]> git.proxmox.com Git - rustc.git/blob - src/libstd/sync/mutex.rs
New upstream version 1.20.0+dfsg1
[rustc.git] / src / libstd / sync / mutex.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 use cell::UnsafeCell;
12 use fmt;
13 use mem;
14 use ops::{Deref, DerefMut};
15 use ptr;
16 use sys_common::mutex as sys;
17 use sys_common::poison::{self, TryLockError, TryLockResult, LockResult};
18
19 /// A mutual exclusion primitive useful for protecting shared data
20 ///
21 /// This mutex will block threads waiting for the lock to become available. The
22 /// mutex can also be statically initialized or created via a `new`
23 /// constructor. Each mutex has a type parameter which represents the data that
24 /// it is protecting. The data can only be accessed through the RAII guards
25 /// returned from `lock` and `try_lock`, which guarantees that the data is only
26 /// ever accessed when the mutex is locked.
27 ///
28 /// # Poisoning
29 ///
30 /// The mutexes in this module implement a strategy called "poisoning" where a
31 /// mutex is considered poisoned whenever a thread panics while holding the
32 /// mutex. Once a mutex is poisoned, all other threads are unable to access the
33 /// data by default as it is likely tainted (some invariant is not being
34 /// upheld).
35 ///
36 /// For a mutex, this means that the `lock` and `try_lock` methods return a
37 /// `Result` which indicates whether a mutex has been poisoned or not. Most
38 /// usage of a mutex will simply `unwrap()` these results, propagating panics
39 /// among threads to ensure that a possibly invalid invariant is not witnessed.
40 ///
41 /// A poisoned mutex, however, does not prevent all access to the underlying
42 /// data. The `PoisonError` type has an `into_inner` method which will return
43 /// the guard that would have otherwise been returned on a successful lock. This
44 /// allows access to the data, despite the lock being poisoned.
45 ///
46 /// # Examples
47 ///
48 /// ```
49 /// use std::sync::{Arc, Mutex};
50 /// use std::thread;
51 /// use std::sync::mpsc::channel;
52 ///
53 /// const N: usize = 10;
54 ///
55 /// // Spawn a few threads to increment a shared variable (non-atomically), and
56 /// // let the main thread know once all increments are done.
57 /// //
58 /// // Here we're using an Arc to share memory among threads, and the data inside
59 /// // the Arc is protected with a mutex.
60 /// let data = Arc::new(Mutex::new(0));
61 ///
62 /// let (tx, rx) = channel();
63 /// for _ in 0..N {
64 /// let (data, tx) = (data.clone(), tx.clone());
65 /// thread::spawn(move || {
66 /// // The shared state can only be accessed once the lock is held.
67 /// // Our non-atomic increment is safe because we're the only thread
68 /// // which can access the shared state when the lock is held.
69 /// //
70 /// // We unwrap() the return value to assert that we are not expecting
71 /// // threads to ever fail while holding the lock.
72 /// let mut data = data.lock().unwrap();
73 /// *data += 1;
74 /// if *data == N {
75 /// tx.send(()).unwrap();
76 /// }
77 /// // the lock is unlocked here when `data` goes out of scope.
78 /// });
79 /// }
80 ///
81 /// rx.recv().unwrap();
82 /// ```
83 ///
84 /// To recover from a poisoned mutex:
85 ///
86 /// ```
87 /// use std::sync::{Arc, Mutex};
88 /// use std::thread;
89 ///
90 /// let lock = Arc::new(Mutex::new(0_u32));
91 /// let lock2 = lock.clone();
92 ///
93 /// let _ = thread::spawn(move || -> () {
94 /// // This thread will acquire the mutex first, unwrapping the result of
95 /// // `lock` because the lock has not been poisoned.
96 /// let _guard = lock2.lock().unwrap();
97 ///
98 /// // This panic while holding the lock (`_guard` is in scope) will poison
99 /// // the mutex.
100 /// panic!();
101 /// }).join();
102 ///
103 /// // The lock is poisoned by this point, but the returned result can be
104 /// // pattern matched on to return the underlying guard on both branches.
