]> git.proxmox.com Git - rustc.git/blob - src/libsyntax/parse/mod.rs
Imported Upstream version 1.9.0+dfsg1
[rustc.git] / src / libsyntax / parse / mod.rs
1 // Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! The main parser interface
12
13 use ast;
14 use codemap::{self, Span, CodeMap, FileMap};
15 use errors::{Handler, ColorConfig, DiagnosticBuilder};
16 use parse::parser::Parser;
17 use parse::token::InternedString;
18 use ptr::P;
19 use str::char_at;
20
21 use std::cell::RefCell;
22 use std::io::Read;
23 use std::iter;
24 use std::path::{Path, PathBuf};
25 use std::rc::Rc;
26 use std::str;
27
28 pub type PResult<'a, T> = Result<T, DiagnosticBuilder<'a>>;
29
30 #[macro_use]
31 pub mod parser;
32
33 pub mod lexer;
34 pub mod token;
35 pub mod attr;
36
37 pub mod common;
38 pub mod classify;
39 pub mod obsolete;
40
41 /// Info about a parsing session.
42 pub struct ParseSess {
43 pub span_diagnostic: Handler, // better be the same as the one in the reader!
44 /// Used to determine and report recursive mod inclusions
45 included_mod_stack: RefCell<Vec<PathBuf>>,
46 code_map: Rc<CodeMap>,
47 }
48
49 impl ParseSess {
50 pub fn new() -> ParseSess {
51 let cm = Rc::new(CodeMap::new());
52 let handler = Handler::with_tty_emitter(ColorConfig::Auto, None, true, false, cm.clone());
53 ParseSess::with_span_handler(handler, cm)
54 }
55
56 pub fn with_span_handler(handler: Handler, code_map: Rc<CodeMap>) -> ParseSess {
57 ParseSess {
58 span_diagnostic: handler,
59 included_mod_stack: RefCell::new(vec![]),
60 code_map: code_map
61 }
62 }
63
64 pub fn codemap(&self) -> &CodeMap {
65 &self.code_map
66 }
67 }
68
69 // a bunch of utility functions of the form parse_<thing>_from_<source>
70 // where <thing> includes crate, expr, item, stmt, tts, and one that
71 // uses a HOF to parse anything, and <source> includes file and
72 // source_str.
73
74 pub fn parse_crate_from_file<'a>(input: &Path,
75 cfg: ast::CrateConfig,
76 sess: &'a ParseSess)
77 -> PResult<'a, ast::Crate> {
78 let mut parser = new_parser_from_file(sess, cfg, input);
79 parser.parse_crate_mod()
80 }
81
82 pub fn parse_crate_attrs_from_file<'a>(input: &Path,
83 cfg: ast::CrateConfig,
84 sess: &'a ParseSess)
85 -> PResult<'a, Vec<ast::Attribute>> {
86 let mut parser = new_parser_from_file(sess, cfg, input);
87 parser.parse_inner_attributes()
88 }
89
90 pub fn parse_crate_from_source_str<'a>(name: String,
91 source: String,
92 cfg: ast::CrateConfig,
93 sess: &'a ParseSess)
94 -> PResult<'a, ast::Crate> {
95 let mut p = new_parser_from_source_str(sess,
96 cfg,
97 name,
98 source);
99 p.parse_crate_mod()
100 }
101
102 pub fn parse_crate_attrs_from_source_str<'a>(name: String,
103 source: String,
104 cfg: ast::CrateConfig,
105 sess: &'a ParseSess)
106 -> PResult<'a, Vec<ast::Attribute>> {
107 let mut p = new_parser_from_source_str(sess,
108 cfg,
109 name,
110 source);
111 p.parse_inner_attributes()
112 }
113
114 pub fn parse_expr_from_source_str<'a>(name: String,
115 source: String,
116 cfg: ast::CrateConfig,
117 sess: &'a ParseSess)
118 -> PResult<'a, P<ast::Expr>> {
119 let mut p = new_parser_from_source_str(sess, cfg, name, source);
120 p.parse_expr()
121 }
122
123 /// Parses an item.
124 ///
125 /// Returns `Ok(Some(item))` when successful, `Ok(None)` when no item was found, and`Err`
126 /// when a syntax error occurred.
127 pub fn parse_item_from_source_str<'a>(name: String,
128 source: String,
129 cfg: ast::CrateConfig,
130 sess: &'a ParseSess)
131 -> PResult<'a, Option<P<ast::Item>>> {
132 let mut p = new_parser_from_source_str(sess, cfg, name, source);
133 p.parse_item()
134 }
135
136 pub fn parse_meta_from_source_str<'a>(name: String,
137 source: String,
138 cfg: ast::CrateConfig,
139 sess: &'a ParseSess)
140 -> PResult<'a, P<ast::MetaItem>> {
141 let mut p = new_parser_from_source_str(sess, cfg, name, source);
142 p.parse_meta_item()
143 }
144
145 pub fn parse_stmt_from_source_str<'a>(name: String,
146 source: String,
147 cfg: ast::CrateConfig,
148 sess: &'a ParseSess)
149 -> PResult<'a, Option<ast::Stmt>> {
150 let mut p = new_parser_from_source_str(
151 sess,
152 cfg,
153 name,
154 source
155 );
156 p.parse_stmt()
157 }
158
159 // Warning: This parses with quote_depth > 0, which is not the default.
