]> git.proxmox.com Git - rustc.git/blob - src/libstd/sys/sgx/abi/usercalls/alloc.rs
New upstream version 1.38.0+dfsg1
[rustc.git] / src / libstd / sys / sgx / abi / usercalls / alloc.rs
1 #![allow(unused)]
2
3 use crate::ptr::{self, NonNull};
4 use crate::mem;
5 use crate::cell::UnsafeCell;
6 use crate::slice;
7 use crate::ops::{Deref, DerefMut, Index, IndexMut, CoerceUnsized};
8 use crate::slice::SliceIndex;
9
10 use fortanix_sgx_abi::*;
11 use super::super::mem::is_user_range;
12
13 /// A type that can be safely read from or written to userspace.
14 ///
15 /// Non-exhaustive list of specific requirements for reading and writing:
16 /// * **Type is `Copy`** (and therefore also not `Drop`). Copies will be
17 /// created when copying from/to userspace. Destructors will not be called.
18 /// * **No references or Rust-style owned pointers** (`Vec`, `Arc`, etc.). When
19 /// reading from userspace, references into enclave memory must not be
20 /// created. Also, only enclave memory is considered managed by the Rust
21 /// compiler's static analysis. When reading from userspace, there can be no
22 /// guarantee that the value correctly adheres to the expectations of the
23 /// type. When writing to userspace, memory addresses of data in enclave
24 /// memory must not be leaked for confidentiality reasons. `User` and
25 /// `UserRef` are also not allowed for the same reasons.
26 /// * **No fat pointers.** When reading from userspace, the size or vtable
27 /// pointer could be automatically interpreted and used by the code. When
28 /// writing to userspace, memory addresses of data in enclave memory (such
29 /// as vtable pointers) must not be leaked for confidentiality reasons.
30 ///
31 /// Non-exhaustive list of specific requirements for reading from userspace:
32 /// * **Any bit pattern is valid** for this type (no `enum`s). There can be no
33 /// guarantee that the value correctly adheres to the expectations of the
34 /// type, so any value must be valid for this type.
35 ///
36 /// Non-exhaustive list of specific requirements for writing to userspace:
37 /// * **No pointers to enclave memory.** Memory addresses of data in enclave
38 /// memory must not be leaked for confidentiality reasons.
39 /// * **No internal padding.** Padding might contain previously-initialized
40 /// secret data stored at that memory location and must not be leaked for
41 /// confidentiality reasons.
42 #[unstable(feature = "sgx_platform", issue = "56975")]
43 pub unsafe trait UserSafeSized: Copy + Sized {}
44
45 #[unstable(feature = "sgx_platform", issue = "56975")]
46 unsafe impl UserSafeSized for u8 {}
47 #[unstable(feature = "sgx_platform", issue = "56975")]
48 unsafe impl<T> UserSafeSized for FifoDescriptor<T> {}
49 #[unstable(feature = "sgx_platform", issue = "56975")]
50 unsafe impl UserSafeSized for ByteBuffer {}
51 #[unstable(feature = "sgx_platform", issue = "56975")]
52 unsafe impl UserSafeSized for Usercall {}
53 #[unstable(feature = "sgx_platform", issue = "56975")]
54 unsafe impl UserSafeSized for Return {}
55 #[unstable(feature = "sgx_platform", issue = "56975")]
56 unsafe impl<T: UserSafeSized> UserSafeSized for [T; 2] {}
57
58 /// A type that can be represented in memory as one or more `UserSafeSized`s.
59 #[unstable(feature = "sgx_platform", issue = "56975")]
60 pub unsafe trait UserSafe {
61 /// Equivalent to `mem::align_of::<Self>`.
62 fn align_of() -> usize;
63
64 /// Construct a pointer to `Self` given a memory range in user space.
65 ///
66 /// N.B., this takes a size, not a length!
67 ///
68 /// # Safety
69 ///
70 /// The caller must ensure the memory range is in user memory, is the
71 /// correct size and is correctly aligned and points to the right type.