105 /// let mut guard = match lock.lock() {
106 /// Ok(guard) => guard,
107 /// Err(poisoned) => poisoned.into_inner(),
108 /// };
109 ///
110 /// *guard += 1;
111 /// ```
112 #[stable(feature = "rust1", since = "1.0.0")]
113 pub struct Mutex<T: ?Sized> {
114 // Note that this mutex is in a *box*, not inlined into the struct itself.
115 // Once a native mutex has been used once, its address can never change (it
116 // can't be moved). This mutex type can be safely moved at any time, so to
117 // ensure that the native mutex is used correctly we box the inner mutex to
118 // give it a constant address.
119 inner: Box<sys::Mutex>,
120 poison: poison::Flag,
121 data: UnsafeCell<T>,
122 }
123
124 // these are the only places where `T: Send` matters; all other
125 // functionality works fine on a single thread.
126 #[stable(feature = "rust1", since = "1.0.0")]
127 unsafe impl<T: ?Sized + Send> Send for Mutex<T> { }
128 #[stable(feature = "rust1", since = "1.0.0")]
129 unsafe impl<T: ?Sized + Send> Sync for Mutex<T> { }
130
131 /// An RAII implementation of a "scoped lock" of a mutex. When this structure is
132 /// dropped (falls out of scope), the lock will be unlocked.
133 ///
134 /// The data protected by the mutex can be accessed through this guard via its
135 /// [`Deref`] and [`DerefMut`] implementations.
136 ///
137 /// This structure is created by the [`lock`] and [`try_lock`] methods on
138 /// [`Mutex`].
139 ///
140 /// [`Deref`]: ../../std/ops/trait.Deref.html
141 /// [`DerefMut`]: ../../std/ops/trait.DerefMut.html
142 /// [`lock`]: struct.Mutex.html#method.lock
143 /// [`try_lock`]: struct.Mutex.html#method.try_lock
144 /// [`Mutex`]: struct.Mutex.html
145 #[must_use]
146 #[stable(feature = "rust1", since = "1.0.0")]
147 pub struct MutexGuard<'a, T: ?Sized + 'a> {
148 // funny underscores due to how Deref/DerefMut currently work (they
149 // disregard field privacy).
150 __lock: &'a Mutex<T>,
151 __poison: poison::Guard,
152 }
153
154 #[stable(feature = "rust1", since = "1.0.0")]
155 impl<'a, T: ?Sized> !Send for MutexGuard<'a, T> { }
156 #[stable(feature = "mutexguard", since = "1.19.0")]
157 unsafe impl<'a, T: ?Sized + Sync> Sync for MutexGuard<'a, T> { }
158
159 impl<T> Mutex<T> {
160 /// Creates a new mutex in an unlocked state ready for use.
161 ///
162 /// # Examples
163 ///
164 /// ```
165 /// use std::sync::Mutex;
166 ///
167 /// let mutex = Mutex::new(0);
168 /// ```
169 #[stable(feature = "rust1", since = "1.0.0")]
170 pub fn new(t: T) -> Mutex<T> {
171 let mut m = Mutex {
172 inner: box sys::Mutex::new(),
173 poison: poison::Flag::new(),
174 data: UnsafeCell::new(t),
175 };
176 unsafe {
177 m.inner.init();
178 }
179 m
180 }
181 }
182
183 impl<T: ?Sized> Mutex<T> {
184 /// Acquires a mutex, blocking the current thread until it is able to do so.
185 ///
186 /// This function will block the local thread until it is available to acquire
187 /// the mutex. Upon returning, the thread is the only thread with the lock
188 /// held. An RAII guard is returned to allow scoped unlock of the lock. When
189 /// the guard goes out of scope, the mutex will be unlocked.
190 ///
191 /// The exact behavior on locking a mutex in the thread which already holds
192 /// the lock is left unspecified. However, this function will not return on
193 /// the second call (it might panic or deadlock, for example).
194 ///
195 /// # Errors
196 ///
197 /// If another user of this mutex panicked while holding the mutex, then
198 /// this call will return an error once the mutex is acquired.
199 ///
200 /// # Panics
201 ///
202 /// This function might panic when called if the lock is already held by
203 /// the current thread.