160 pub fn parse_tts_from_source_str<'a>(name: String,
161 source: String,
162 cfg: ast::CrateConfig,
163 sess: &'a ParseSess)
164 -> PResult<'a, Vec<ast::TokenTree>> {
165 let mut p = new_parser_from_source_str(
166 sess,
167 cfg,
168 name,
169 source
170 );
171 p.quote_depth += 1;
172 // right now this is re-creating the token trees from ... token trees.
173 p.parse_all_token_trees()
174 }
175
176 // Create a new parser from a source string
177 pub fn new_parser_from_source_str<'a>(sess: &'a ParseSess,
178 cfg: ast::CrateConfig,
179 name: String,
180 source: String)
181 -> Parser<'a> {
182 filemap_to_parser(sess, sess.codemap().new_filemap(name, source), cfg)
183 }
184
185 /// Create a new parser, handling errors as appropriate
186 /// if the file doesn't exist
187 pub fn new_parser_from_file<'a>(sess: &'a ParseSess,
188 cfg: ast::CrateConfig,
189 path: &Path) -> Parser<'a> {
190 filemap_to_parser(sess, file_to_filemap(sess, path, None), cfg)
191 }
192
193 /// Given a session, a crate config, a path, and a span, add
194 /// the file at the given path to the codemap, and return a parser.
195 /// On an error, use the given span as the source of the problem.
196 pub fn new_sub_parser_from_file<'a>(sess: &'a ParseSess,
197 cfg: ast::CrateConfig,
198 path: &Path,
199 owns_directory: bool,
200 module_name: Option<String>,
201 sp: Span) -> Parser<'a> {
202 let mut p = filemap_to_parser(sess, file_to_filemap(sess, path, Some(sp)), cfg);
203 p.owns_directory = owns_directory;
204 p.root_module_name = module_name;
205 p
206 }
207
208 /// Given a filemap and config, return a parser
209 pub fn filemap_to_parser<'a>(sess: &'a ParseSess,
210 filemap: Rc<FileMap>,
211 cfg: ast::CrateConfig) -> Parser<'a> {
212 let end_pos = filemap.end_pos;
213 let mut parser = tts_to_parser(sess, filemap_to_tts(sess, filemap), cfg);
214
215 if parser.token == token::Eof && parser.span == codemap::DUMMY_SP {
216 parser.span = codemap::mk_sp(end_pos, end_pos);
217 }
218
219 parser
220 }
221
222 // must preserve old name for now, because quote! from the *existing*
223 // compiler expands into it
224 pub fn new_parser_from_tts<'a>(sess: &'a ParseSess,
225 cfg: ast::CrateConfig,
226 tts: Vec<ast::TokenTree>) -> Parser<'a> {
227 tts_to_parser(sess, tts, cfg)
228 }
229
230
231 // base abstractions
232
233 /// Given a session and a path and an optional span (for error reporting),
234 /// add the path to the session's codemap and return the new filemap.
235 fn file_to_filemap(sess: &ParseSess, path: &Path, spanopt: Option<Span>)
236 -> Rc<FileMap> {
237 match sess.codemap().load_file(path) {
238 Ok(filemap) => filemap,
239 Err(e) => {
240 let msg = format!("couldn't read {:?}: {}", path.display(), e);
241 match spanopt {
242 Some(sp) => panic!(sess.span_diagnostic.span_fatal(sp, &msg)),
243 None => panic!(sess.span_diagnostic.fatal(&msg))
244 }
245 }
246 }
247 }
248
249 /// Given a filemap, produce a sequence of token-trees
250 pub fn filemap_to_tts(sess: &ParseSess, filemap: Rc<FileMap>)
251 -> Vec<ast::TokenTree> {
252 // it appears to me that the cfg doesn't matter here... indeed,
253 // parsing tt's probably shouldn't require a parser at all.
254 let cfg = Vec::new();
255 let srdr = lexer::StringReader::new(&sess.span_diagnostic, filemap);
256 let mut p1 = Parser::new(sess, cfg, Box::new(srdr));
257 panictry!(p1.parse_all_token_trees())
258 }
259
260 /// Given tts and cfg, produce a parser
261 pub fn tts_to_parser<'a>(sess: &'a ParseSess,
262 tts: Vec<ast::TokenTree>,
263 cfg: ast::CrateConfig) -> Parser<'a> {
264 let trdr = lexer::new_tt_reader(&sess.span_diagnostic, None, None, tts);
265 let mut p = Parser::new(sess, cfg, Box::new(trdr));
266 p.check_unknown_macro_variable();
267 p
268 }
269
270 /// Parse a string representing a character literal into its final form.
271 /// Rather than just accepting/rejecting a given literal, unescapes it as
272 /// well. Can take any slice prefixed by a character escape. Returns the
273 /// character and the number of characters consumed.
