: f32 = -0.0;
1293 assert_eq!(nan.classify(), Fp::Nan);
1294 assert_eq!(inf.classify(), Fp::Infinite);
1295 assert_eq!(neg_inf.classify(), Fp::Infinite);
1296 assert_eq!(zero.classify(), Fp::Zero);
1297 assert_eq!(neg_zero.classify(), Fp::Zero);
1298 assert_eq!(1f32.classify(), Fp::Normal);
1299 assert_eq!(1e-37f32.classify(), Fp::Normal);
1300 assert_eq!(1e-38f32.classify(), Fp::Subnormal);
1301 }
1302
1303 #[test]
1304 fn test_integer_decode() {
1305 assert_eq!(3.14159265359f32.integer_decode(), (13176795, -22, 1));
1306 assert_eq!((-8573.5918555f32).integer_decode(), (8779358, -10, -1));
1307 assert_eq!(2f32.powf(100.0).integer_decode(), (8388608, 77, 1));
1308 assert_eq!(0f32.integer_decode(), (0, -150, 1));
1309 assert_eq!((-0f32).integer_decode(), (0, -150, -1));
1310 assert_eq!(INFINITY.integer_decode(), (8388608, 105, 1));
1311 assert_eq!(NEG_INFINITY.integer_decode(), (8388608, 105, -1));
1312 assert_eq!(NAN.integer_decode(), (12582912, 105, 1));
1313 }
1314
1315 #[test]
1316 fn test_floor() {
1317 assert_approx_eq!(1.0f32.floor(), 1.0f32);
1318 assert_approx_eq!(1.3f32.floor(), 1.0f32);
1319 assert_approx_eq!(1.5f32.floor(), 1.0f32);
1320 assert_approx_eq!(1.7f32.floor(), 1.0f32);
1321 assert_approx_eq!(0.0f32.floor(), 0.0f32);
1322 assert_approx_eq!((-0.0f32).floor(), -0.0f32);
1323 assert_approx_eq!((-1.0f32).floor(), -1.0f32);
1324 assert_approx_eq!((-1.3f32).floor(), -2.0f32);
1325 assert_approx_eq!((-1.5f32).floor(), -2.0f32);
1326 assert_approx_eq!((-1.7f32).floor(), -2.0f32);
1327 }
1328
1329 #[test]
1330 fn test_ceil() {
1331 assert_approx_eq!(1.0f32.ceil(), 1.0f32);
1332 assert_approx_eq!(1.3f32.ceil(), 2.0f32);
1333 assert_approx_eq!(1.5f32.ceil(), 2.0f32);
1334 assert_approx_eq!(1.7f32.ceil(), 2.0f32);
1335 assert_approx_eq!(0.0f32.ceil(), 0.0f32);
1336 assert_approx_eq!((-0.0f32).ceil(), -0.0f32);
1337 assert_approx_eq!((-1.0f32).ceil(), -1.0f32);
1338 assert_approx_eq!((-1.3f32).ceil(), -1.0f32);
1339 assert_approx_eq!((-1.5f32).ceil(), -1.0f32);
1340 assert_approx_eq!((-1.7f32).ceil(), -1.0f32);
1341 }
1342
1343 #[test]
1344 fn test_round() {
1345 assert_approx_eq!(1.0f32.round(), 1.0f32);
1346 assert_approx_eq!(1.3f32.round(), 1.0f32);
1347 assert_approx_eq!(1.5f32.round(), 2.0f32);
1348 assert_approx_eq!(1.7f32.round(), 2.0f32);
1349 assert_approx_eq!(0.0f32.round(), 0.0f32);
1350 assert_approx_eq!((-0.0f32).round(), -0.0f32);
1351 assert_approx_eq!((-1.0f32).round(), -1.0f32);
1352 assert_approx_eq!((-1.3f32).round(), -1.0f32);