204 ///
205 /// # Examples
206 ///
207 /// ```
208 /// use std::sync::{Arc, Mutex};
209 /// use std::thread;
210 ///
211 /// let mutex = Arc::new(Mutex::new(0));
212 /// let c_mutex = mutex.clone();
213 ///
214 /// thread::spawn(move || {
215 /// *c_mutex.lock().unwrap() = 10;
216 /// }).join().expect("thread::spawn failed");
217 /// assert_eq!(*mutex.lock().unwrap(), 10);
218 /// ```
219 #[stable(feature = "rust1", since = "1.0.0")]
220 pub fn lock(&self) -> LockResult<MutexGuard<T>> {
221 unsafe {
222 self.inner.lock();
223 MutexGuard::new(self)
224 }
225 }
226
227 /// Attempts to acquire this lock.
228 ///
229 /// If the lock could not be acquired at this time, then `Err` is returned.
230 /// Otherwise, an RAII guard is returned. The lock will be unlocked when the
231 /// guard is dropped.
232 ///
233 /// This function does not block.
234 ///
235 /// # Errors
236 ///
237 /// If another user of this mutex panicked while holding the mutex, then
238 /// this call will return failure if the mutex would otherwise be
239 /// acquired.
240 ///
241 /// # Examples
242 ///
243 /// ```
244 /// use std::sync::{Arc, Mutex};
245 /// use std::thread;
246 ///
247 /// let mutex = Arc::new(Mutex::new(0));
248 /// let c_mutex = mutex.clone();
249 ///
250 /// thread::spawn(move || {
251 /// let mut lock = c_mutex.try_lock();
252 /// if let Ok(ref mut mutex) = lock {
253 /// **mutex = 10;
254 /// } else {
255 /// println!("try_lock failed");
256 /// }
257 /// }).join().expect("thread::spawn failed");
258 /// assert_eq!(*mutex.lock().unwrap(), 10);
259 /// ```
260 #[stable(feature = "rust1", since = "1.0.0")]
261 pub fn try_lock(&self) -> TryLockResult<MutexGuard<T>> {
262 unsafe {
263 if self.inner.try_lock() {
264 Ok(MutexGuard::new(self)?)
265 } else {
266 Err(TryLockError::WouldBlock)
267 }
268 }
269 }
270
271 /// Determines whether the mutex is poisoned.
272 ///
273 /// If another thread is active, the mutex can still become poisoned at any
274 /// time. You should not trust a `false` value for program correctness
275 /// without additional synchronization.
276 ///
277 /// # Examples
278 ///
279 /// ```
280 /// use std::sync::{Arc, Mutex};
281 /// use std::thread;
282 ///
283 /// let mutex = Arc::new(Mutex::new(0));
284 /// let c_mutex = mutex.clone();
285 ///
286 /// let _ = thread::spawn(move || {
287 /// let _lock = c_mutex.lock().unwrap();
288 /// panic!(); // the mutex gets poisoned
289 /// }).join();
290 /// assert_eq!(mutex.is_poisoned(), true);
291 /// ```
292 #[inline]
293 #[stable(feature = "sync_poison", since = "1.2.0")]
294 pub fn is_poisoned(&self) -> bool {
295 self.poison.get()
296 }
297
298 /// Consumes this mutex, returning the underlying data.
299 ///
300 /// # Errors
301 ///
302 /// If another user of this mutex panicked while holding the mutex, then
303 /// this call will return an error instead.
304 ///
305 /// # Examples
306 ///
307 /// ```
308 /// use std::sync::Mutex;
309 ///
310 /// let mutex = Mutex::new(0);
311 /// assert_eq!(mutex.into_inner().unwrap(), 0);
312 /// ```
313 #[stable(feature = "mutex_into_inner", since = "1.6.0")]
314 pub fn into_inner(self) -> LockResult<T> where T: Sized {
315 // We know statically that there are no outstanding references to
316 // `self` so there's no need to lock the inner mutex.
317 //
318 // To get the inner value, we'd like to call `data.into_inner()`,
319 // but because `Mutex` impl-s `Drop`, we can't move out of it, so
320 // we'll have to destructure it manually instead.
321 unsafe {
322 // Like `let Mutex { inner, poison, data } = self`.
323 let (inner, poison, data) = {
324 let Mutex { ref inner, ref poison, ref data } = self;
325 (ptr::read(inner), ptr::read(poison), ptr::read(data))
326 };
327 mem::forget(self);
328 inner.destroy(); // Keep in sync with the `Drop` impl.