274 pub fn char_lit(lit: &str) -> (char, isize) {
275 use std::char;
276
277 let mut chars = lit.chars();
278 let c = match (chars.next(), chars.next()) {
279 (Some(c), None) if c != '\\' => return (c, 1),
280 (Some('\\'), Some(c)) => match c {
281 '"' => Some('"'),
282 'n' => Some('\n'),
283 'r' => Some('\r'),
284 't' => Some('\t'),
285 '\\' => Some('\\'),
286 '\'' => Some('\''),
287 '0' => Some('\0'),
288 _ => { None }
289 },
290 _ => panic!("lexer accepted invalid char escape `{}`", lit)
291 };
292
293 match c {
294 Some(x) => return (x, 2),
295 None => { }
296 }
297
298 let msg = format!("lexer should have rejected a bad character escape {}", lit);
299 let msg2 = &msg[..];
300
301 fn esc(len: usize, lit: &str) -> Option<(char, isize)> {
302 u32::from_str_radix(&lit[2..len], 16).ok()
303 .and_then(char::from_u32)
304 .map(|x| (x, len as isize))
305 }
306
307 let unicode_escape = || -> Option<(char, isize)> {
308 if lit.as_bytes()[2] == b'{' {
309 let idx = lit.find('}').expect(msg2);
310 let subslice = &lit[3..idx];
311 u32::from_str_radix(subslice, 16).ok()
312 .and_then(char::from_u32)
313 .map(|x| (x, subslice.chars().count() as isize + 4))
314 } else {
315 esc(6, lit)
316 }
317 };
318
319 // Unicode escapes
320 return match lit.as_bytes()[1] as char {
321 'x' | 'X' => esc(4, lit),
322 'u' => unicode_escape(),
323 'U' => esc(10, lit),
324 _ => None,
325 }.expect(msg2);
326 }
327
328 /// Parse a string representing a string literal into its final form. Does
329 /// unescaping.
330 pub fn str_lit(lit: &str) -> String {
331 debug!("parse_str_lit: given {}", lit.escape_default());
332 let mut res = String::with_capacity(lit.len());
333
334 // FIXME #8372: This could be a for-loop if it didn't borrow the iterator
335 let error = |i| format!("lexer should have rejected {} at {}", lit, i);
336
337 /// Eat everything up to a non-whitespace
338 fn eat<'a>(it: &mut iter::Peekable<str::CharIndices<'a>>) {
339 loop {
340 match it.peek().map(|x| x.1) {
341 Some(' ') | Some('\n') | Some('\r') | Some('\t') => {
342 it.next();
343 },
344 _ => { break; }
345 }
346 }
347 }
348
349 let mut chars = lit.char_indices().peekable();
350 loop {
351 match chars.next() {
352 Some((i, c)) => {
353 match c {
354 '\\' => {
355 let ch = chars.peek().unwrap_or_else(|| {
356 panic!("{}", error(i))
357 }).1;
358
359 if ch == '\n' {
360 eat(&mut chars);
361 } else if ch == '\r' {
362 chars.next();
363 let ch = chars.peek().unwrap_or_else(|| {
364 panic!("{}", error(i))
365 }).1;
366
367 if ch != '\n' {
368 panic!("lexer accepted bare CR");
369 }
370 eat(&mut chars);
371 } else {
372 // otherwise, a normal escape
373 let (c, n) = char_lit(&lit[i..]);
374 for _ in 0..n - 1 { // we don't need to move past the first \
375 chars.next();
376 }
377 res.push(c);
378 }
379 },
380 '\r' => {
381 let ch = chars.peek().unwrap_or_else(|| {
382 panic!("{}", error(i))
383 }).1;
384
385 if ch != '\n' {
386 panic!("lexer accepted bare CR");
387 }
388 chars.next();
389 res.push('\n');
390 }
391 c => res.push(c),
392 }
393 },
394 None => break
395 }
396 }
397
398 res.shrink_to_fit(); // probably not going to do anything, unless there was an escape.
399 debug!("parse_str_lit: returning {}", res);
400 res
401 }
402
403 /// Parse a string representing a raw string literal into its final form. The
404 /// only operation this does is convert embedded CRLF into a single LF.
405 pub fn raw_str_lit(lit: &str) -> String {
406 debug!("raw_str_lit: given {}", lit.escape_default());
407 let mut res = String::with_capacity(lit.len());
408
409 // FIXME #8372: This could be a for-loop if it didn't borrow the iterator
410 let mut chars = lit.chars().peekable();
411 loop {
412 match chars.next() {
413 Some(c) => {
414 if c == '\r' {
415 if *chars.peek().unwrap() != '\n' {
416 panic!("lexer accepted bare CR");
417 }
418 chars.next();
419 res.push('\n');
420 } else {
421 res.push(c);
422 }
423 },
424 None => break
425 }
426 }
427
428 res.shrink_to_fit();
429 res
430 }
431
432 // check if `s` looks like i32 or u1234 etc.
