]> git.proxmox.com Git - rustc.git/blob - src/libstd/sys/windows/mod.rs
New upstream version 1.23.0+dfsg1
[rustc.git] / src / libstd / sys / windows / mod.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![allow(missing_docs, bad_style)]
12
13 use ptr;
14 use ffi::{OsStr, OsString};
15 use io::{self, ErrorKind};
16 use os::windows::ffi::{OsStrExt, OsStringExt};
17 use path::PathBuf;
18 use time::Duration;
19
20 pub use libc::strlen;
21 pub use self::rand::hashmap_random_keys;
22
23 #[macro_use] pub mod compat;
24
25 pub mod args;
26 #[cfg(feature = "backtrace")]
27 pub mod backtrace;
28 pub mod c;
29 pub mod cmath;
30 pub mod condvar;
31 #[cfg(feature = "backtrace")]
32 pub mod dynamic_lib;
33 pub mod env;
34 pub mod ext;
35 pub mod fast_thread_local;
36 pub mod fs;
37 pub mod handle;
38 pub mod memchr;
39 pub mod mutex;
40 pub mod net;
41 pub mod os;
42 pub mod os_str;
43 pub mod path;
44 pub mod pipe;
45 pub mod process;
46 pub mod rand;
47 pub mod rwlock;
48 pub mod stack_overflow;
49 pub mod thread;
50 pub mod thread_local;
51 pub mod time;
52 pub mod stdio;
53
54 #[cfg(not(test))]
55 pub fn init() {
56 }
57
58 pub fn decode_error_kind(errno: i32) -> ErrorKind {
59 match errno as c::DWORD {
60 c::ERROR_ACCESS_DENIED => return ErrorKind::PermissionDenied,
61 c::ERROR_ALREADY_EXISTS => return ErrorKind::AlreadyExists,
62 c::ERROR_FILE_EXISTS => return ErrorKind::AlreadyExists,
63 c::ERROR_BROKEN_PIPE => return ErrorKind::BrokenPipe,
64 c::ERROR_FILE_NOT_FOUND => return ErrorKind::NotFound,
65 c::ERROR_PATH_NOT_FOUND => return ErrorKind::NotFound,
66 c::ERROR_NO_DATA => return ErrorKind::BrokenPipe,
67 c::ERROR_OPERATION_ABORTED => return ErrorKind::TimedOut,
68 _ => {}
69 }
70
71 match errno {
72 c::WSAEACCES => ErrorKind::PermissionDenied,
73 c::WSAEADDRINUSE => ErrorKind::AddrInUse,
74 c::WSAEADDRNOTAVAIL => ErrorKind::AddrNotAvailable,
75 c::WSAECONNABORTED => ErrorKind::ConnectionAborted,
76 c::WSAECONNREFUSED => ErrorKind::ConnectionRefused,
77 c::WSAECONNRESET => ErrorKind::ConnectionReset,
78 c::WSAEINVAL => ErrorKind::InvalidInput,
79 c::WSAENOTCONN => ErrorKind::NotConnected,
80 c::WSAEWOULDBLOCK => ErrorKind::WouldBlock,
81 c::WSAETIMEDOUT => ErrorKind::TimedOut,
82
83 _ => ErrorKind::Other,
84 }
85 }
86
87 pub fn to_u16s<S: AsRef<OsStr>>(s: S) -> io::Result<Vec<u16>> {
88 fn inner(s: &OsStr) -> io::Result<Vec<u16>> {
89 let mut maybe_result: Vec<u16> = s.encode_wide().collect();
90 if maybe_result.iter().any(|&u| u == 0) {
91 return Err(io::Error::new(io::ErrorKind::InvalidInput,
92 "strings passed to WinAPI cannot contain NULs"));
93 }
94 maybe_result.push(0);
95 Ok(maybe_result)
96 }
97 inner(s.as_ref())
98 }
99
100 // Many Windows APIs follow a pattern of where we hand a buffer and then they
101 // will report back to us how large the buffer should be or how many bytes
102 // currently reside in the buffer. This function is an abstraction over these
103 // functions by making them easier to call.
104 //
105 // The first callback, `f1`, is yielded a (pointer, len) pair which can be
106 // passed to a syscall. The `ptr` is valid for `len` items (u16 in this case).
107 // The closure is expected to return what the syscall returns which will be
108 // interpreted by this function to determine if the syscall needs to be invoked
109 // again (with more buffer space).
110 //
111 // Once the syscall has completed (errors bail out early) the second closure is
112 // yielded the data which has been read from the syscall. The return value
113 // from this closure is then the return value of the function.
114 fn fill_utf16_buf<F1, F2, T>(mut f1: F1, f2: F2) -> io::Result<T>
115 where F1: FnMut(*mut u16, c::DWORD) -> c::DWORD,
116 F2: FnOnce(&[u16]) -> T
117 {
118 // Start off with a stack buf but then spill over to the heap if we end up
119 // needing more space.
120 let mut stack_buf = [0u16; 512];
121 let mut heap_buf = Vec::new();
122 unsafe {
123 let mut n = stack_buf.len();
124 loop {
125 let buf = if n <= stack_buf.len() {
126 &mut stack_buf[..]