329 drop(inner);
330
331 poison::map_result(poison.borrow(), |_| data.into_inner())
332 }
333 }
334
335 /// Returns a mutable reference to the underlying data.
336 ///
337 /// Since this call borrows the `Mutex` mutably, no actual locking needs to
338 /// take place---the mutable borrow statically guarantees no locks exist.
339 ///
340 /// # Errors
341 ///
342 /// If another user of this mutex panicked while holding the mutex, then
343 /// this call will return an error instead.
344 ///
345 /// # Examples
346 ///
347 /// ```
348 /// use std::sync::Mutex;
349 ///
350 /// let mut mutex = Mutex::new(0);
351 /// *mutex.get_mut().unwrap() = 10;
352 /// assert_eq!(*mutex.lock().unwrap(), 10);
353 /// ```
354 #[stable(feature = "mutex_get_mut", since = "1.6.0")]
355 pub fn get_mut(&mut self) -> LockResult<&mut T> {
356 // We know statically that there are no other references to `self`, so
357 // there's no need to lock the inner mutex.
358 let data = unsafe { &mut *self.data.get() };
359 poison::map_result(self.poison.borrow(), |_| data )
360 }
361 }
362
363 #[stable(feature = "rust1", since = "1.0.0")]
364 unsafe impl<#[may_dangle] T: ?Sized> Drop for Mutex<T> {
365 fn drop(&mut self) {
366 // This is actually safe b/c we know that there is no further usage of
367 // this mutex (it's up to the user to arrange for a mutex to get
368 // dropped, that's not our job)
369 //
370 // IMPORTANT: This code must be kept in sync with `Mutex::into_inner`.
371 unsafe { self.inner.destroy() }
372 }
373 }
374
375 #[stable(feature = "mutex_default", since = "1.10.0")]
376 impl<T: ?Sized + Default> Default for Mutex<T> {
377 /// Creates a `Mutex<T>`, with the `Default` value for T.
378 fn default() -> Mutex<T> {
379 Mutex::new(Default::default())
380 }
381 }
382
383 #[stable(feature = "rust1", since = "1.0.0")]
384 impl<T: ?Sized + fmt::Debug> fmt::Debug for Mutex<T> {
385 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
386 match self.try_lock() {
387 Ok(guard) => write!(f, "Mutex {{ data: {:?} }}", &*guard),
388 Err(TryLockError::Poisoned(err)) => {
389 write!(f, "Mutex {{ data: Poisoned({:?}) }}", &**err.get_ref())
390 },
391 Err(TryLockError::WouldBlock) => write!(f, "Mutex {{ <locked> }}")
392 }
393 }
394 }
395
396 impl<'mutex, T: ?Sized> MutexGuard<'mutex, T> {
397 unsafe fn new(lock: &'mutex Mutex<T>) -> LockResult<MutexGuard<'mutex, T>> {
398 poison::map_result(lock.poison.borrow(), |guard| {
399 MutexGuard {
400 __lock: lock,
401 __poison: guard,
402 }
403 })
404 }
405 }
406
407 #[stable(feature = "rust1", since = "1.0.0")]
408 impl<'mutex, T: ?Sized> Deref for MutexGuard<'mutex, T> {
409 type Target = T;
410
411 fn deref(&self) -> &T {
412 unsafe { &*self.__lock.data.get() }
413 }
414 }
415
416 #[stable(feature = "rust1", since = "1.0.0")]
417 impl<'mutex, T: ?Sized> DerefMut for MutexGuard<'mutex, T> {
418 fn deref_mut(&mut self) -> &mut T {
419 unsafe { &mut *self.__lock.data.get() }
420 }
421 }
422
423 #[stable(feature = "rust1", since = "1.0.0")]
424 impl<'a, T: ?Sized> Drop for MutexGuard<'a, T> {
425 #[inline]
426 fn drop(&mut self) {
427 unsafe {
428 self.__lock.poison.done(&self.__poison);
429 self.__lock.inner.unlock();
430 }
431 }
432 }
433
434 #[stable(feature = "std_debug", since = "1.16.0")]