72 unsafe fn from_raw_sized_unchecked(ptr: *mut u8, size: usize) -> *mut Self;
73
74 /// Construct a pointer to `Self` given a memory range.
75 ///
76 /// N.B., this takes a size, not a length!
77 ///
78 /// # Safety
79 ///
80 /// The caller must ensure the memory range points to the correct type.
81 ///
82 /// # Panics
83 ///
84 /// This function panics if:
85 ///
86 /// * the pointer is not aligned.
87 /// * the pointer is null.
88 /// * the pointed-to range does not fit in the address space.
89 /// * the pointed-to range is not in user memory.
90 unsafe fn from_raw_sized(ptr: *mut u8, size: usize) -> NonNull<Self> {
91 assert!(ptr.wrapping_add(size) >= ptr);
92 let ret = Self::from_raw_sized_unchecked(ptr, size);
93 Self::check_ptr(ret);
94 NonNull::new_unchecked(ret as _)
95 }
96
97 /// Checks if a pointer may point to `Self` in user memory.
98 ///
99 /// # Safety
100 ///
101 /// The caller must ensure the memory range points to the correct type and
102 /// length (if this is a slice).
103 ///
104 /// # Panics
105 ///
106 /// This function panics if:
107 ///
108 /// * the pointer is not aligned.
109 /// * the pointer is null.
110 /// * the pointed-to range is not in user memory.
111 unsafe fn check_ptr(ptr: *const Self) {
112 let is_aligned = |p| -> bool {
113 0 == (p as usize) & (Self::align_of() - 1)
114 };
115
116 assert!(is_aligned(ptr as *const u8));
117 assert!(is_user_range(ptr as _, mem::size_of_val(&*ptr)));
118 assert!(!ptr.is_null());
119 }
120 }
121
122 #[unstable(feature = "sgx_platform", issue = "56975")]
123 unsafe impl<T: UserSafeSized> UserSafe for T {
124 fn align_of() -> usize {
125 mem::align_of::<T>()
126 }
127
128 unsafe fn from_raw_sized_unchecked(ptr: *mut u8, size: usize) -> *mut Self {
129 assert_eq!(size, mem::size_of::<T>());
130 ptr as _
131 }
132 }
133
134 #[unstable(feature = "sgx_platform", issue = "56975")]
135 unsafe impl<T: UserSafeSized> UserSafe for [T] {
136 fn align_of() -> usize {
137 mem::align_of::<T>()
138 }
139
140 unsafe fn from_raw_sized_unchecked(ptr: *mut u8, size: usize) -> *mut Self {
141 let elem_size = mem::size_of::<T>();
142 assert_eq!(size % elem_size, 0);
143 let len = size / elem_size;
144 slice::from_raw_parts_mut(ptr as _, len)
145 }
146 }
147
148 /// A reference to some type in userspace memory. `&UserRef<T>` is equivalent
149 /// to `&T` in enclave memory. Access to the memory is only allowed by copying
150 /// to avoid TOCTTOU issues. After copying, code should make sure to completely
151 /// check the value before use.
152 ///
153 /// It is also possible to obtain a mutable reference `&mut UserRef<T>`. Unlike
154 /// regular mutable references, these are not exclusive. Userspace may always
155 /// write to the backing memory at any time, so it can't be assumed that there
156 /// the pointed-to memory is uniquely borrowed. The two different refence types
157 /// are used solely to indicate intent: a mutable reference is for writing to
158 /// user memory, an immutable reference for reading from user memory.
159 #[unstable(feature = "sgx_platform", issue = "56975")]
160 pub struct UserRef<T: ?Sized>(UnsafeCell<T>);
161 /// An owned type in userspace memory. `User<T>` is equivalent to `Box<T>` in
162 /// enclave memory. Access to the memory is only allowed by copying to avoid
163 /// TOCTTOU issues. The user memory will be freed when the value is dropped.
164 /// After copying, code should make sure to completely check the value before
165 /// use.
