]> git.proxmox.com Git - rustc.git/blob - src/libstd/sync/mutex.rs
New upstream version 1.46.0~beta.2+dfsg1
[rustc.git] / src / libstd / sync / mutex.rs
1 use crate::cell::UnsafeCell;
2 use crate::fmt;
3 use crate::mem;
4 use crate::ops::{Deref, DerefMut};
5 use crate::ptr;
6 use crate::sys_common::mutex as sys;
7 use crate::sys_common::poison::{self, LockResult, TryLockError, TryLockResult};
8
9 /// A mutual exclusion primitive useful for protecting shared data
10 ///
11 /// This mutex will block threads waiting for the lock to become available. The
12 /// mutex can also be statically initialized or created via a [`new`]
13 /// constructor. Each mutex has a type parameter which represents the data that
14 /// it is protecting. The data can only be accessed through the RAII guards
15 /// returned from [`lock`] and [`try_lock`], which guarantees that the data is only
16 /// ever accessed when the mutex is locked.
17 ///
18 /// # Poisoning
19 ///
20 /// The mutexes in this module implement a strategy called "poisoning" where a
21 /// mutex is considered poisoned whenever a thread panics while holding the
22 /// mutex. Once a mutex is poisoned, all other threads are unable to access the
23 /// data by default as it is likely tainted (some invariant is not being
24 /// upheld).
25 ///
26 /// For a mutex, this means that the [`lock`] and [`try_lock`] methods return a
27 /// [`Result`] which indicates whether a mutex has been poisoned or not. Most
28 /// usage of a mutex will simply [`unwrap()`] these results, propagating panics
29 /// among threads to ensure that a possibly invalid invariant is not witnessed.
30 ///
31 /// A poisoned mutex, however, does not prevent all access to the underlying
32 /// data. The [`PoisonError`] type has an [`into_inner`] method which will return
33 /// the guard that would have otherwise been returned on a successful lock. This
34 /// allows access to the data, despite the lock being poisoned.
35 ///
36 /// [`new`]: #method.new
37 /// [`lock`]: #method.lock
38 /// [`try_lock`]: #method.try_lock
39 /// [`Result`]: ../../std/result/enum.Result.html
40 /// [`unwrap()`]: ../../std/result/enum.Result.html#method.unwrap
41 /// [`PoisonError`]: ../../std/sync/struct.PoisonError.html
42 /// [`into_inner`]: ../../std/sync/struct.PoisonError.html#method.into_inner
43 ///
44 /// # Examples
45 ///
46 /// ```
47 /// use std::sync::{Arc, Mutex};
48 /// use std::thread;
49 /// use std::sync::mpsc::channel;
50 ///
51 /// const N: usize = 10;
52 ///
53 /// // Spawn a few threads to increment a shared variable (non-atomically), and
54 /// // let the main thread know once all increments are done.
55 /// //
56 /// // Here we're using an Arc to share memory among threads, and the data inside
57 /// // the Arc is protected with a mutex.
58 /// let data = Arc::new(Mutex::new(0));
59 ///
60 /// let (tx, rx) = channel();
61 /// for _ in 0..N {
62 /// let (data, tx) = (Arc::clone(&data), tx.clone());
63 /// thread::spawn(move || {
64 /// // The shared state can only be accessed once the lock is held.
65 /// // Our non-atomic increment is safe because we're the only thread
66 /// // which can access the shared state when the lock is held.
67 /// //
68 /// // We unwrap() the return value to assert that we are not expecting
69 /// // threads to ever fail while holding the lock.
70 /// let mut data = data.lock().unwrap();
71 /// *data += 1;
72 /// if *data == N {
73 /// tx.send(()).unwrap();
74 /// }
75 /// // the lock is unlocked here when `data` goes out of scope.
76 /// });
77 /// }
78 ///
79 /// rx.recv().unwrap();
80 /// ```
81 ///
82 /// To recover from a poisoned mutex:
83 ///
84 /// ```
85 /// use std::sync::{Arc, Mutex};
86 /// use std::thread;
87 ///
88 /// let lock = Arc::new(Mutex::new(0_u32));
89 /// let lock2 = lock.clone();
90 ///
91 /// let _ = thread::spawn(move || -> () {
92 /// // This thread will acquire the mutex first, unwrapping the result of
93 /// // `lock` because the lock has not been poisoned.