1353 assert_approx_eq!((-1.5f32).round(), -2.0f32);
1354 assert_approx_eq!((-1.7f32).round(), -2.0f32);
1355 }
1356
1357 #[test]
1358 fn test_trunc() {
1359 assert_approx_eq!(1.0f32.trunc(), 1.0f32);
1360 assert_approx_eq!(1.3f32.trunc(), 1.0f32);
1361 assert_approx_eq!(1.5f32.trunc(), 1.0f32);
1362 assert_approx_eq!(1.7f32.trunc(), 1.0f32);
1363 assert_approx_eq!(0.0f32.trunc(), 0.0f32);
1364 assert_approx_eq!((-0.0f32).trunc(), -0.0f32);
1365 assert_approx_eq!((-1.0f32).trunc(), -1.0f32);
1366 assert_approx_eq!((-1.3f32).trunc(), -1.0f32);
1367 assert_approx_eq!((-1.5f32).trunc(), -1.0f32);
1368 assert_approx_eq!((-1.7f32).trunc(), -1.0f32);
1369 }
1370
1371 #[test]
1372 fn test_fract() {
1373 assert_approx_eq!(1.0f32.fract(), 0.0f32);
1374 assert_approx_eq!(1.3f32.fract(), 0.3f32);
1375 assert_approx_eq!(1.5f32.fract(), 0.5f32);
1376 assert_approx_eq!(1.7f32.fract(), 0.7f32);
1377 assert_approx_eq!(0.0f32.fract(), 0.0f32);
1378 assert_approx_eq!((-0.0f32).fract(), -0.0f32);
1379 assert_approx_eq!((-1.0f32).fract(), -0.0f32);
1380 assert_approx_eq!((-1.3f32).fract(), -0.3f32);
1381 assert_approx_eq!((-1.5f32).fract(), -0.5f32);
1382 assert_approx_eq!((-1.7f32).fract(), -0.7f32);
1383 }
1384
1385 #[test]
1386 fn test_abs() {
1387 assert_eq!(INFINITY.abs(), INFINITY);
1388 assert_eq!(1f32.abs(), 1f32);
1389 assert_eq!(0f32.abs(), 0f32);
1390 assert_eq!((-0f32).abs(), 0f32);
1391 assert_eq!((-1f32).abs(), 1f32);
1392 assert_eq!(NEG_INFINITY.abs(), INFINITY);
1393 assert_eq!((1f32/NEG_INFINITY).abs(), 0f32);
1394 assert!(NAN.abs().is_nan());
1395 }
1396
1397 #[test]
1398 fn test_signum() {
1399 assert_eq!(INFINITY.signum(), 1f32);
1400 assert_eq!(1f32.signum(), 1f32);
1401 assert_eq!(0f32.signum(), 1f32);
1402 assert_eq!((-0f32).signum(), -1f32);
1403 assert_eq!((-1f32).signum(), -1f32);
1404 assert_eq!(NEG_INFINITY.signum(), -1f32);
1405 assert_eq!((1f32/NEG_INFINITY).signum(), -1f32);
1406 assert!(NAN.signum().is_nan());
1407 }
1408
1409 #[test]
1410 fn test_is_sign_positive() {
1411 assert!(INFINITY.is_sign_positive());
1412 assert!(1f32.is_sign_positive());
1413 assert!(0f32.is_sign_positive());
1414 assert!(!(-0f32).is_sign_positive());
1415 assert!(!(-1f32).is_sign_positive());
1416 assert!(!NEG_INFINITY.is_sign_positive());
1417 assert!(!(1f32/NEG_INFINITY).is_sign_positive());
1418 assert!(!NAN.is_sign_positive());
1419 }
1420
1421 #[test]
1422 fn test_is_sign_negative() {
1423 assert!(!INFINITY.is_sign_negative());
1424 assert!(!1f32.is_sign_negative());