166 #[unstable(feature = "sgx_platform", issue = "56975")]
167 pub struct User<T: UserSafe + ?Sized>(NonNull<UserRef<T>>);
168
169 trait NewUserRef<T: ?Sized> {
170 unsafe fn new_userref(v: T) -> Self;
171 }
172
173 impl<T: ?Sized> NewUserRef<*mut T> for NonNull<UserRef<T>> {
174 unsafe fn new_userref(v: *mut T) -> Self {
175 NonNull::new_unchecked(v as _)
176 }
177 }
178
179 impl<T: ?Sized> NewUserRef<NonNull<T>> for NonNull<UserRef<T>> {
180 unsafe fn new_userref(v: NonNull<T>) -> Self {
181 NonNull::new_userref(v.as_ptr())
182 }
183 }
184
185 #[unstable(feature = "sgx_platform", issue = "56975")]
186 impl<T: ?Sized> User<T> where T: UserSafe {
187 // This function returns memory that is practically uninitialized, but is
188 // not considered "unspecified" or "undefined" for purposes of an
189 // optimizing compiler. This is achieved by returning a pointer from
190 // from outside as obtained by `super::alloc`.
191 fn new_uninit_bytes(size: usize) -> Self {
192 unsafe {
193 // Mustn't call alloc with size 0.
194 let ptr = if size > 0 {
195 rtunwrap!(Ok, super::alloc(size, T::align_of())) as _
196 } else {
197 T::align_of() as _ // dangling pointer ok for size 0
198 };
199 if let Ok(v) = crate::panic::catch_unwind(|| T::from_raw_sized(ptr, size)) {
200 User(NonNull::new_userref(v))
201 } else {
202 rtabort!("Got invalid pointer from alloc() usercall")
203 }
204 }
205 }
206
207 /// Copies `val` into freshly allocated space in user memory.
208 pub fn new_from_enclave(val: &T) -> Self {
209 unsafe {
210 let ret = Self::new_uninit_bytes(mem::size_of_val(val));
211 ptr::copy(
212 val as *const T as *const u8,
213 ret.0.as_ptr() as *mut u8,
214 mem::size_of_val(val)
215 );
216 ret
217 }
218 }
219
220 /// Creates an owned `User<T>` from a raw pointer.
221 ///
222 /// # Safety
223 /// The caller must ensure `ptr` points to `T`, is freeable with the `free`
224 /// usercall and the alignment of `T`, and is uniquely owned.
225 ///
226 /// # Panics
227 /// This function panics if:
228 ///
229 /// * The pointer is not aligned
230 /// * The pointer is null
231 /// * The pointed-to range is not in user memory
232 pub unsafe fn from_raw(ptr: *mut T) -> Self {
233 T::check_ptr(ptr);
234 User(NonNull::new_userref(ptr))
235 }
236
237 /// Converts this value into a raw pointer. The value will no longer be
238 /// automatically freed.
239 pub fn into_raw(self) -> *mut T {
240 let ret = self.0;
241 mem::forget(self);
242 ret.as_ptr() as _
243 }
244 }
245
246 #[unstable(feature = "sgx_platform", issue = "56975")]
247 impl<T> User<T> where T: UserSafe {
248 /// Allocate space for `T` in user memory.
249 pub fn uninitialized() -> Self {
250 Self::new_uninit_bytes(mem::size_of::<T>())
251 }
252 }
253
254 #[unstable(feature = "sgx_platform", issue = "56975")]
255 impl<T> User<[T]> where [T]: UserSafe {
256 /// Allocate space for a `[T]` of `n` elements in user memory.
257 pub fn uninitialized(n: usize) -> Self {
258 Self::new_uninit_bytes(n * mem::size_of::<T>())
259 }
260
261 /// Creates an owned `User<[T]>` from a raw thin pointer and a slice length.
262 ///
263 /// # Safety
264 /// The caller must ensure `ptr` points to `len` elements of `T`, is
265 /// freeable with the `free` usercall and the alignment of `T`, and is
266 /// uniquely owned.