94 /// let _guard = lock2.lock().unwrap();
95 ///
96 /// // This panic while holding the lock (`_guard` is in scope) will poison
97 /// // the mutex.
98 /// panic!();
99 /// }).join();
100 ///
101 /// // The lock is poisoned by this point, but the returned result can be
102 /// // pattern matched on to return the underlying guard on both branches.
103 /// let mut guard = match lock.lock() {
104 /// Ok(guard) => guard,
105 /// Err(poisoned) => poisoned.into_inner(),
106 /// };
107 ///
108 /// *guard += 1;
109 /// ```
110 ///
111 /// It is sometimes necessary to manually drop the mutex guard to unlock it
112 /// sooner than the end of the enclosing scope.
113 ///
114 /// ```
115 /// use std::sync::{Arc, Mutex};
116 /// use std::thread;
117 ///
118 /// const N: usize = 3;
119 ///
120 /// let data_mutex = Arc::new(Mutex::new(vec![1, 2, 3, 4]));
121 /// let res_mutex = Arc::new(Mutex::new(0));
122 ///
123 /// let mut threads = Vec::with_capacity(N);
124 /// (0..N).for_each(|_| {
125 /// let data_mutex_clone = Arc::clone(&data_mutex);
126 /// let res_mutex_clone = Arc::clone(&res_mutex);
127 ///
128 /// threads.push(thread::spawn(move || {
129 /// let mut data = data_mutex_clone.lock().unwrap();
130 /// // This is the result of some important and long-ish work.
131 /// let result = data.iter().fold(0, |acc, x| acc + x * 2);
132 /// data.push(result);
133 /// drop(data);
134 /// *res_mutex_clone.lock().unwrap() += result;
135 /// }));
136 /// });
137 ///
138 /// let mut data = data_mutex.lock().unwrap();
139 /// // This is the result of some important and long-ish work.
140 /// let result = data.iter().fold(0, |acc, x| acc + x * 2);
141 /// data.push(result);
142 /// // We drop the `data` explicitly because it's not necessary anymore and the
143 /// // thread still has work to do. This allow other threads to start working on
144 /// // the data immediately, without waiting for the rest of the unrelated work
145 /// // to be done here.
146 /// //
147 /// // It's even more important here than in the threads because we `.join` the
148 /// // threads after that. If we had not dropped the mutex guard, a thread could
149 /// // be waiting forever for it, causing a deadlock.
150 /// drop(data);
151 /// // Here the mutex guard is not assigned to a variable and so, even if the
152 /// // scope does not end after this line, the mutex is still released: there is
153 /// // no deadlock.
154 /// *res_mutex.lock().unwrap() += result;
155 ///
156 /// threads.into_iter().for_each(|thread| {
157 /// thread
158 /// .join()
159 /// .expect("The thread creating or execution failed !")
160 /// });
161 ///
162 /// assert_eq!(*res_mutex.lock().unwrap(), 800);
163 /// ```
164 #[stable(feature = "rust1", since = "1.0.0")]
165 #[cfg_attr(not(test), rustc_diagnostic_item = "mutex_type")]
166 pub struct Mutex<T: ?Sized> {
167 // Note that this mutex is in a *box*, not inlined into the struct itself.
168 // Once a native mutex has been used once, its address can never change (it
169 // can't be moved). This mutex type can be safely moved at any time, so to
170 // ensure that the native mutex is used correctly we box the inner mutex to
171 // give it a constant address.
172 inner: Box<sys::Mutex>,
173 poison: poison::Flag,
174 data: UnsafeCell<T>,
175 }
176
177 // these are the only places where `T: Send` matters; all other
178 // functionality works fine on a single thread.
179 #[stable(feature = "rust1", since = "1.0.0")]
180 unsafe impl<T: ?Sized + Send> Send for Mutex<T> {}
181 #[stable(feature = "rust1", since = "1.0.0")]
182 unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {}
183
184 /// An RAII implementation of a "scoped lock" of a mutex. When this structure is
185 /// dropped (falls out of scope), the lock will be unlocked.
