]> git.proxmox.com Git - rustc.git/blob - src/libstd/sys/windows/mod.rs
Imported Upstream version 1.3.0+dfsg1
[rustc.git] / src / libstd / sys / windows / mod.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![allow(missing_docs)]
12 #![allow(non_camel_case_types)]
13 #![allow(non_snake_case)]
14
15 use prelude::v1::*;
16
17 use ffi::{OsStr, OsString};
18 use io::{self, ErrorKind};
19 use libc;
20 use num::Zero;
21 use os::windows::ffi::{OsStrExt, OsStringExt};
22 use path::PathBuf;
23 use time::Duration;
24
25 #[macro_use] pub mod compat;
26
27 pub mod backtrace;
28 pub mod c;
29 pub mod condvar;
30 pub mod ext;
31 pub mod fs;
32 pub mod handle;
33 pub mod mutex;
34 pub mod net;
35 pub mod os;
36 pub mod os_str;
37 pub mod pipe;
38 pub mod process;
39 pub mod rwlock;
40 pub mod stack_overflow;
41 pub mod thread;
42 pub mod thread_local;
43 pub mod time;
44 pub mod stdio;
45
46 pub fn decode_error_kind(errno: i32) -> ErrorKind {
47 match errno as libc::c_int {
48 libc::ERROR_ACCESS_DENIED => ErrorKind::PermissionDenied,
49 libc::ERROR_ALREADY_EXISTS => ErrorKind::AlreadyExists,
50 libc::ERROR_BROKEN_PIPE => ErrorKind::BrokenPipe,
51 libc::ERROR_FILE_NOT_FOUND => ErrorKind::NotFound,
52 libc::ERROR_NO_DATA => ErrorKind::BrokenPipe,
53 libc::ERROR_OPERATION_ABORTED => ErrorKind::TimedOut,
54
55 libc::WSAEACCES => ErrorKind::PermissionDenied,
56 libc::WSAEADDRINUSE => ErrorKind::AddrInUse,
57 libc::WSAEADDRNOTAVAIL => ErrorKind::AddrNotAvailable,
58 libc::WSAECONNABORTED => ErrorKind::ConnectionAborted,
59 libc::WSAECONNREFUSED => ErrorKind::ConnectionRefused,
60 libc::WSAECONNRESET => ErrorKind::ConnectionReset,
61 libc::WSAEINVAL => ErrorKind::InvalidInput,
62 libc::WSAENOTCONN => ErrorKind::NotConnected,
63 libc::WSAEWOULDBLOCK => ErrorKind::WouldBlock,
64 libc::WSAETIMEDOUT => ErrorKind::TimedOut,
65
66 _ => ErrorKind::Other,
67 }
68 }
69
70 fn to_utf16_os(s: &OsStr) -> Vec<u16> {
71 let mut v: Vec<_> = s.encode_wide().collect();
72 v.push(0);
73 v
74 }
75
76 // Many Windows APIs follow a pattern of where we hand the a buffer and then
77 // they will report back to us how large the buffer should be or how many bytes
78 // currently reside in the buffer. This function is an abstraction over these
79 // functions by making them easier to call.
80 //
81 // The first callback, `f1`, is yielded a (pointer, len) pair which can be
82 // passed to a syscall. The `ptr` is valid for `len` items (u16 in this case).
83 // The closure is expected to return what the syscall returns which will be
84 // interpreted by this function to determine if the syscall needs to be invoked
85 // again (with more buffer space).
86 //
87 // Once the syscall has completed (errors bail out early) the second closure is
88 // yielded the data which has been read from the syscall. The return value
89 // from this closure is then the return value of the function.
90 fn fill_utf16_buf<F1, F2, T>(mut f1: F1, f2: F2) -> io::Result<T>
91 where F1: FnMut(*mut u16, libc::DWORD) -> libc::DWORD,
92 F2: FnOnce(&[u16]) -> T
93 {
94 // Start off with a stack buf but then spill over to the heap if we end up
95 // needing more space.
96 let mut stack_buf = [0u16; 512];
97 let mut heap_buf = Vec::new();
98 unsafe {
99 let mut n = stack_buf.len();
100 loop {
101 let buf = if n <= stack_buf.len() {
102 &mut stack_buf[..]
103 } else {
104 let extra = n - heap_buf.len();
105 heap_buf.reserve(extra);
106 heap_buf.set_len(n);
107 &mut heap_buf[..]
108 };
109
110 // This function is typically called on windows API functions which
111 // will return the correct length of the string, but these functions
112 // also return the `0` on error. In some cases, however, the
113 // returned "correct length" may actually be 0!
114 //
115 // To handle this case we call `SetLastError` to reset it to 0 and
116 // then check it again if we get the "0 error value". If the "last
117 // error" is still 0 then we interpret it as a 0 length buffer and
118 // not an actual error.
119 c::SetLastError(0);
120 let k = match f1(buf.as_mut_ptr(), n as libc::DWORD) {
121 0 if libc::GetLastError() == 0 => 0,
122 0 => return Err(io::Error::last_os_error()),
123 n => n,
124 } as usize;
125 if k == n && libc::GetLastError() ==
126 libc::ERROR_INSUFFICIENT_BUFFER as libc::DWORD {
127 n *= 2;
128 } else if k >= n {
129 n = k;
130 } else {
131 return Ok(f2(&buf[..k]))
132 }
133 }
134 }
135 }
136
137 fn os2path(s: &[u16]) -> PathBuf {
138 PathBuf::from(OsString::from_wide(s))
139 }
140
141 pub fn truncate_utf16_at_nul<'a>(v: &'a [u16]) -> &'a [u16] {
142 match v.iter().position(|c| *c == 0) {
143 // don't include the 0
144 Some(i) => &v[..i],
145 None => v
146 }
147 }
148
149 fn cvt<I: PartialEq + Zero>(i: I) -> io::Result<I> {
150 if i == I::zero() {
151 Err(io::Error::last_os_error())
152 } else {
153 Ok(i)
154 }
155 }
156
157 fn dur2timeout(dur: Duration) -> libc::DWORD {
158 // Note that a duration is a (u64, u32) (seconds, nanoseconds) pair, and the
159 // timeouts in windows APIs are typically u32 milliseconds. To translate, we
160 // have two pieces to take care of:
161 //
162 // * Nanosecond precision is rounded up
163 // * Greater than u32::MAX milliseconds (50 days) is rounded up to INFINITE
164 // (never time out).
165 dur.as_secs().checked_mul(1000).and_then(|ms| {
166 ms.checked_add((dur.subsec_nanos() as u64) / 1_000_000)
167 }).and_then(|ms| {
168 ms.checked_add(if dur.subsec_nanos() % 1_000_000 > 0 {1} else {0})
169 }).map(|ms| {
170 if ms > <libc::DWORD>::max_value() as u64 {
171 libc::INFINITE
172 } else {
173 ms as libc::DWORD
174 }
175 }).unwrap_or(libc::INFINITE)
176 }
177
178 fn ms_to_filetime(ms: u64) -> libc::FILETIME {
179 // A FILETIME is a count of 100 nanosecond intervals, so we multiply by
180 // 10000 b/c there are 10000 intervals in 1 ms
181 let ms = ms * 10000;
182 libc::FILETIME {
183 dwLowDateTime: ms as u32,
184 dwHighDateTime: (ms >> 32) as u32,
185 }
186 }