267 ///
268 /// # Panics
269 /// This function panics if:
270 ///
271 /// * The pointer is not aligned
272 /// * The pointer is null
273 /// * The pointed-to range does not fit in the address space
274 /// * The pointed-to range is not in user memory
275 pub unsafe fn from_raw_parts(ptr: *mut T, len: usize) -> Self {
276 User(NonNull::new_userref(<[T]>::from_raw_sized(ptr as _, len * mem::size_of::<T>())))
277 }
278 }
279
280 #[unstable(feature = "sgx_platform", issue = "56975")]
281 impl<T: ?Sized> UserRef<T> where T: UserSafe {
282 /// Creates a `&UserRef<[T]>` from a raw pointer.
283 ///
284 /// # Safety
285 /// The caller must ensure `ptr` points to `T`.
286 ///
287 /// # Panics
288 /// This function panics if:
289 ///
290 /// * The pointer is not aligned
291 /// * The pointer is null
292 /// * The pointed-to range is not in user memory
293 pub unsafe fn from_ptr<'a>(ptr: *const T) -> &'a Self {
294 T::check_ptr(ptr);
295 &*(ptr as *const Self)
296 }
297
298 /// Creates a `&mut UserRef<[T]>` from a raw pointer. See the struct
299 /// documentation for the nuances regarding a `&mut UserRef<T>`.
300 ///
301 /// # Safety
302 /// The caller must ensure `ptr` points to `T`.
303 ///
304 /// # Panics
305 /// This function panics if:
306 ///
307 /// * The pointer is not aligned
308 /// * The pointer is null
309 /// * The pointed-to range is not in user memory
310 pub unsafe fn from_mut_ptr<'a>(ptr: *mut T) -> &'a mut Self {
311 T::check_ptr(ptr);
312 &mut*(ptr as *mut Self)
313 }
314
315 /// Copies `val` into user memory.
316 ///
317 /// # Panics
318 /// This function panics if the destination doesn't have the same size as
319 /// the source. This can happen for dynamically-sized types such as slices.
320 pub fn copy_from_enclave(&mut self, val: &T) {
321 unsafe {
322 assert_eq!(mem::size_of_val(val), mem::size_of_val( &*self.0.get() ));
323 ptr::copy(
324 val as *const T as *const u8,
325 self.0.get() as *mut T as *mut u8,
326 mem::size_of_val(val)
327 );
328 }
329 }
330
331 /// Copies the value from user memory and place it into `dest`.
332 ///
333 /// # Panics
334 /// This function panics if the destination doesn't have the same size as
335 /// the source. This can happen for dynamically-sized types such as slices.
336 pub fn copy_to_enclave(&self, dest: &mut T) {
337 unsafe {
338 assert_eq!(mem::size_of_val(dest), mem::size_of_val( &*self.0.get() ));
339 ptr::copy(
340 self.0.get() as *const T as *const u8,
341 dest as *mut T as *mut u8,
342 mem::size_of_val(dest)
343 );
344 }
345 }
346
347 /// Obtain a raw pointer from this reference.
348 pub fn as_raw_ptr(&self) -> *const T {
349 self as *const _ as _
350 }
351
352 /// Obtain a raw pointer from this reference.
353 pub fn as_raw_mut_ptr(&mut self) -> *mut T {
354 self as *mut _ as _
355 }
356 }
357
358 #[unstable(feature = "sgx_platform", issue = "56975")]
359 impl<T> UserRef<T> where T: UserSafe {
360 /// Copies the value from user memory into enclave memory.
361 pub fn to_enclave(&self) -> T {
362 unsafe { ptr::read(self.0.get()) }
363 }
364 }
365
366 #[unstable(feature = "sgx_platform", issue = "56975")]
367 impl<T> UserRef<[T]> where [T]: UserSafe {
368 /// Creates a `&UserRef<[T]>` from a raw thin pointer and a slice length.
369 ///
370 /// # Safety
371 /// The caller must ensure `ptr` points to `n` elements of `T`.