186 ///
187 /// The data protected by the mutex can be accessed through this guard via its
188 /// [`Deref`] and [`DerefMut`] implementations.
189 ///
190 /// This structure is created by the [`lock`] and [`try_lock`] methods on
191 /// [`Mutex`].
192 ///
193 /// [`Deref`]: ../../std/ops/trait.Deref.html
194 /// [`DerefMut`]: ../../std/ops/trait.DerefMut.html
195 /// [`lock`]: struct.Mutex.html#method.lock
196 /// [`try_lock`]: struct.Mutex.html#method.try_lock
197 /// [`Mutex`]: struct.Mutex.html
198 #[must_use = "if unused the Mutex will immediately unlock"]
199 #[stable(feature = "rust1", since = "1.0.0")]
200 pub struct MutexGuard<'a, T: ?Sized + 'a> {
201 lock: &'a Mutex<T>,
202 poison: poison::Guard,
203 }
204
205 #[stable(feature = "rust1", since = "1.0.0")]
206 impl<T: ?Sized> !Send for MutexGuard<'_, T> {}
207 #[stable(feature = "mutexguard", since = "1.19.0")]
208 unsafe impl<T: ?Sized + Sync> Sync for MutexGuard<'_, T> {}
209
210 impl<T> Mutex<T> {
211 /// Creates a new mutex in an unlocked state ready for use.
212 ///
213 /// # Examples
214 ///
215 /// ```
216 /// use std::sync::Mutex;
217 ///
218 /// let mutex = Mutex::new(0);
219 /// ```
220 #[stable(feature = "rust1", since = "1.0.0")]
221 pub fn new(t: T) -> Mutex<T> {
222 let mut m = Mutex {
223 inner: box sys::Mutex::new(),
224 poison: poison::Flag::new(),
225 data: UnsafeCell::new(t),
226 };
227 unsafe {
228 m.inner.init();
229 }
230 m
231 }
232 }
233
234 impl<T: ?Sized> Mutex<T> {
235 /// Acquires a mutex, blocking the current thread until it is able to do so.
236 ///
237 /// This function will block the local thread until it is available to acquire
238 /// the mutex. Upon returning, the thread is the only thread with the lock
239 /// held. An RAII guard is returned to allow scoped unlock of the lock. When
240 /// the guard goes out of scope, the mutex will be unlocked.
241 ///
242 /// The exact behavior on locking a mutex in the thread which already holds
243 /// the lock is left unspecified. However, this function will not return on
244 /// the second call (it might panic or deadlock, for example).
245 ///
246 /// # Errors
247 ///
248 /// If another user of this mutex panicked while holding the mutex, then
249 /// this call will return an error once the mutex is acquired.
250 ///
251 /// # Panics
252 ///
253 /// This function might panic when called if the lock is already held by
254 /// the current thread.
255 ///
256 /// # Examples
257 ///
258 /// ```
259 /// use std::sync::{Arc, Mutex};
260 /// use std::thread;
261 ///
262 /// let mutex = Arc::new(Mutex::new(0));
263 /// let c_mutex = mutex.clone();
264 ///
265 /// thread::spawn(move || {
266 /// *c_mutex.lock().unwrap() = 10;
267 /// }).join().expect("thread::spawn failed");
268 /// assert_eq!(*mutex.lock().unwrap(), 10);
269 /// ```
270 #[stable(feature = "rust1", since = "1.0.0")]
271 pub fn lock(&self) -> LockResult<MutexGuard<'_, T>> {
272 unsafe {
273 self.inner.raw_lock();
274 MutexGuard::new(self)
275 }
276 }
277
278 /// Attempts to acquire this lock.
279 ///
280 /// If the lock could not be acquired at this time, then [`Err`] is returned.
281 /// Otherwise, an RAII guard is returned. The lock will be unlocked when the
282 /// guard is dropped.
283 ///
284 /// This function does not block.
285 ///
286 /// # Errors
287 ///
288 /// If another user of this mutex panicked while holding the mutex, then
289 /// this call will return failure if the mutex would otherwise be
290 /// acquired.