127 } else {
128 let extra = n - heap_buf.len();
129 heap_buf.reserve(extra);
130 heap_buf.set_len(n);
131 &mut heap_buf[..]
132 };
133
134 // This function is typically called on windows API functions which
135 // will return the correct length of the string, but these functions
136 // also return the `0` on error. In some cases, however, the
137 // returned "correct length" may actually be 0!
138 //
139 // To handle this case we call `SetLastError` to reset it to 0 and
140 // then check it again if we get the "0 error value". If the "last
141 // error" is still 0 then we interpret it as a 0 length buffer and
142 // not an actual error.
143 c::SetLastError(0);
144 let k = match f1(buf.as_mut_ptr(), n as c::DWORD) {
145 0 if c::GetLastError() == 0 => 0,
146 0 => return Err(io::Error::last_os_error()),
147 n => n,
148 } as usize;
149 if k == n && c::GetLastError() == c::ERROR_INSUFFICIENT_BUFFER {
150 n *= 2;
151 } else if k >= n {
152 n = k;
153 } else {
154 return Ok(f2(&buf[..k]))
155 }
156 }
157 }
158 }
159
160 fn os2path(s: &[u16]) -> PathBuf {
161 PathBuf::from(OsString::from_wide(s))
162 }
163
164 #[allow(dead_code)] // Only used in backtrace::gnu::get_executable_filename()
165 fn wide_char_to_multi_byte(code_page: u32,
166 flags: u32,
167 s: &[u16],
168 no_default_char: bool)
169 -> io::Result<Vec<i8>> {
170 unsafe {
171 let mut size = c::WideCharToMultiByte(code_page,
172 flags,
173 s.as_ptr(),
174 s.len() as i32,
175 ptr::null_mut(),
176 0,
177 ptr::null(),
178 ptr::null_mut());
179 if size == 0 {
180 return Err(io::Error::last_os_error());
181 }
182
183 let mut buf = Vec::with_capacity(size as usize);
184 buf.set_len(size as usize);
185
186 let mut used_default_char = c::FALSE;
187 size = c::WideCharToMultiByte(code_page,
188 flags,
189 s.as_ptr(),
190 s.len() as i32,
191 buf.as_mut_ptr(),
192 buf.len() as i32,
193 ptr::null(),
194 if no_default_char { &mut used_default_char }
195 else { ptr::null_mut() });
196 if size == 0 {
197 return Err(io::Error::last_os_error());
198 }
199 if no_default_char && used_default_char == c::TRUE {
200 return Err(io::Error::new(io::ErrorKind::InvalidData,
201 "string cannot be converted to requested code page"));
202 }
203
204 buf.set_len(size as usize);
205
206 Ok(buf)
207 }
208 }
209
210 pub fn truncate_utf16_at_nul<'a>(v: &'a [u16]) -> &'a [u16] {
211 match v.iter().position(|c| *c == 0) {
212 // don't include the 0
213 Some(i) => &v[..i],
214 None => v
215 }
216 }
217
218 pub trait IsZero {
219 fn is_zero(&self) -> bool;
220 }
221
222 macro_rules! impl_is_zero {
223 ($($t:ident)*) => ($(impl IsZero for $t {
224 fn is_zero(&self) -> bool {
225 *self == 0
226 }
227 })*)
228 }
229
230 impl_is_zero! { i8 i16 i32 i64 isize u8 u16 u32 u64 usize }
231
232 pub fn cvt<I: IsZero>(i: I) -> io::Result<I> {
233 if i.is_zero() {
234 Err(io::Error::last_os_error())
235 } else {
236 Ok(i)
237 }
238 }
239
240 pub fn dur2timeout(dur: Duration) -> c::DWORD {
241 // Note that a duration is a (u64, u32) (seconds, nanoseconds) pair, and the
242 // timeouts in windows APIs are typically u32 milliseconds. To translate, we
243 // have two pieces to take care of:
244 //
245 // * Nanosecond precision is rounded up
246 // * Greater than u32::MAX milliseconds (50 days) is rounded up to INFINITE
247 // (never time out).
248 dur.as_secs().checked_mul(1000).and_then(|ms| {
249 ms.checked_add((dur.subsec_nanos() as u64) / 1_000_000)
250 }).and_then(|ms| {
251 ms.checked_add(if dur.subsec_nanos() % 1_000_000 > 0 {1} else {0})
252 }).map(|ms| {
253 if ms > <c::DWORD>::max_value() as u64 {
254 c::INFINITE
255 } else {
256 ms as c::DWORD
257 }
258 }).unwrap_or(c::INFINITE)
259 }
260
261 // On Windows, use the processor-specific __fastfail mechanism. In Windows 8
262 // and later, this will terminate the process immediately without running any
263 // in-process exception handlers. In earlier versions of Windows, this
264 // sequence of instructions will be treated as an access violation,
265 // terminating the process but without necessarily bypassing all exception
266 // handlers.
267 //
268 // https://msdn.microsoft.com/en-us/library/dn774154.aspx
269 #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
270 pub unsafe fn abort_internal() -> ! {
271 asm!("int $$0x29" :: "{ecx}"(7) ::: volatile); // 7 is FAST_FAIL_FATAL_APP_EXIT
272 ::intrinsics::unreachable();
273 }