372 ///
373 /// # Panics
374 /// This function panics if:
375 ///
376 /// * The pointer is not aligned
377 /// * The pointer is null
378 /// * The pointed-to range does not fit in the address space
379 /// * The pointed-to range is not in user memory
380 pub unsafe fn from_raw_parts<'a>(ptr: *const T, len: usize) -> &'a Self {
381 &*(<[T]>::from_raw_sized(ptr as _, len * mem::size_of::<T>()).as_ptr() as *const Self)
382 }
383
384 /// Creates a `&mut UserRef<[T]>` from a raw thin pointer and a slice length.
385 /// See the struct documentation for the nuances regarding a
386 /// `&mut UserRef<T>`.
387 ///
388 /// # Safety
389 /// The caller must ensure `ptr` points to `n` elements of `T`.
390 ///
391 /// # Panics
392 /// This function panics if:
393 ///
394 /// * The pointer is not aligned
395 /// * The pointer is null
396 /// * The pointed-to range does not fit in the address space
397 /// * The pointed-to range is not in user memory
398 pub unsafe fn from_raw_parts_mut<'a>(ptr: *mut T, len: usize) -> &'a mut Self {
399 &mut*(<[T]>::from_raw_sized(ptr as _, len * mem::size_of::<T>()).as_ptr() as *mut Self)
400 }
401
402 /// Obtain a raw pointer to the first element of this user slice.
403 pub fn as_ptr(&self) -> *const T {
404 self.0.get() as _
405 }
406
407 /// Obtain a raw pointer to the first element of this user slice.
408 pub fn as_mut_ptr(&mut self) -> *mut T {
409 self.0.get() as _
410 }
411
412 /// Obtain the number of elements in this user slice.
413 pub fn len(&self) -> usize {
414 unsafe { (*self.0.get()).len() }
415 }
416
417 /// Copies the value from user memory and place it into `dest`. Afterwards,
418 /// `dest` will contain exactly `self.len()` elements.
419 ///
420 /// # Panics
421 /// This function panics if the destination doesn't have the same size as
422 /// the source. This can happen for dynamically-sized types such as slices.
423 pub fn copy_to_enclave_vec(&self, dest: &mut Vec<T>) {
424 unsafe {
425 if let Some(missing) = self.len().checked_sub(dest.capacity()) {
426 dest.reserve(missing)
427 }
428 dest.set_len(self.len());
429 self.copy_to_enclave(&mut dest[..]);
430 }
431 }
432
433 /// Copies the value from user memory into a vector in enclave memory.
434 pub fn to_enclave(&self) -> Vec<T> {
435 let mut ret = Vec::with_capacity(self.len());
436 self.copy_to_enclave_vec(&mut ret);
437 ret
438 }
439
440 /// Returns an iterator over the slice.
441 pub fn iter(&self) -> Iter<'_, T>
442 where T: UserSafe // FIXME: should be implied by [T]: UserSafe?
443 {
444 unsafe {
445 Iter((&*self.as_raw_ptr()).iter())
446 }
447 }
448
449 /// Returns an iterator that allows modifying each value.
450 pub fn iter_mut(&mut self) -> IterMut<'_, T>
451 where T: UserSafe // FIXME: should be implied by [T]: UserSafe?
452 {
453 unsafe {
454 IterMut((&mut*self.as_raw_mut_ptr()).iter_mut())
455 }
456 }
457 }
458
459 /// Immutable user slice iterator
460 ///
461 /// This struct is created by the `iter` method on `UserRef<[T]>`.
462 #[unstable(feature = "sgx_platform", issue = "56975")]
463 pub struct Iter<'a, T: 'a + UserSafe>(slice::Iter<'a, T>);
464
465 #[unstable(feature = "sgx_platform", issue = "56975")]
466 impl<'a, T: UserSafe> Iterator for Iter<'a, T> {
467 type Item = &'a UserRef<T>;
468
469 #[inline]
470 fn next(&mut self) -> Option<Self::Item> {
471 unsafe {
472 self.0.next().map(|e| UserRef::from_ptr(e))
473 }
474 }
475 }
476
477 /// Mutable user slice iterator
478 ///
479 /// This struct is created by the `iter_mut` method on `UserRef<[T]>`.