291 ///
292 /// [`Err`]: ../../std/result/enum.Result.html#variant.Err
293 ///
294 /// # Examples
295 ///
296 /// ```
297 /// use std::sync::{Arc, Mutex};
298 /// use std::thread;
299 ///
300 /// let mutex = Arc::new(Mutex::new(0));
301 /// let c_mutex = mutex.clone();
302 ///
303 /// thread::spawn(move || {
304 /// let mut lock = c_mutex.try_lock();
305 /// if let Ok(ref mut mutex) = lock {
306 /// **mutex = 10;
307 /// } else {
308 /// println!("try_lock failed");
309 /// }
310 /// }).join().expect("thread::spawn failed");
311 /// assert_eq!(*mutex.lock().unwrap(), 10);
312 /// ```
313 #[stable(feature = "rust1", since = "1.0.0")]
314 pub fn try_lock(&self) -> TryLockResult<MutexGuard<'_, T>> {
315 unsafe {
316 if self.inner.try_lock() {
317 Ok(MutexGuard::new(self)?)
318 } else {
319 Err(TryLockError::WouldBlock)
320 }
321 }
322 }
323
324 /// Determines whether the mutex is poisoned.
325 ///
326 /// If another thread is active, the mutex can still become poisoned at any
327 /// time. You should not trust a `false` value for program correctness
328 /// without additional synchronization.
329 ///
330 /// # Examples
331 ///
332 /// ```
333 /// use std::sync::{Arc, Mutex};
334 /// use std::thread;
335 ///
336 /// let mutex = Arc::new(Mutex::new(0));
337 /// let c_mutex = mutex.clone();
338 ///
339 /// let _ = thread::spawn(move || {
340 /// let _lock = c_mutex.lock().unwrap();
341 /// panic!(); // the mutex gets poisoned
342 /// }).join();
343 /// assert_eq!(mutex.is_poisoned(), true);
344 /// ```
345 #[inline]
346 #[stable(feature = "sync_poison", since = "1.2.0")]
347 pub fn is_poisoned(&self) -> bool {
348 self.poison.get()
349 }
350
351 /// Consumes this mutex, returning the underlying data.
352 ///
353 /// # Errors
354 ///
355 /// If another user of this mutex panicked while holding the mutex, then
356 /// this call will return an error instead.
357 ///
358 /// # Examples
359 ///
360 /// ```
361 /// use std::sync::Mutex;
362 ///
363 /// let mutex = Mutex::new(0);
364 /// assert_eq!(mutex.into_inner().unwrap(), 0);
365 /// ```
366 #[stable(feature = "mutex_into_inner", since = "1.6.0")]
367 pub fn into_inner(self) -> LockResult<T>
368 where
369 T: Sized,
370 {
371 // We know statically that there are no outstanding references to
372 // `self` so there's no need to lock the inner mutex.
373 //
374 // To get the inner value, we'd like to call `data.into_inner()`,
375 // but because `Mutex` impl-s `Drop`, we can't move out of it, so
376 // we'll have to destructure it manually instead.
377 unsafe {
378 // Like `let Mutex { inner, poison, data } = self`.
379 let (inner, poison, data) = {
380 let Mutex { ref inner, ref poison, ref data } = self;
381 (ptr::read(inner), ptr::read(poison), ptr::read(data))
382 };
383 mem::forget(self);
384 inner.destroy(); // Keep in sync with the `Drop` impl.
385 drop(inner);
386
387 poison::map_result(poison.borrow(), |_| data.into_inner())
388 }
389 }
390
391 /// Returns a mutable reference to the underlying data.
392 ///
393 /// Since this call borrows the `Mutex` mutably, no actual locking needs to
394 /// take place -- the mutable borrow statically guarantees no locks exist.
395 ///
396 /// # Errors
397 ///
398 /// If another user of this mutex panicked while holding the mutex, then
399 /// this call will return an error instead.
400 ///
401 /// # Examples
402 ///
403 /// ```
404 /// use std::sync::Mutex;
405 ///
406 /// let mut mutex = Mutex::new(0);
407 /// *mutex.get_mut().unwrap() = 10;
408 /// assert_eq!(*mutex.lock().unwrap(), 10);
409 /// ```
410 #[stable(feature = "mutex_get_mut", since = "1.6.0")]
411 pub fn get_mut(&mut self) -> LockResult<&mut T> {
412 // We know statically that there are no other references to `self`, so
413 // there's no need to lock the inner mutex.