1425 assert!(!0f32.is_sign_negative());
1426 assert!((-0f32).is_sign_negative());
1427 assert!((-1f32).is_sign_negative());
1428 assert!(NEG_INFINITY.is_sign_negative());
1429 assert!((1f32/NEG_INFINITY).is_sign_negative());
1430 assert!(!NAN.is_sign_negative());
1431 }
1432
1433 #[test]
1434 fn test_mul_add() {
1435 let nan: f32 = f32::NAN;
1436 let inf: f32 = f32::INFINITY;
1437 let neg_inf: f32 = f32::NEG_INFINITY;
1438 assert_approx_eq!(12.3f32.mul_add(4.5, 6.7), 62.05);
1439 assert_approx_eq!((-12.3f32).mul_add(-4.5, -6.7), 48.65);
1440 assert_approx_eq!(0.0f32.mul_add(8.9, 1.2), 1.2);
1441 assert_approx_eq!(3.4f32.mul_add(-0.0, 5.6), 5.6);
1442 assert!(nan.mul_add(7.8, 9.0).is_nan());
1443 assert_eq!(inf.mul_add(7.8, 9.0), inf);
1444 assert_eq!(neg_inf.mul_add(7.8, 9.0), neg_inf);
1445 assert_eq!(8.9f32.mul_add(inf, 3.2), inf);
1446 assert_eq!((-3.2f32).mul_add(2.4, neg_inf), neg_inf);
1447 }
1448
1449 #[test]
1450 fn test_recip() {
1451 let nan: f32 = f32::NAN;
1452 let inf: f32 = f32::INFINITY;
1453 let neg_inf: f32 = f32::NEG_INFINITY;
1454 assert_eq!(1.0f32.recip(), 1.0);
1455 assert_eq!(2.0f32.recip(), 0.5);
1456 assert_eq!((-0.4f32).recip(), -2.5);
1457 assert_eq!(0.0f32.recip(), inf);
1458 assert!(nan.recip().is_nan());
1459 assert_eq!(inf.recip(), 0.0);
1460 assert_eq!(neg_inf.recip(), 0.0);
1461 }
1462
1463 #[test]
1464 fn test_powi() {
1465 let nan: f32 = f32::NAN;
1466 let inf: f32 = f32::INFINITY;
1467 let neg_inf: f32 = f32::NEG_INFINITY;
1468 assert_eq!(1.0f32.powi(1), 1.0);
1469 assert_approx_eq!((-3.1f32).powi(2), 9.61);
1470 assert_approx_eq!(5.9f32.powi(-2), 0.028727);
1471 assert_eq!(8.3f32.powi(0), 1.0);
1472 assert!(nan.powi(2).is_nan());
1473 assert_eq!(inf.powi(3), inf);
1474 assert_eq!(neg_inf.powi(2), inf);
1475 }
1476
1477 #[test]
1478 fn test_powf() {
1479 let nan: f32 = f32::NAN;
1480 let inf: f32 = f32::INFINITY;
1481 let neg_inf: f32 = f32::NEG_INFINITY;
1482 assert_eq!(1.0f32.powf(1.0), 1.0);
1483 assert_approx_eq!(3.4f32.powf(4.5), 246.408218);
1484 assert_approx_eq!(2.7f32.powf(-3.2), 0.041652);
1485 assert_approx_eq!((-3.1f32).powf(2.0), 9.61);
1486 assert_approx_eq!(5.9f32.powf(-2.0), 0.028727);
1487 assert_eq!(8.3f32.powf(0.0), 1.0);
1488 assert!(nan.powf(2.0).is_nan());
1489 assert_eq!(inf.powf(2.0), inf);
1490 assert_eq!(neg_inf.powf(3.0), neg_inf);
1491 }
1492
1493 #[test]
1494 fn test_sqrt_domain() {
1495 assert!(NAN.sqrt().is_nan());
1496 assert!(NEG_INFINITY.sqrt().is_nan());
1497 assert!((-1.0f32).sqrt().is_nan());
1498 assert_eq!((-0.0f32).sqrt(), -0.0);