433 fn looks_like_width_suffix(first_chars: &[char], s: &str) -> bool {
434 s.len() > 1 &&
435 first_chars.contains(&char_at(s, 0)) &&
436 s[1..].chars().all(|c| '0' <= c && c <= '9')
437 }
438
439 fn filtered_float_lit(data: token::InternedString, suffix: Option<&str>,
440 sd: &Handler, sp: Span) -> ast::LitKind {
441 debug!("filtered_float_lit: {}, {:?}", data, suffix);
442 match suffix.as_ref().map(|s| &**s) {
443 Some("f32") => ast::LitKind::Float(data, ast::FloatTy::F32),
444 Some("f64") => ast::LitKind::Float(data, ast::FloatTy::F64),
445 Some(suf) => {
446 if suf.len() >= 2 && looks_like_width_suffix(&['f'], suf) {
447 // if it looks like a width, lets try to be helpful.
448 sd.struct_span_err(sp, &format!("invalid width `{}` for float literal", &suf[1..]))
449 .fileline_help(sp, "valid widths are 32 and 64")
450 .emit();
451 } else {
452 sd.struct_span_err(sp, &format!("invalid suffix `{}` for float literal", suf))
453 .fileline_help(sp, "valid suffixes are `f32` and `f64`")
454 .emit();
455 }
456
457 ast::LitKind::FloatUnsuffixed(data)
458 }
459 None => ast::LitKind::FloatUnsuffixed(data)
460 }
461 }
462 pub fn float_lit(s: &str, suffix: Option<InternedString>,
463 sd: &Handler, sp: Span) -> ast::LitKind {
464 debug!("float_lit: {:?}, {:?}", s, suffix);
465 // FIXME #2252: bounds checking float literals is deferred until trans
466 let s = s.chars().filter(|&c| c != '_').collect::<String>();
467 let data = token::intern_and_get_ident(&s);
468 filtered_float_lit(data, suffix.as_ref().map(|s| &**s), sd, sp)
469 }
470
471 /// Parse a string representing a byte literal into its final form. Similar to `char_lit`
472 pub fn byte_lit(lit: &str) -> (u8, usize) {
473 let err = |i| format!("lexer accepted invalid byte literal {} step {}", lit, i);
474
475 if lit.len() == 1 {
476 (lit.as_bytes()[0], 1)
477 } else {
478 assert!(lit.as_bytes()[0] == b'\\', err(0));
479 let b = match lit.as_bytes()[1] {
480 b'"' => b'"',
481 b'n' => b'\n',
482 b'r' => b'\r',
483 b't' => b'\t',
484 b'\\' => b'\\',
485 b'\'' => b'\'',
486 b'0' => b'\0',
487 _ => {
488 match u64::from_str_radix(&lit[2..4], 16).ok() {
489 Some(c) =>
490 if c > 0xFF {
491 panic!(err(2))
492 } else {
493 return (c as u8, 4)
494 },
495 None => panic!(err(3))
496 }
497 }
498 };
499 return (b, 2);
500 }
501 }
502
503 pub fn byte_str_lit(lit: &str) -> Rc<Vec<u8>> {
504 let mut res = Vec::with_capacity(lit.len());
505
506 // FIXME #8372: This could be a for-loop if it didn't borrow the iterator
507 let error = |i| format!("lexer should have rejected {} at {}", lit, i);
508
509 /// Eat everything up to a non-whitespace
510 fn eat<'a, I: Iterator<Item=(usize, u8)>>(it: &mut iter::Peekable<I>) {
511 loop {
512 match it.peek().map(|x| x.1) {
513 Some(b' ') | Some(b'\n') | Some(b'\r') | Some(b'\t') => {
514 it.next();
515 },
516 _ => { break; }
517 }
518 }
519 }
520
521 // byte string literals *must* be ASCII, but the escapes don't have to be
522 let mut chars = lit.bytes().enumerate().peekable();
523 loop {
524 match chars.next() {
525 Some((i, b'\\')) => {
526 let em = error(i);
527 match chars.peek().expect(&em).1 {
528 b'\n' => eat(&mut chars),
529 b'\r' => {
530 chars.next();
531 if chars.peek().expect(&em).1 != b'\n' {
532 panic!("lexer accepted bare CR");
533 }
534 eat(&mut chars);
535 }
536 _ => {
537 // otherwise, a normal escape
538 let (c, n) = byte_lit(&lit[i..]);
539 // we don't need to move past the first \
540 for _ in 0..n - 1 {
541 chars.next();
542 }
543 res.push(c);
544 }
545 }
546 },
547 Some((i, b'\r')) => {
548 let em = error(i);
549 if chars.peek().expect(&em).1 != b'\n' {
550 panic!("lexer accepted bare CR");
551 }
552 chars.next();
553 res.push(b'\n');
554 }
555 Some((_, c)) => res.push(c),
556 None => break,
557 }
558 }
559
560 Rc::new(res)
561 }
562
563 pub fn integer_lit(s: &str,
564 suffix: Option<InternedString>,
565 sd: &Handler,
566 sp: Span)
567 -> ast::LitKind {
568 // s can only be ascii, byte indexing is fine
569
570 let s2 = s.chars().filter(|&c| c != '_').collect::<String>();
571 let mut s = &s2[..];
572
573 debug!("integer_lit: {}, {:?}", s, suffix);
574
575 let mut base = 10;
576 let orig = s;
577 let mut ty = ast::LitIntType::Unsuffixed;
578
579 if char_at(s, 0) == '0' && s.len() > 1 {
580 match char_at(s, 1) {
581 'x' => base = 16,
582 'o' => base = 8,
583 'b' => base = 2,
584 _ => { }
585 }
586 }
587
588 // 1f64 and 2f32 etc. are valid float literals.