414 let data = unsafe { &mut *self.data.get() };
415 poison::map_result(self.poison.borrow(), |_| data)
416 }
417 }
418
419 #[stable(feature = "rust1", since = "1.0.0")]
420 unsafe impl<#[may_dangle] T: ?Sized> Drop for Mutex<T> {
421 fn drop(&mut self) {
422 // This is actually safe b/c we know that there is no further usage of
423 // this mutex (it's up to the user to arrange for a mutex to get
424 // dropped, that's not our job)
425 //
426 // IMPORTANT: This code must be kept in sync with `Mutex::into_inner`.
427 unsafe { self.inner.destroy() }
428 }
429 }
430
431 #[stable(feature = "mutex_from", since = "1.24.0")]
432 impl<T> From<T> for Mutex<T> {
433 /// Creates a new mutex in an unlocked state ready for use.
434 /// This is equivalent to [`Mutex::new`].
435 ///
436 /// [`Mutex::new`]: ../../std/sync/struct.Mutex.html#method.new
437 fn from(t: T) -> Self {
438 Mutex::new(t)
439 }
440 }
441
442 #[stable(feature = "mutex_default", since = "1.10.0")]
443 impl<T: ?Sized + Default> Default for Mutex<T> {
444 /// Creates a `Mutex<T>`, with the `Default` value for T.
445 fn default() -> Mutex<T> {
446 Mutex::new(Default::default())
447 }
448 }
449
450 #[stable(feature = "rust1", since = "1.0.0")]
451 impl<T: ?Sized + fmt::Debug> fmt::Debug for Mutex<T> {
452 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
453 match self.try_lock() {
454 Ok(guard) => f.debug_struct("Mutex").field("data", &&*guard).finish(),
455 Err(TryLockError::Poisoned(err)) => {
456 f.debug_struct("Mutex").field("data", &&**err.get_ref()).finish()
457 }
458 Err(TryLockError::WouldBlock) => {
459 struct LockedPlaceholder;
460 impl fmt::Debug for LockedPlaceholder {
461 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
462 f.write_str("<locked>")
463 }
464 }
465
466 f.debug_struct("Mutex").field("data", &LockedPlaceholder).finish()
467 }
468 }
469 }
470 }
471
472 impl<'mutex, T: ?Sized> MutexGuard<'mutex, T> {
473 unsafe fn new(lock: &'mutex Mutex<T>) -> LockResult<MutexGuard<'mutex, T>> {
474 poison::map_result(lock.poison.borrow(), |guard| MutexGuard { lock, poison: guard })
475 }
476 }
477
478 #[stable(feature = "rust1", since = "1.0.0")]
479 impl<T: ?Sized> Deref for MutexGuard<'_, T> {
480 type Target = T;
481
482 fn deref(&self) -> &T {
483 unsafe { &*self.lock.data.get() }
484 }
485 }
486
487 #[stable(feature = "rust1", since = "1.0.0")]
488 impl<T: ?Sized> DerefMut for MutexGuard<'_, T> {
489 fn deref_mut(&mut self) -> &mut T {
490 unsafe { &mut *self.lock.data.get() }
491 }
492 }
493
494 #[stable(feature = "rust1", since = "1.0.0")]
495 impl<T: ?Sized> Drop for MutexGuard<'_, T> {
496 #[inline]
497 fn drop(&mut self) {
498 unsafe {
499 self.lock.poison.done(&self.poison);
500 self.lock.inner.raw_unlock();
501 }
502 }
503 }
504
505 #[stable(feature = "std_debug", since = "1.16.0")]
506 impl<T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'_, T> {
507 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
508 fmt::Debug::fmt(&**self, f)
509 }
510 }
511
512 #[stable(feature = "std_guard_impls", since = "1.20.0")]
513 impl<T: ?Sized + fmt::Display> fmt::Display for MutexGuard<'_, T> {