1499 assert_eq!(0.0f32.sqrt(), 0.0);
1500 assert_eq!(1.0f32.sqrt(), 1.0);
1501 assert_eq!(INFINITY.sqrt(), INFINITY);
1502 }
1503
1504 #[test]
1505 fn test_exp() {
1506 assert_eq!(1.0, 0.0f32.exp());
1507 assert_approx_eq!(2.718282, 1.0f32.exp());
1508 assert_approx_eq!(148.413162, 5.0f32.exp());
1509
1510 let inf: f32 = f32::INFINITY;
1511 let neg_inf: f32 = f32::NEG_INFINITY;
1512 let nan: f32 = f32::NAN;
1513 assert_eq!(inf, inf.exp());
1514 assert_eq!(0.0, neg_inf.exp());
1515 assert!(nan.exp().is_nan());
1516 }
1517
1518 #[test]
1519 fn test_exp2() {
1520 assert_eq!(32.0, 5.0f32.exp2());
1521 assert_eq!(1.0, 0.0f32.exp2());
1522
1523 let inf: f32 = f32::INFINITY;
1524 let neg_inf: f32 = f32::NEG_INFINITY;
1525 let nan: f32 = f32::NAN;
1526 assert_eq!(inf, inf.exp2());
1527 assert_eq!(0.0, neg_inf.exp2());
1528 assert!(nan.exp2().is_nan());
1529 }
1530
1531 #[test]
1532 fn test_ln() {
1533 let nan: f32 = f32::NAN;
1534 let inf: f32 = f32::INFINITY;
1535 let neg_inf: f32 = f32::NEG_INFINITY;
1536 assert_approx_eq!(1.0f32.exp().ln(), 1.0);
1537 assert!(nan.ln().is_nan());
1538 assert_eq!(inf.ln(), inf);
1539 assert!(neg_inf.ln().is_nan());
1540 assert!((-2.3f32).ln().is_nan());
1541 assert_eq!((-0.0f32).ln(), neg_inf);
1542 assert_eq!(0.0f32.ln(), neg_inf);
1543 assert_approx_eq!(4.0f32.ln(), 1.386294);
1544 }
1545
1546 #[test]
1547 fn test_log() {
1548 let nan: f32 = f32::NAN;
1549 let inf: f32 = f32::INFINITY;
1550 let neg_inf: f32 = f32::NEG_INFINITY;
1551 assert_eq!(10.0f32.log(10.0), 1.0);
1552 assert_approx_eq!(2.3f32.log(3.5), 0.664858);
1553 assert_eq!(1.0f32.exp().log(1.0f32.exp()), 1.0);
1554 assert!(1.0f32.log(1.0).is_nan());
1555 assert!(1.0f32.log(-13.9).is_nan());
1556 assert!(nan.log(2.3).is_nan());
1557 assert_eq!(inf.log(10.0), inf);
1558 assert!(neg_inf.log(8.8).is_nan());
1559 assert!((-2.3f32).log(0.1).is_nan());
1560 assert_eq!((-0.0f32).log(2.0), neg_inf);
1561 assert_eq!(0.0f32.log(7.0), neg_inf);
1562 }
1563
1564 #[test]
1565 fn test_log2() {
1566 let nan: f32 = f32::NAN;
1567 let inf: f32 = f32::INFINITY;
1568 let neg_inf: f32 = f32::NEG_INFINITY;
1569 assert_approx_eq!(10.0f32.log2(), 3.321928);
1570 assert_approx_eq!(2.3f32.log2(), 1.201634);
1571 assert_approx_eq!(1.0f32.exp().log2(), 1.442695);
1572 assert!(nan.log2().is_nan());
1573 assert_eq!(inf.log2(), inf);
1574 assert!(neg_inf.log2().is_nan());
1575 assert!((-2.3f32).log2().is_nan());
1576 assert_eq!((-0.0f32).log2(), neg_inf);
1577 assert_eq!(0.0f32.log2(), neg_inf);