435 impl<'a, T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'a, T> {
436 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
437 f.debug_struct("MutexGuard")
438 .field("lock", &self.__lock)
439 .finish()
440 }
441 }
442
443 #[stable(feature = "std_guard_impls", since = "1.20.0")]
444 impl<'a, T: ?Sized + fmt::Display> fmt::Display for MutexGuard<'a, T> {
445 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
446 (**self).fmt(f)
447 }
448 }
449
450 pub fn guard_lock<'a, T: ?Sized>(guard: &MutexGuard<'a, T>) -> &'a sys::Mutex {
451 &guard.__lock.inner
452 }
453
454 pub fn guard_poison<'a, T: ?Sized>(guard: &MutexGuard<'a, T>) -> &'a poison::Flag {
455 &guard.__lock.poison
456 }
457
458 #[cfg(all(test, not(target_os = "emscripten")))]
459 mod tests {
460 use sync::mpsc::channel;
461 use sync::{Arc, Mutex, Condvar};
462 use sync::atomic::{AtomicUsize, Ordering};
463 use thread;
464
465 struct Packet<T>(Arc<(Mutex<T>, Condvar)>);
466
467 #[derive(Eq, PartialEq, Debug)]
468 struct NonCopy(i32);
469
470 #[test]
471 fn smoke() {
472 let m = Mutex::new(());
473 drop(m.lock().unwrap());
474 drop(m.lock().unwrap());
475 }
476
477 #[test]
478 fn lots_and_lots() {
479 const J: u32 = 1000;
480 const K: u32 = 3;
481
482 let m = Arc::new(Mutex::new(0));
483
484 fn inc(m: &Mutex<u32>) {
485 for _ in 0..J {
486 *m.lock().unwrap() += 1;
487 }
488 }
489
490 let (tx, rx) = channel();
491 for _ in 0..K {
492 let tx2 = tx.clone();
493 let m2 = m.clone();
494 thread::spawn(move|| { inc(&m2); tx2.send(()).unwrap(); });
495 let tx2 = tx.clone();
496 let m2 = m.clone();
497 thread::spawn(move|| { inc(&m2); tx2.send(()).unwrap(); });
498 }
499
500 drop(tx);
501 for _ in 0..2 * K {
502 rx.recv().unwrap();
503 }
504 assert_eq!(*m.lock().unwrap(), J * K * 2);
505 }
506
507 #[test]
508 fn try_lock() {
509 let m = Mutex::new(());
510 *m.try_lock().unwrap() = ();
511 }
512
513 #[test]
514 fn test_into_inner() {
515 let m = Mutex::new(NonCopy(10));
516 assert_eq!(m.into_inner().unwrap(), NonCopy(10));
517 }
518
519 #[test]
520 fn test_into_inner_drop() {
521 struct Foo(Arc<AtomicUsize>);
522 impl Drop for Foo {
523 fn drop(&mut self) {
524 self.0.fetch_add(1, Ordering::SeqCst);
525 }
526 }
527 let num_drops = Arc::new(AtomicUsize::new(0));
528 let m = Mutex::new(Foo(num_drops.clone()));
529 assert_eq!(num_drops.load(Ordering::SeqCst), 0);
530 {
531 let _inner = m.into_inner().unwrap();
532 assert_eq!(num_drops.load(Ordering::SeqCst), 0);
533 }
534 assert_eq!(num_drops.load(Ordering::SeqCst), 1);
535 }
536
537 #[test]
538 fn test_into_inner_poison() {
539 let m = Arc::new(Mutex::new(NonCopy(10)));
540 let m2 = m.clone();
541 let _ = thread::spawn(move || {
542 let _lock = m2.lock().unwrap();
543 panic!("test panic in inner thread to poison mutex");
544 }).join();
545
546 assert!(m.is_poisoned());
547 match Arc::try_unwrap(m).unwrap().into_inner() {
548 Err(e) => assert_eq!(e.into_inner(), NonCopy(10)),
549 Ok(x) => panic!("into_inner of poisoned Mutex is Ok: {:?}", x),
550 }
551 }
552
553 #[test]
554 fn test_get_mut() {
555 let mut m = Mutex::new(NonCopy(10));
556 *m.get_mut().unwrap() = NonCopy(20);
557 assert_eq!(m.into_inner().unwrap(), NonCopy(20));
558 }
559
560 #[test]
561 fn test_get_mut_poison() {