514 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
515 (**self).fmt(f)
516 }
517 }
518
519 pub fn guard_lock<'a, T: ?Sized>(guard: &MutexGuard<'a, T>) -> &'a sys::Mutex {
520 &guard.lock.inner
521 }
522
523 pub fn guard_poison<'a, T: ?Sized>(guard: &MutexGuard<'a, T>) -> &'a poison::Flag {
524 &guard.lock.poison
525 }
526
527 #[cfg(all(test, not(target_os = "emscripten")))]
528 mod tests {
529 use crate::sync::atomic::{AtomicUsize, Ordering};
530 use crate::sync::mpsc::channel;
531 use crate::sync::{Arc, Condvar, Mutex};
532 use crate::thread;
533
534 struct Packet<T>(Arc<(Mutex<T>, Condvar)>);
535
536 #[derive(Eq, PartialEq, Debug)]
537 struct NonCopy(i32);
538
539 #[test]
540 fn smoke() {
541 let m = Mutex::new(());
542 drop(m.lock().unwrap());
543 drop(m.lock().unwrap());
544 }
545
546 #[test]
547 fn lots_and_lots() {
548 const J: u32 = 1000;
549 const K: u32 = 3;
550
551 let m = Arc::new(Mutex::new(0));
552
553 fn inc(m: &Mutex<u32>) {
554 for _ in 0..J {
555 *m.lock().unwrap() += 1;
556 }
557 }
558
559 let (tx, rx) = channel();
560 for _ in 0..K {
561 let tx2 = tx.clone();
562 let m2 = m.clone();
563 thread::spawn(move || {
564 inc(&m2);
565 tx2.send(()).unwrap();
566 });
567 let tx2 = tx.clone();
568 let m2 = m.clone();
569 thread::spawn(move || {
570 inc(&m2);
571 tx2.send(()).unwrap();
572 });
573 }
574
575 drop(tx);
576 for _ in 0..2 * K {
577 rx.recv().unwrap();
578 }
579 assert_eq!(*m.lock().unwrap(), J * K * 2);
580 }
581
582 #[test]
583 fn try_lock() {
584 let m = Mutex::new(());
585 *m.try_lock().unwrap() = ();
586 }
587
588 #[test]
589 fn test_into_inner() {
590 let m = Mutex::new(NonCopy(10));
591 assert_eq!(m.into_inner().unwrap(), NonCopy(10));
592 }
593
594 #[test]
595 fn test_into_inner_drop() {
596 struct Foo(Arc<AtomicUsize>);
597 impl Drop for Foo {
598 fn drop(&mut self) {
599 self.0.fetch_add(1, Ordering::SeqCst);
600 }
601 }
602 let num_drops = Arc::new(AtomicUsize::new(0));
603 let m = Mutex::new(Foo(num_drops.clone()));
604 assert_eq!(num_drops.load(Ordering::SeqCst), 0);
605 {
606 let _inner = m.into_inner().unwrap();
607 assert_eq!(num_drops.load(Ordering::SeqCst), 0);
608 }
609 assert_eq!(num_drops.load(Ordering::SeqCst), 1);
610 }
611
612 #[test]
613 fn test_into_inner_poison() {
614 let m = Arc::new(Mutex::new(NonCopy(10)));
615 let m2 = m.clone();
616 let _ = thread::spawn(move || {
617 let _lock = m2.lock().unwrap();
618 panic!("test panic in inner thread to poison mutex");
619 })
620 .join();
621
622 assert!(m.is_poisoned());
623 match Arc::try_unwrap(m).unwrap().into_inner() {
624 Err(e) => assert_eq!(e.into_inner(), NonCopy(10)),
625 Ok(x) => panic!("into_inner of poisoned Mutex is Ok: {:?}", x),
626 }
627 }
628
629 #[test]
630 fn test_get_mut() {
631 let mut m = Mutex::new(NonCopy(10));
632 *m.get_mut().unwrap() = NonCopy(20);
633 assert_eq!(m.into_inner().unwrap(), NonCopy(20));
634 }
635
636 #[test]
637 fn test_get_mut_poison() {
638 let m = Arc::new(Mutex::new(NonCopy(10)));
639 let m2 = m.clone();
640 let _ = thread::spawn(move || {
641 let _lock = m2.lock().unwrap();