1578 }
1579
1580 #[test]
1581 fn test_log10() {
1582 let nan: f32 = f32::NAN;
1583 let inf: f32 = f32::INFINITY;
1584 let neg_inf: f32 = f32::NEG_INFINITY;
1585 assert_eq!(10.0f32.log10(), 1.0);
1586 assert_approx_eq!(2.3f32.log10(), 0.361728);
1587 assert_approx_eq!(1.0f32.exp().log10(), 0.434294);
1588 assert_eq!(1.0f32.log10(), 0.0);
1589 assert!(nan.log10().is_nan());
1590 assert_eq!(inf.log10(), inf);
1591 assert!(neg_inf.log10().is_nan());
1592 assert!((-2.3f32).log10().is_nan());
1593 assert_eq!((-0.0f32).log10(), neg_inf);
1594 assert_eq!(0.0f32.log10(), neg_inf);
1595 }
1596
1597 #[test]
1598 fn test_to_degrees() {
1599 let pi: f32 = consts::PI;
1600 let nan: f32 = f32::NAN;
1601 let inf: f32 = f32::INFINITY;
1602 let neg_inf: f32 = f32::NEG_INFINITY;
1603 assert_eq!(0.0f32.to_degrees(), 0.0);
1604 assert_approx_eq!((-5.8f32).to_degrees(), -332.315521);
1605 assert_eq!(pi.to_degrees(), 180.0);
1606 assert!(nan.to_degrees().is_nan());
1607 assert_eq!(inf.to_degrees(), inf);
1608 assert_eq!(neg_inf.to_degrees(), neg_inf);
1609 }
1610
1611 #[test]
1612 fn test_to_radians() {
1613 let pi: f32 = consts::PI;
1614 let nan: f32 = f32::NAN;
1615 let inf: f32 = f32::INFINITY;
1616 let neg_inf: f32 = f32::NEG_INFINITY;
1617 assert_eq!(0.0f32.to_radians(), 0.0);
1618 assert_approx_eq!(154.6f32.to_radians(), 2.698279);
1619 assert_approx_eq!((-332.31f32).to_radians(), -5.799903);
1620 assert_eq!(180.0f32.to_radians(), pi);
1621 assert!(nan.to_radians().is_nan());
1622 assert_eq!(inf.to_radians(), inf);
1623 assert_eq!(neg_inf.to_radians(), neg_inf);
1624 }
1625
1626 #[test]
1627 fn test_ldexp() {
1628 // We have to use from_str until base-2 exponents
1629 // are supported in floating-point literals
1630 let f1: f32 = f32::from_str_radix("1p-123", 16).unwrap();
1631 let f2: f32 = f32::from_str_radix("1p-111", 16).unwrap();
1632 let f3: f32 = f32::from_str_radix("1.Cp-12", 16).unwrap();
1633 assert_eq!(f32::ldexp(1f32, -123), f1);
1634 assert_eq!(f32::ldexp(1f32, -111), f2);
1635 assert_eq!(f32::ldexp(1.75f32, -12), f3);
1636
1637 assert_eq!(f32::ldexp(0f32, -123), 0f32);
1638 assert_eq!(f32::ldexp(-0f32, -123), -0f32);
1639
1640 let inf: f32 = f32::INFINITY;
1641 let neg_inf: f32 = f32::NEG_INFINITY;
1642 let nan: f32 = f32::NAN;
1643 assert_eq!(f32::ldexp(inf, -123), inf);
1644 assert_eq!(f32::ldexp(neg_inf, -123), neg_inf);
1645 assert!(f32::ldexp(nan, -123).is_nan());
1646 }
1647
1648 #[test]
1649 fn test_frexp() {
1650 // We have to use from_str until base-2 exponents
