]> git.proxmox.com Git - rustc.git/blob - src/libstd/sys/windows/mod.rs
Imported Upstream version 1.9.0+dfsg1
[rustc.git] / src / libstd / sys / windows / mod.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![allow(missing_docs, bad_style)]
12
13 use prelude::v1::*;
14
15 use ffi::{OsStr, OsString};
16 use io::{self, ErrorKind};
17 use num::Zero;
18 use os::windows::ffi::{OsStrExt, OsStringExt};
19 use path::PathBuf;
20 use time::Duration;
21
22 #[macro_use] pub mod compat;
23
24 pub mod backtrace;
25 pub mod c;
26 pub mod condvar;
27 pub mod dynamic_lib;
28 pub mod ext;
29 pub mod fs;
30 pub mod handle;
31 pub mod mutex;
32 pub mod net;
33 pub mod os;
34 pub mod os_str;
35 pub mod pipe;
36 pub mod process;
37 pub mod rand;
38 pub mod rwlock;
39 pub mod stack_overflow;
40 pub mod thread;
41 pub mod thread_local;
42 pub mod time;
43 pub mod stdio;
44
45 #[cfg(not(test))]
46 pub fn init() {
47 ::alloc::oom::set_oom_handler(oom_handler);
48
49 // See comment in sys/unix/mod.rs
50 fn oom_handler() -> ! {
51 use intrinsics;
52 use ptr;
53 let msg = "fatal runtime error: out of memory\n";
54 unsafe {
55 // WriteFile silently fails if it is passed an invalid handle, so
56 // there is no need to check the result of GetStdHandle.
57 c::WriteFile(c::GetStdHandle(c::STD_ERROR_HANDLE),
58 msg.as_ptr() as c::LPVOID,
59 msg.len() as c::DWORD,
60 ptr::null_mut(),
61 ptr::null_mut());
62 intrinsics::abort();
63 }
64 }
65 }
66
67 pub fn decode_error_kind(errno: i32) -> ErrorKind {
68 match errno as c::DWORD {
69 c::ERROR_ACCESS_DENIED => return ErrorKind::PermissionDenied,
70 c::ERROR_ALREADY_EXISTS => return ErrorKind::AlreadyExists,
71 c::ERROR_BROKEN_PIPE => return ErrorKind::BrokenPipe,
72 c::ERROR_FILE_NOT_FOUND => return ErrorKind::NotFound,
73 c::ERROR_PATH_NOT_FOUND => return ErrorKind::NotFound,
74 c::ERROR_NO_DATA => return ErrorKind::BrokenPipe,
75 c::ERROR_OPERATION_ABORTED => return ErrorKind::TimedOut,
76 _ => {}
77 }
78
79 match errno {
80 c::WSAEACCES => ErrorKind::PermissionDenied,
81 c::WSAEADDRINUSE => ErrorKind::AddrInUse,
82 c::WSAEADDRNOTAVAIL => ErrorKind::AddrNotAvailable,
83 c::WSAECONNABORTED => ErrorKind::ConnectionAborted,
84 c::WSAECONNREFUSED => ErrorKind::ConnectionRefused,
85 c::WSAECONNRESET => ErrorKind::ConnectionReset,
86 c::WSAEINVAL => ErrorKind::InvalidInput,
87 c::WSAENOTCONN => ErrorKind::NotConnected,
88 c::WSAEWOULDBLOCK => ErrorKind::WouldBlock,
89 c::WSAETIMEDOUT => ErrorKind::TimedOut,
90
91 _ => ErrorKind::Other,
92 }
93 }
94
95 pub fn to_u16s<S: AsRef<OsStr>>(s: S) -> io::Result<Vec<u16>> {
96 fn inner(s: &OsStr) -> io::Result<Vec<u16>> {
97 let mut maybe_result: Vec<u16> = s.encode_wide().collect();
98 if maybe_result.iter().any(|&u| u == 0) {
99 return Err(io::Error::new(io::ErrorKind::InvalidInput,
100 "strings passed to WinAPI cannot contain NULs"));
101 }
102 maybe_result.push(0);
103 Ok(maybe_result)
104 }
105 inner(s.as_ref())
106 }
107
108 // Many Windows APIs follow a pattern of where we hand a buffer and then they
109 // will report back to us how large the buffer should be or how many bytes
110 // currently reside in the buffer. This function is an abstraction over these
111 // functions by making them easier to call.