480 #[unstable(feature = "sgx_platform", issue = "56975")]
481 pub struct IterMut<'a, T: 'a + UserSafe>(slice::IterMut<'a, T>);
482
483 #[unstable(feature = "sgx_platform", issue = "56975")]
484 impl<'a, T: UserSafe> Iterator for IterMut<'a, T> {
485 type Item = &'a mut UserRef<T>;
486
487 #[inline]
488 fn next(&mut self) -> Option<Self::Item> {
489 unsafe {
490 self.0.next().map(|e| UserRef::from_mut_ptr(e))
491 }
492 }
493 }
494
495 #[unstable(feature = "sgx_platform", issue = "56975")]
496 impl<T: ?Sized> Deref for User<T> where T: UserSafe {
497 type Target = UserRef<T>;
498
499 fn deref(&self) -> &Self::Target {
500 unsafe { &*self.0.as_ptr() }
501 }
502 }
503
504 #[unstable(feature = "sgx_platform", issue = "56975")]
505 impl<T: ?Sized> DerefMut for User<T> where T: UserSafe {
506 fn deref_mut(&mut self) -> &mut Self::Target {
507 unsafe { &mut*self.0.as_ptr() }
508 }
509 }
510
511 #[unstable(feature = "sgx_platform", issue = "56975")]
512 impl<T: ?Sized> Drop for User<T> where T: UserSafe {
513 fn drop(&mut self) {
514 unsafe {
515 let ptr = (*self.0.as_ptr()).0.get();
516 super::free(ptr as _, mem::size_of_val(&mut*ptr), T::align_of());
517 }
518 }
519 }
520
521 #[unstable(feature = "sgx_platform", issue = "56975")]
522 impl<T: CoerceUnsized<U>, U> CoerceUnsized<UserRef<U>> for UserRef<T> {}
523
524 #[unstable(feature = "sgx_platform", issue = "56975")]
525 impl<T, I> Index<I> for UserRef<[T]>
526 where
527 [T]: UserSafe,
528 I: SliceIndex<[T], Output: UserSafe>,
529 {
530 type Output = UserRef<I::Output>;
531
532 #[inline]
533 fn index(&self, index: I) -> &UserRef<I::Output> {
534 unsafe {
535 if let Some(slice) = index.get(&*self.as_raw_ptr()) {
536 UserRef::from_ptr(slice)
537 } else {
538 rtabort!("index out of range for user slice");
539 }
540 }
541 }
542 }
543
544 #[unstable(feature = "sgx_platform", issue = "56975")]
545 impl<T, I> IndexMut<I> for UserRef<[T]>
546 where
547 [T]: UserSafe,
548 I: SliceIndex<[T], Output: UserSafe>,
549 {
550 #[inline]
551 fn index_mut(&mut self, index: I) -> &mut UserRef<I::Output> {
552 unsafe {
553 if let Some(slice) = index.get_mut(&mut*self.as_raw_mut_ptr()) {
554 UserRef::from_mut_ptr(slice)
555 } else {
556 rtabort!("index out of range for user slice");
557 }
558 }
559 }
560 }
561
562 #[unstable(feature = "sgx_platform", issue = "56975")]
563 impl UserRef<super::raw::ByteBuffer> {
564 /// Copies the user memory range pointed to by the user `ByteBuffer` to
565 /// enclave memory.
566 ///
567 /// # Panics
568 /// This function panics if, in the user `ByteBuffer`:
569 ///
570 /// * The pointer is null
571 /// * The pointed-to range does not fit in the address space
572 /// * The pointed-to range is not in user memory
573 pub fn copy_user_buffer(&self) -> Vec<u8> {
574 unsafe {
575 let buf = self.to_enclave();
576 if buf.len > 0 {
577 User::from_raw_parts(buf.data as _, buf.len).to_enclave()
578 } else {
579 // Mustn't look at `data` or call `free` if `len` is `0`.
580 Vec::with_capacity(0)
581 }
582 }
583 }
584 }