1651 // are supported in floating-point literals
1652 let f1: f32 = f32::from_str_radix("1p-123", 16).unwrap();
1653 let f2: f32 = f32::from_str_radix("1p-111", 16).unwrap();
1654 let f3: f32 = f32::from_str_radix("1.Cp-123", 16).unwrap();
1655 let (x1, exp1) = f1.frexp();
1656 let (x2, exp2) = f2.frexp();
1657 let (x3, exp3) = f3.frexp();
1658 assert_eq!((x1, exp1), (0.5f32, -122));
1659 assert_eq!((x2, exp2), (0.5f32, -110));
1660 assert_eq!((x3, exp3), (0.875f32, -122));
1661 assert_eq!(f32::ldexp(x1, exp1), f1);
1662 assert_eq!(f32::ldexp(x2, exp2), f2);
1663 assert_eq!(f32::ldexp(x3, exp3), f3);
1664
1665 assert_eq!(0f32.frexp(), (0f32, 0));
1666 assert_eq!((-0f32).frexp(), (-0f32, 0));
1667 }
1668
1669 #[test] #[cfg_attr(windows, ignore)] // FIXME #8755
1670 fn test_frexp_nowin() {
1671 let inf: f32 = f32::INFINITY;
1672 let neg_inf: f32 = f32::NEG_INFINITY;
1673 let nan: f32 = f32::NAN;
1674 assert_eq!(match inf.frexp() { (x, _) => x }, inf);
1675 assert_eq!(match neg_inf.frexp() { (x, _) => x }, neg_inf);
1676 assert!(match nan.frexp() { (x, _) => x.is_nan() })
1677 }
1678
1679 #[test]
1680 fn test_abs_sub() {
1681 assert_eq!((-1f32).abs_sub(1f32), 0f32);
1682 assert_eq!(1f32.abs_sub(1f32), 0f32);
1683 assert_eq!(1f32.abs_sub(0f32), 1f32);
1684 assert_eq!(1f32.abs_sub(-1f32), 2f32);
1685 assert_eq!(NEG_INFINITY.abs_sub(0f32), 0f32);
1686 assert_eq!(INFINITY.abs_sub(1f32), INFINITY);
1687 assert_eq!(0f32.abs_sub(NEG_INFINITY), INFINITY);
1688 assert_eq!(0f32.abs_sub(INFINITY), 0f32);
1689 }
1690
1691 #[test]
1692 fn test_abs_sub_nowin() {
1693 assert!(NAN.abs_sub(-1f32).is_nan());
1694 assert!(1f32.abs_sub(NAN).is_nan());
1695 }
1696
1697 #[test]
1698 fn test_asinh() {
1699 assert_eq!(0.0f32.asinh(), 0.0f32);
1700 assert_eq!((-0.0f32).asinh(), -0.0f32);
1701
1702 let inf: f32 = f32::INFINITY;
1703 let neg_inf: f32 = f32::NEG_INFINITY;
1704 let nan: f32 = f32::NAN;
1705 assert_eq!(inf.asinh(), inf);
1706 assert_eq!(neg_inf.asinh(), neg_inf);
1707 assert!(nan.asinh().is_nan());
1708 assert_approx_eq!(2.0f32.asinh(), 1.443635475178810342493276740273105f32);
1709 assert_approx_eq!((-2.0f32).asinh(), -1.443635475178810342493276740273105f32);
1710 }
1711
1712 #[test]
1713 fn test_acosh() {
1714 assert_eq!(1.0f32.acosh(), 0.0f32);
1715 assert!(0.999f32.acosh().is_nan());
1716
1717 let inf: f32 = f32::INFINITY;
1718 let neg_inf: f32 = f32::NEG_INFINITY;
1719 let nan: f32 = f32::NAN;
1720 assert_eq!(inf.acosh(), inf);
1721 assert!(neg_inf.acosh().is_nan());