589 if let Some(ref suf) = suffix {
590 if looks_like_width_suffix(&['f'], suf) {
591 match base {
592 16 => sd.span_err(sp, "hexadecimal float literal is not supported"),
593 8 => sd.span_err(sp, "octal float literal is not supported"),
594 2 => sd.span_err(sp, "binary float literal is not supported"),
595 _ => ()
596 }
597 let ident = token::intern_and_get_ident(&s);
598 return filtered_float_lit(ident, Some(&suf), sd, sp)
599 }
600 }
601
602 if base != 10 {
603 s = &s[2..];
604 }
605
606 if let Some(ref suf) = suffix {
607 if suf.is_empty() { sd.span_bug(sp, "found empty literal suffix in Some")}
608 ty = match &**suf {
609 "isize" => ast::LitIntType::Signed(ast::IntTy::Is),
610 "i8" => ast::LitIntType::Signed(ast::IntTy::I8),
611 "i16" => ast::LitIntType::Signed(ast::IntTy::I16),
612 "i32" => ast::LitIntType::Signed(ast::IntTy::I32),
613 "i64" => ast::LitIntType::Signed(ast::IntTy::I64),
614 "usize" => ast::LitIntType::Unsigned(ast::UintTy::Us),
615 "u8" => ast::LitIntType::Unsigned(ast::UintTy::U8),
616 "u16" => ast::LitIntType::Unsigned(ast::UintTy::U16),
617 "u32" => ast::LitIntType::Unsigned(ast::UintTy::U32),
618 "u64" => ast::LitIntType::Unsigned(ast::UintTy::U64),
619 _ => {
620 // i<digits> and u<digits> look like widths, so lets
621 // give an error message along those lines
622 if looks_like_width_suffix(&['i', 'u'], suf) {
623 sd.struct_span_err(sp, &format!("invalid width `{}` for integer literal",
624 &suf[1..]))
625 .fileline_help(sp, "valid widths are 8, 16, 32 and 64")
626 .emit();
627 } else {
628 sd.struct_span_err(sp, &format!("invalid suffix `{}` for numeric literal", suf))
629 .fileline_help(sp, "the suffix must be one of the integral types \
630 (`u32`, `isize`, etc)")
631 .emit();
632 }
633
634 ty
635 }
636 }
637 }
638
639 debug!("integer_lit: the type is {:?}, base {:?}, the new string is {:?}, the original \
640 string was {:?}, the original suffix was {:?}", ty, base, s, orig, suffix);
641
642 match u64::from_str_radix(s, base) {
643 Ok(r) => ast::LitKind::Int(r, ty),
644 Err(_) => {
645 // small bases are lexed as if they were base 10, e.g, the string
646 // might be `0b10201`. This will cause the conversion above to fail,
647 // but these cases have errors in the lexer: we don't want to emit
648 // two errors, and we especially don't want to emit this error since
649 // it isn't necessarily true.
650 let already_errored = base < 10 &&
651 s.chars().any(|c| c.to_digit(10).map_or(false, |d| d >= base));
652
653 if !already_errored {
654 sd.span_err(sp, "int literal is too large");
655 }
656 ast::LitKind::Int(0, ty)
657 }
658 }
659 }
660
661 #[cfg(test)]
662 mod tests {
663 use super::*;
664 use std::rc::Rc;
665 use codemap::{Span, BytePos, Pos, Spanned, NO_EXPANSION};
666 use ast::{self, TokenTree, PatKind};
667 use abi::Abi;
668 use attr::{first_attr_value_str_by_name, AttrMetaMethods};
669 use parse;
670 use parse::parser::Parser;
671 use parse::token::{str_to_ident};
672 use print::pprust::item_to_string;
673 use ptr::P;
674 use util::parser_testing::{string_to_tts, string_to_parser};
675 use util::parser_testing::{string_to_expr, string_to_item, string_to_stmt};
676
677 // produce a codemap::span
678 fn sp(a: u32, b: u32) -> Span {
679 Span {lo: BytePos(a), hi: BytePos(b), expn_id: NO_EXPANSION}
680 }
681
682 #[test] fn path_exprs_1() {
683 assert!(string_to_expr("a".to_string()) ==
684 P(ast::Expr{
685 id: ast::DUMMY_NODE_ID,
686 node: ast::ExprKind::Path(None, ast::Path {
687 span: sp(0, 1),
688 global: false,
689 segments: vec!(
690 ast::PathSegment {
691 identifier: str_to_ident("a"),
692 parameters: ast::PathParameters::none(),
693 }
694 ),
695 }),
696 span: sp(0, 1),
697 attrs: None,
698 }))
699 }
700
701 #[test] fn path_exprs_2 () {
702 assert!(string_to_expr("::a::b".to_string()) ==
703 P(ast::Expr {