112 //
113 // The first callback, `f1`, is yielded a (pointer, len) pair which can be
114 // passed to a syscall. The `ptr` is valid for `len` items (u16 in this case).
115 // The closure is expected to return what the syscall returns which will be
116 // interpreted by this function to determine if the syscall needs to be invoked
117 // again (with more buffer space).
118 //
119 // Once the syscall has completed (errors bail out early) the second closure is
120 // yielded the data which has been read from the syscall. The return value
121 // from this closure is then the return value of the function.
122 fn fill_utf16_buf<F1, F2, T>(mut f1: F1, f2: F2) -> io::Result<T>
123 where F1: FnMut(*mut u16, c::DWORD) -> c::DWORD,
124 F2: FnOnce(&[u16]) -> T
125 {
126 // Start off with a stack buf but then spill over to the heap if we end up
127 // needing more space.
128 let mut stack_buf = [0u16; 512];
129 let mut heap_buf = Vec::new();
130 unsafe {
131 let mut n = stack_buf.len();
132 loop {
133 let buf = if n <= stack_buf.len() {
134 &mut stack_buf[..]
135 } else {
136 let extra = n - heap_buf.len();
137 heap_buf.reserve(extra);
138 heap_buf.set_len(n);
139 &mut heap_buf[..]
140 };
141
142 // This function is typically called on windows API functions which
143 // will return the correct length of the string, but these functions
144 // also return the `0` on error. In some cases, however, the
145 // returned "correct length" may actually be 0!
146 //
147 // To handle this case we call `SetLastError` to reset it to 0 and
148 // then check it again if we get the "0 error value". If the "last
149 // error" is still 0 then we interpret it as a 0 length buffer and
150 // not an actual error.
151 c::SetLastError(0);
152 let k = match f1(buf.as_mut_ptr(), n as c::DWORD) {
153 0 if c::GetLastError() == 0 => 0,
154 0 => return Err(io::Error::last_os_error()),
155 n => n,
156 } as usize;
157 if k == n && c::GetLastError() == c::ERROR_INSUFFICIENT_BUFFER {
158 n *= 2;
159 } else if k >= n {
160 n = k;
161 } else {
162 return Ok(f2(&buf[..k]))
163 }
164 }
165 }
166 }
167
168 fn os2path(s: &[u16]) -> PathBuf {
169 PathBuf::from(OsString::from_wide(s))
170 }
171
172 pub fn truncate_utf16_at_nul<'a>(v: &'a [u16]) -> &'a [u16] {
173 match v.iter().position(|c| *c == 0) {
174 // don't include the 0
175 Some(i) => &v[..i],
176 None => v
177 }
178 }
179
180 fn cvt<I: PartialEq + Zero>(i: I) -> io::Result<I> {
181 if i == I::zero() {
182 Err(io::Error::last_os_error())
183 } else {
184 Ok(i)
185 }
186 }
187
188 fn dur2timeout(dur: Duration) -> c::DWORD {
189 // Note that a duration is a (u64, u32) (seconds, nanoseconds) pair, and the
190 // timeouts in windows APIs are typically u32 milliseconds. To translate, we
191 // have two pieces to take care of:
192 //
193 // * Nanosecond precision is rounded up
194 // * Greater than u32::MAX milliseconds (50 days) is rounded up to INFINITE
195 // (never time out).
196 dur.as_secs().checked_mul(1000).and_then(|ms| {
197 ms.checked_add((dur.subsec_nanos() as u64) / 1_000_000)
198 }).and_then(|ms| {
199 ms.checked_add(if dur.subsec_nanos() % 1_000_000 > 0 {1} else {0})
200 }).map(|ms| {
201 if ms > <c::DWORD>::max_value() as u64 {
202 c::INFINITE
203 } else {
204 ms as c::DWORD
205 }
206 }).unwrap_or(c::INFINITE)
207 }