1722 assert!(nan.acosh().is_nan());
1723 assert_approx_eq!(2.0f32.acosh(), 1.31695789692481670862504634730796844f32);
1724 assert_approx_eq!(3.0f32.acosh(), 1.76274717403908605046521864995958461f32);
1725 }
1726
1727 #[test]
1728 fn test_atanh() {
1729 assert_eq!(0.0f32.atanh(), 0.0f32);
1730 assert_eq!((-0.0f32).atanh(), -0.0f32);
1731
1732 let inf32: f32 = f32::INFINITY;
1733 let neg_inf32: f32 = f32::NEG_INFINITY;
1734 assert_eq!(1.0f32.atanh(), inf32);
1735 assert_eq!((-1.0f32).atanh(), neg_inf32);
1736
1737 assert!(2f64.atanh().atanh().is_nan());
1738 assert!((-2f64).atanh().atanh().is_nan());
1739
1740 let inf64: f32 = f32::INFINITY;
1741 let neg_inf64: f32 = f32::NEG_INFINITY;
1742 let nan32: f32 = f32::NAN;
1743 assert!(inf64.atanh().is_nan());
1744 assert!(neg_inf64.atanh().is_nan());
1745 assert!(nan32.atanh().is_nan());
1746
1747 assert_approx_eq!(0.5f32.atanh(), 0.54930614433405484569762261846126285f32);
1748 assert_approx_eq!((-0.5f32).atanh(), -0.54930614433405484569762261846126285f32);
1749 }
1750
1751 #[test]
1752 fn test_real_consts() {
1753 use super::consts;
1754
1755 let pi: f32 = consts::PI;
1756 let two_pi: f32 = consts::PI_2;
1757 let frac_pi_2: f32 = consts::FRAC_PI_2;
1758 let frac_pi_3: f32 = consts::FRAC_PI_3;
1759 let frac_pi_4: f32 = consts::FRAC_PI_4;
1760 let frac_pi_6: f32 = consts::FRAC_PI_6;
1761 let frac_pi_8: f32 = consts::FRAC_PI_8;
1762 let frac_1_pi: f32 = consts::FRAC_1_PI;
1763 let frac_2_pi: f32 = consts::FRAC_2_PI;
1764 let frac_2_sqrtpi: f32 = consts::FRAC_2_SQRT_PI;
1765 let sqrt2: f32 = consts::SQRT_2;
1766 let frac_1_sqrt2: f32 = consts::FRAC_1_SQRT_2;
1767 let e: f32 = consts::E;
1768 let log2_e: f32 = consts::LOG2_E;
1769 let log10_e: f32 = consts::LOG10_E;
1770 let ln_2: f32 = consts::LN_2;
1771 let ln_10: f32 = consts::LN_10;
1772
1773 assert_approx_eq!(two_pi, 2f32 * pi);
1774 assert_approx_eq!(frac_pi_2, pi / 2f32);
1775 assert_approx_eq!(frac_pi_3, pi / 3f32);
1776 assert_approx_eq!(frac_pi_4, pi / 4f32);
1777 assert_approx_eq!(frac_pi_6, pi / 6f32);
1778 assert_approx_eq!(frac_pi_8, pi / 8f32);
1779 assert_approx_eq!(frac_1_pi, 1f32 / pi);
1780 assert_approx_eq!(frac_2_pi, 2f32 / pi);
1781 assert_approx_eq!(frac_2_sqrtpi, 2f32 / pi.sqrt());
1782 assert_approx_eq!(sqrt2, 2f32.sqrt());
1783 assert_approx_eq!(frac_1_sqrt2, 1f32 / 2f32.sqrt());
1784 assert_approx_eq!(log2_e, e.log2());
1785 assert_approx_eq!(log10_e, e.log10());
1786 assert_approx_eq!(ln_2, 2f32.ln());
1787 assert_approx_eq!(ln_10, 10f32.ln());
1788 }
1789 }