642 panic!("test panic in inner thread to poison mutex");
643 })
644 .join();
645
646 assert!(m.is_poisoned());
647 match Arc::try_unwrap(m).unwrap().get_mut() {
648 Err(e) => assert_eq!(*e.into_inner(), NonCopy(10)),
649 Ok(x) => panic!("get_mut of poisoned Mutex is Ok: {:?}", x),
650 }
651 }
652
653 #[test]
654 fn test_mutex_arc_condvar() {
655 let packet = Packet(Arc::new((Mutex::new(false), Condvar::new())));
656 let packet2 = Packet(packet.0.clone());
657 let (tx, rx) = channel();
658 let _t = thread::spawn(move || {
659 // wait until parent gets in
660 rx.recv().unwrap();
661 let &(ref lock, ref cvar) = &*packet2.0;
662 let mut lock = lock.lock().unwrap();
663 *lock = true;
664 cvar.notify_one();
665 });
666
667 let &(ref lock, ref cvar) = &*packet.0;
668 let mut lock = lock.lock().unwrap();
669 tx.send(()).unwrap();
670 assert!(!*lock);
671 while !*lock {
672 lock = cvar.wait(lock).unwrap();
673 }
674 }
675
676 #[test]
677 fn test_arc_condvar_poison() {
678 let packet = Packet(Arc::new((Mutex::new(1), Condvar::new())));
679 let packet2 = Packet(packet.0.clone());
680 let (tx, rx) = channel();
681
682 let _t = thread::spawn(move || -> () {
683 rx.recv().unwrap();
684 let &(ref lock, ref cvar) = &*packet2.0;
685 let _g = lock.lock().unwrap();
686 cvar.notify_one();
687 // Parent should fail when it wakes up.
688 panic!();
689 });
690
691 let &(ref lock, ref cvar) = &*packet.0;
692 let mut lock = lock.lock().unwrap();
693 tx.send(()).unwrap();
694 while *lock == 1 {
695 match cvar.wait(lock) {
696 Ok(l) => {
697 lock = l;
698 assert_eq!(*lock, 1);
699 }
700 Err(..) => break,
701 }
702 }
703 }
704
705 #[test]
706 fn test_mutex_arc_poison() {
707 let arc = Arc::new(Mutex::new(1));
708 assert!(!arc.is_poisoned());
709 let arc2 = arc.clone();
710 let _ = thread::spawn(move || {
711 let lock = arc2.lock().unwrap();
712 assert_eq!(*lock, 2);
713 })
714 .join();
715 assert!(arc.lock().is_err());
716 assert!(arc.is_poisoned());
717 }
718
719 #[test]
720 fn test_mutex_arc_nested() {
721 // Tests nested mutexes and access
722 // to underlying data.
723 let arc = Arc::new(Mutex::new(1));
724 let arc2 = Arc::new(Mutex::new(arc));
725 let (tx, rx) = channel();
726 let _t = thread::spawn(move || {
727 let lock = arc2.lock().unwrap();
728 let lock2 = lock.lock().unwrap();
729 assert_eq!(*lock2, 1);
730 tx.send(()).unwrap();
731 });
732 rx.recv().unwrap();
733 }
734
735 #[test]
736 fn test_mutex_arc_access_in_unwind() {
737 let arc = Arc::new(Mutex::new(1));
738 let arc2 = arc.clone();
739 let _ = thread::spawn(move || -> () {
740 struct Unwinder {
741 i: Arc<Mutex<i32>>,
742 }
743 impl Drop for Unwinder {
744 fn drop(&mut self) {
745 *self.i.lock().unwrap() += 1;
746 }
747 }
748 let _u = Unwinder { i: arc2 };
749 panic!();
750 })
751 .join();
752 let lock = arc.lock().unwrap();
753 assert_eq!(*lock, 2);
754 }
755
756 #[test]
757 fn test_mutex_unsized() {
758 let mutex: &Mutex<[i32]> = &Mutex::new([1, 2, 3]);
759 {
760 let b = &mut *mutex.lock().unwrap();
761 b[0] = 4;
762 b[2] = 5;
763 }
764 let comp: &[i32] = &[4, 2, 5];
765 assert_eq!(&*mutex.lock().unwrap(), comp);
766 }
767 }