704 id: ast::DUMMY_NODE_ID,
705 node: ast::ExprKind::Path(None, ast::Path {
706 span: sp(0, 6),
707 global: true,
708 segments: vec!(
709 ast::PathSegment {
710 identifier: str_to_ident("a"),
711 parameters: ast::PathParameters::none(),
712 },
713 ast::PathSegment {
714 identifier: str_to_ident("b"),
715 parameters: ast::PathParameters::none(),
716 }
717 )
718 }),
719 span: sp(0, 6),
720 attrs: None,
721 }))
722 }
723
724 #[should_panic]
725 #[test] fn bad_path_expr_1() {
726 string_to_expr("::abc::def::return".to_string());
727 }
728
729 // check the token-tree-ization of macros
730 #[test]
731 fn string_to_tts_macro () {
732 let tts = string_to_tts("macro_rules! zip (($a)=>($a))".to_string());
733 let tts: &[ast::TokenTree] = &tts[..];
734
735 match (tts.len(), tts.get(0), tts.get(1), tts.get(2), tts.get(3)) {
736 (
737 4,
738 Some(&TokenTree::Token(_, token::Ident(name_macro_rules, token::Plain))),
739 Some(&TokenTree::Token(_, token::Not)),
740 Some(&TokenTree::Token(_, token::Ident(name_zip, token::Plain))),
741 Some(&TokenTree::Delimited(_, ref macro_delimed)),
742 )
743 if name_macro_rules.name.as_str() == "macro_rules"
744 && name_zip.name.as_str() == "zip" => {
745 let tts = &macro_delimed.tts[..];
746 match (tts.len(), tts.get(0), tts.get(1), tts.get(2)) {
747 (
748 3,
749 Some(&TokenTree::Delimited(_, ref first_delimed)),
750 Some(&TokenTree::Token(_, token::FatArrow)),
751 Some(&TokenTree::Delimited(_, ref second_delimed)),
752 )
753 if macro_delimed.delim == token::Paren => {
754 let tts = &first_delimed.tts[..];
755 match (tts.len(), tts.get(0), tts.get(1)) {
756 (
757 2,
758 Some(&TokenTree::Token(_, token::Dollar)),
759 Some(&TokenTree::Token(_, token::Ident(ident, token::Plain))),
760 )
761 if first_delimed.delim == token::Paren
762 && ident.name.as_str() == "a" => {},
763 _ => panic!("value 3: {:?}", **first_delimed),
764 }
765 let tts = &second_delimed.tts[..];
766 match (tts.len(), tts.get(0), tts.get(1)) {
767 (
768 2,
769 Some(&TokenTree::Token(_, token::Dollar)),
770 Some(&TokenTree::Token(_, token::Ident(ident, token::Plain))),
771 )
772 if second_delimed.delim == token::Paren
773 && ident.name.as_str() == "a" => {},
774 _ => panic!("value 4: {:?}", **second_delimed),
775 }
776 },
777 _ => panic!("value 2: {:?}", **macro_delimed),
778 }
779 },
780 _ => panic!("value: {:?}",tts),
781 }
782 }
783
784 #[test]
785 fn string_to_tts_1() {
786 let tts = string_to_tts("fn a (b : i32) { b; }".to_string());
787
788 let expected = vec![
789 TokenTree::Token(sp(0, 2),
790 token::Ident(str_to_ident("fn"),
791 token::IdentStyle::Plain)),
792 TokenTree::Token(sp(3, 4),
793 token::Ident(str_to_ident("a"),
794 token::IdentStyle::Plain)),
795 TokenTree::Delimited(
796 sp(5, 14),
797 Rc::new(ast::Delimited {
798 delim: token::DelimToken::Paren,
799 open_span: sp(5, 6),
800 tts: vec![
801 TokenTree::Token(sp(6, 7),
802 token::Ident(str_to_ident("b"),
803 token::IdentStyle::Plain)),
804 TokenTree::Token(sp(8, 9),
805 token::Colon),
806 TokenTree::Token(sp(10, 13),
807 token::Ident(str_to_ident("i32"),
808 token::IdentStyle::Plain)),
809 ],
810 close_span: sp(13, 14),
811 })),
812 TokenTree::Delimited(
813 sp(15, 21),
814 Rc::new(ast::Delimited {
815 delim: token::DelimToken::Brace,
816 open_span: sp(15, 16),
817 tts: vec![
818 TokenTree::Token(sp(17, 18),
819 token::Ident(str_to_ident("b"),
820 token::IdentStyle::Plain)),
821 TokenTree::Token(sp(18, 19),
822 token::Semi)
823 ],
824 close_span: sp(20, 21),
825 }))
826 ];
827
828 assert_eq!(tts, expected);
829 }
830
831 #[test] fn ret_expr() {
832 assert!(string_to_expr("return d".to_string()) ==
833 P(ast::Expr{
834 id: ast::DUMMY_NODE_ID,
835 node:ast::ExprKind::Ret(Some(P(ast::Expr{
836 id: ast::DUMMY_NODE_ID,
837 node:ast::ExprKind::Path(None, ast::Path{
838 span: sp(7, 8),
839 global: false,