562 let m = Arc::new(Mutex::new(NonCopy(10)));
563 let m2 = m.clone();
564 let _ = thread::spawn(move || {
565 let _lock = m2.lock().unwrap();
566 panic!("test panic in inner thread to poison mutex");
567 }).join();
568
569 assert!(m.is_poisoned());
570 match Arc::try_unwrap(m).unwrap().get_mut() {
571 Err(e) => assert_eq!(*e.into_inner(), NonCopy(10)),
572 Ok(x) => panic!("get_mut of poisoned Mutex is Ok: {:?}", x),
573 }
574 }
575
576 #[test]
577 fn test_mutex_arc_condvar() {
578 let packet = Packet(Arc::new((Mutex::new(false), Condvar::new())));
579 let packet2 = Packet(packet.0.clone());
580 let (tx, rx) = channel();
581 let _t = thread::spawn(move|| {
582 // wait until parent gets in
583 rx.recv().unwrap();
584 let &(ref lock, ref cvar) = &*packet2.0;
585 let mut lock = lock.lock().unwrap();
586 *lock = true;
587 cvar.notify_one();
588 });
589
590 let &(ref lock, ref cvar) = &*packet.0;
591 let mut lock = lock.lock().unwrap();
592 tx.send(()).unwrap();
593 assert!(!*lock);
594 while !*lock {
595 lock = cvar.wait(lock).unwrap();
596 }
597 }
598
599 #[test]
600 fn test_arc_condvar_poison() {
601 let packet = Packet(Arc::new((Mutex::new(1), Condvar::new())));
602 let packet2 = Packet(packet.0.clone());
603 let (tx, rx) = channel();
604
605 let _t = thread::spawn(move || -> () {
606 rx.recv().unwrap();
607 let &(ref lock, ref cvar) = &*packet2.0;
608 let _g = lock.lock().unwrap();
609 cvar.notify_one();
610 // Parent should fail when it wakes up.
611 panic!();
612 });
613
614 let &(ref lock, ref cvar) = &*packet.0;
615 let mut lock = lock.lock().unwrap();
616 tx.send(()).unwrap();
617 while *lock == 1 {
618 match cvar.wait(lock) {
619 Ok(l) => {
620 lock = l;
621 assert_eq!(*lock, 1);
622 }
623 Err(..) => break,
624 }
625 }
626 }
627
628 #[test]
629 fn test_mutex_arc_poison() {
630 let arc = Arc::new(Mutex::new(1));
631 assert!(!arc.is_poisoned());
632 let arc2 = arc.clone();
633 let _ = thread::spawn(move|| {
634 let lock = arc2.lock().unwrap();
635 assert_eq!(*lock, 2);
636 }).join();
637 assert!(arc.lock().is_err());
638 assert!(arc.is_poisoned());
639 }
640
641 #[test]
642 fn test_mutex_arc_nested() {
643 // Tests nested mutexes and access
644 // to underlying data.
645 let arc = Arc::new(Mutex::new(1));
646 let arc2 = Arc::new(Mutex::new(arc));
647 let (tx, rx) = channel();
648 let _t = thread::spawn(move|| {
649 let lock = arc2.lock().unwrap();
650 let lock2 = lock.lock().unwrap();
651 assert_eq!(*lock2, 1);
652 tx.send(()).unwrap();
653 });
654 rx.recv().unwrap();
655 }
656
657 #[test]
658 fn test_mutex_arc_access_in_unwind() {
659 let arc = Arc::new(Mutex::new(1));
660 let arc2 = arc.clone();
661 let _ = thread::spawn(move|| -> () {
662 struct Unwinder {
663 i: Arc<Mutex<i32>>,
664 }
665 impl Drop for Unwinder {
666 fn drop(&mut self) {
667 *self.i.lock().unwrap() += 1;
668 }
669 }
670 let _u = Unwinder { i: arc2 };
671 panic!();
672 }).join();
673 let lock = arc.lock().unwrap();
674 assert_eq!(*lock, 2);
675 }
676
677 #[test]
678 fn test_mutex_unsized() {
679 let mutex: &Mutex<[i32]> = &Mutex::new([1, 2, 3]);
680 {
681 let b = &mut *mutex.lock().unwrap();
682 b[0] = 4;
683 b[2] = 5;
684 }
685 let comp: &[i32] = &[4, 2, 5];
686 assert_eq!(&*mutex.lock().unwrap(), comp);
687 }
688 }