840 segments: vec!(
841 ast::PathSegment {
842 identifier: str_to_ident("d"),
843 parameters: ast::PathParameters::none(),
844 }
845 ),
846 }),
847 span:sp(7,8),
848 attrs: None,
849 }))),
850 span:sp(0,8),
851 attrs: None,
852 }))
853 }
854
855 #[test] fn parse_stmt_1 () {
856 assert!(string_to_stmt("b;".to_string()) ==
857 Some(Spanned{
858 node: ast::StmtKind::Expr(P(ast::Expr {
859 id: ast::DUMMY_NODE_ID,
860 node: ast::ExprKind::Path(None, ast::Path {
861 span:sp(0,1),
862 global:false,
863 segments: vec!(
864 ast::PathSegment {
865 identifier: str_to_ident("b"),
866 parameters: ast::PathParameters::none(),
867 }
868 ),
869 }),
870 span: sp(0,1),
871 attrs: None}),
872 ast::DUMMY_NODE_ID),
873 span: sp(0,1)}))
874
875 }
876
877 fn parser_done(p: Parser){
878 assert_eq!(p.token.clone(), token::Eof);
879 }
880
881 #[test] fn parse_ident_pat () {
882 let sess = ParseSess::new();
883 let mut parser = string_to_parser(&sess, "b".to_string());
884 assert!(panictry!(parser.parse_pat())
885 == P(ast::Pat{
886 id: ast::DUMMY_NODE_ID,
887 node: PatKind::Ident(ast::BindingMode::ByValue(ast::Mutability::Immutable),
888 Spanned{ span:sp(0, 1),
889 node: str_to_ident("b")
890 },
891 None),
892 span: sp(0,1)}));
893 parser_done(parser);
894 }
895
896 // check the contents of the tt manually:
897 #[test] fn parse_fundecl () {
898 // this test depends on the intern order of "fn" and "i32"
899 assert_eq!(string_to_item("fn a (b : i32) { b; }".to_string()),
900 Some(
901 P(ast::Item{ident:str_to_ident("a"),
902 attrs:Vec::new(),
903 id: ast::DUMMY_NODE_ID,
904 node: ast::ItemKind::Fn(P(ast::FnDecl {
905 inputs: vec!(ast::Arg{
906 ty: P(ast::Ty{id: ast::DUMMY_NODE_ID,
907 node: ast::TyKind::Path(None, ast::Path{
908 span:sp(10,13),
909 global:false,
910 segments: vec!(
911 ast::PathSegment {
912 identifier:
913 str_to_ident("i32"),
914 parameters: ast::PathParameters::none(),
915 }
916 ),
917 }),
918 span:sp(10,13)
919 }),
920 pat: P(ast::Pat {
921 id: ast::DUMMY_NODE_ID,
922 node: PatKind::Ident(
923 ast::BindingMode::ByValue(ast::Mutability::Immutable),
924 Spanned{
925 span: sp(6,7),
926 node: str_to_ident("b")},
927 None
928 ),
929 span: sp(6,7)
930 }),
931 id: ast::DUMMY_NODE_ID
932 }),
933 output: ast::FunctionRetTy::Default(sp(15, 15)),
934 variadic: false
935 }),
936 ast::Unsafety::Normal,
937 ast::Constness::NotConst,
938 Abi::Rust,
939 ast::Generics{ // no idea on either of these:
940 lifetimes: Vec::new(),
941 ty_params: P::empty(),
942 where_clause: ast::WhereClause {
943 id: ast::DUMMY_NODE_ID,
944 predicates: Vec::new(),
945 }
946 },
947 P(ast::Block {
948 stmts: vec!(Spanned{
949 node: ast::StmtKind::Semi(P(ast::Expr{
950 id: ast::DUMMY_NODE_ID,
951 node: ast::ExprKind::Path(None,
952 ast::Path{
953 span:sp(17,18),
954 global:false,
955 segments: vec!(
956 ast::PathSegment {
957 identifier:
958 str_to_ident(
959 "b"),
960 parameters:
961 ast::PathParameters::none(),
962 }
963 ),
964 }),
965 span: sp(17,18),
966 attrs: None,}),
967 ast::DUMMY_NODE_ID),
968 span: sp(17,19)}),
969 expr: None,
970 id: ast::DUMMY_NODE_ID,
971 rules: ast::BlockCheckMode::Default, // no idea
972 span: sp(15,21),
973 })),
974 vis: ast::Visibility::Inherited,
975 span: sp(0,21)})));
976 }
977
978 #[test] fn parse_use() {
979 let use_s = "use foo::bar::baz;";
980 let vitem = string_to_item(use_s.to_string()).unwrap();
981 let vitem_s = item_to_string(&vitem);
982 assert_eq!(&vitem_s[..], use_s);
983
984 let use_s = "use foo::bar as baz;";
985 let vitem = string_to_item(use_s.to_string()).unwrap();
986 let vitem_s = item_to_string(&vitem);
987 assert_eq!(&vitem_s[..], use_s);
988 }
989
990 #[test] fn parse_extern_crate() {
991 let ex_s = "extern crate foo;";
992 let vitem = string_to_item(ex_s.to_string()).unwrap();
993 let vitem_s = item_to_string(&vitem);
994 assert_eq!(&vitem_s[..], ex_s);
995
996 let ex_s = "extern crate foo as bar;";
997 let vitem = string_to_item(ex_s.to_string()).unwrap();
998 let vitem_s = item_to_string(&vitem);
999 assert_eq!(&vitem_s[..], ex_s);
1000 }
1001
1002 fn get_spans_of_pat_idents(src: &str) -> Vec<Span> {
1003 let item = string_to_item(src.to_string()).unwrap();
1004
1005 struct PatIdentVisitor {
1006 spans: Vec<Span>
1007 }
1008 impl<'v> ::visit::Visitor<'v> for PatIdentVisitor {
1009 fn visit_pat(&mut self, p: &'v ast::Pat) {
1010 match p.node {
1011 PatKind::Ident(_ , ref spannedident, _) => {
1012 self.spans.push(spannedident.span.clone());
1013 }
1014 _ => {
1015 ::visit::walk_pat(self, p);
1016 }
1017 }
1018 }
1019 }
1020 let mut v = PatIdentVisitor { spans: Vec::new() };
1021 ::visit::walk_item(&mut v, &item);
1022 return v.spans;
1023 }
1024
1025 #[test] fn span_of_self_arg_pat_idents_are_correct() {
1026
1027 let srcs = ["impl z { fn a (&self, &myarg: i32) {} }",
1028 "impl z { fn a (&mut self, &myarg: i32) {} }",
1029 "impl z { fn a (&'a self, &myarg: i32) {} }",
1030 "impl z { fn a (self, &myarg: i32) {} }",
1031 "impl z { fn a (self: Foo, &myarg: i32) {} }",
1032 ];
1033
1034 for &src in &srcs {
1035 let spans = get_spans_of_pat_idents(src);
1036 let Span{ lo, hi, .. } = spans[0];
1037 assert!("self" == &src[lo.to_usize()..hi.to_usize()],
1038 "\"{}\" != \"self\". src=\"{}\"",
1039 &src[lo.to_usize()..hi.to_usize()], src)
1040 }
1041 }
1042
1043 #[test] fn parse_exprs () {
1044 // just make sure that they parse....
1045 string_to_expr("3 + 4".to_string());
1046 string_to_expr("a::z.froob(b,&(987+3))".to_string());
1047 }
1048
1049 #[test] fn attrs_fix_bug () {
1050 string_to_item("pub fn mk_file_writer(path: &Path, flags: &[FileFlag])
1051 -> Result<Box<Writer>, String> {
1052 #[cfg(windows)]
1053 fn wb() -> c_int {
1054 (O_WRONLY | libc::consts::os::extra::O_BINARY) as c_int
1055 }
1056
1057 #[cfg(unix)]
1058 fn wb() -> c_int { O_WRONLY as c_int }
1059
1060 let mut fflags: c_int = wb();
1061 }".to_string());
1062 }
1063
1064 #[test] fn crlf_doc_comments() {
1065 let sess = ParseSess::new();
1066
1067 let name = "<source>".to_string();
1068 let source = "/// doc comment\r\nfn foo() {}".to_string();
1069 let item = parse_item_from_source_str(name.clone(), source, Vec::new(), &sess)
1070 .unwrap().unwrap();
1071 let doc = first_attr_value_str_by_name(&item.attrs, "doc").unwrap();
1072 assert_eq!(&doc[..], "/// doc comment");
1073
1074 let source = "/// doc comment\r\n/// line 2\r\nfn foo() {}".to_string();
1075 let item = parse_item_from_source_str(name.clone(), source, Vec::new(), &sess)
1076 .unwrap().unwrap();
1077 let docs = item.attrs.iter().filter(|a| &*a.name() == "doc")
1078 .map(|a| a.value_str().unwrap().to_string()).collect::<Vec<_>>();
1079 let b: &[_] = &["/// doc comment".to_string(), "/// line 2".to_string()];
1080 assert_eq!(&docs[..], b);
1081
1082 let source = "/** doc comment\r\n * with CRLF */\r\nfn foo() {}".to_string();
1083 let item = parse_item_from_source_str(name, source, Vec::new(), &sess).unwrap().unwrap();
1084 let doc = first_attr_value_str_by_name(&item.attrs, "doc").unwrap();
1085 assert_eq!(&doc[..], "/** doc comment\n * with CRLF */");
1086 }
1087
1088 #[test]
1089 fn ttdelim_span() {
1090 let sess = ParseSess::new();
1091 let expr = parse::parse_expr_from_source_str("foo".to_string(),
1092 "foo!( fn main() { body } )".to_string(), vec![], &sess).unwrap();
1093
1094 let tts = match expr.node {
1095 ast::ExprKind::Mac(ref mac) => mac.node.tts.clone(),
1096 _ => panic!("not a macro"),
1097 };
1098
1099 let span = tts.iter().rev().next().unwrap().get_span();
1100
1101 match sess.codemap().span_to_snippet(span) {
1102 Ok(s) => assert_eq!(&s[..], "{ body }"),
1103 Err(_) => panic!("could not get snippet"),
1104 }
1105 }
1106 }