]> git.proxmox.com Git - rustc.git/blob - src/libsyntax/parse/parser/path.rs
New upstream version 1.40.0+dfsg1
[rustc.git] / src / libsyntax / parse / parser / path.rs
1 use super::{Parser, PResult, TokenType};
2
3 use crate::{maybe_whole, ThinVec};
4 use crate::ast::{self, QSelf, Path, PathSegment, Ident, ParenthesizedArgs, AngleBracketedArgs};
5 use crate::ast::{AnonConst, GenericArg, AssocTyConstraint, AssocTyConstraintKind, BlockCheckMode};
6 use crate::parse::token::{self, Token};
7 use crate::source_map::{Span, BytePos};
8 use crate::symbol::kw;
9
10 use std::mem;
11 use log::debug;
12 use errors::{Applicability, pluralise};
13
14 /// Specifies how to parse a path.
15 #[derive(Copy, Clone, PartialEq)]
16 pub enum PathStyle {
17 /// In some contexts, notably in expressions, paths with generic arguments are ambiguous
18 /// with something else. For example, in expressions `segment < ....` can be interpreted
19 /// as a comparison and `segment ( ....` can be interpreted as a function call.
20 /// In all such contexts the non-path interpretation is preferred by default for practical
21 /// reasons, but the path interpretation can be forced by the disambiguator `::`, e.g.
22 /// `x<y>` - comparisons, `x::<y>` - unambiguously a path.
23 Expr,
24 /// In other contexts, notably in types, no ambiguity exists and paths can be written
25 /// without the disambiguator, e.g., `x<y>` - unambiguously a path.
26 /// Paths with disambiguators are still accepted, `x::<Y>` - unambiguously a path too.
27 Type,
28 /// A path with generic arguments disallowed, e.g., `foo::bar::Baz`, used in imports,
29 /// visibilities or attributes.
30 /// Technically, this variant is unnecessary and e.g., `Expr` can be used instead
31 /// (paths in "mod" contexts have to be checked later for absence of generic arguments
32 /// anyway, due to macros), but it is used to avoid weird suggestions about expected
33 /// tokens when something goes wrong.
34 Mod,
35 }
36
37 impl<'a> Parser<'a> {
38 /// Parses a qualified path.
39 /// Assumes that the leading `<` has been parsed already.
40 ///
41 /// `qualified_path = <type [as trait_ref]>::path`
42 ///
43 /// # Examples
44 /// `<T>::default`
45 /// `<T as U>::a`
46 /// `<T as U>::F::a<S>` (without disambiguator)
47 /// `<T as U>::F::a::<S>` (with disambiguator)
48 pub(super) fn parse_qpath(&mut self, style: PathStyle) -> PResult<'a, (QSelf, Path)> {
49 let lo = self.prev_span;
50 let ty = self.parse_ty()?;
51
52 // `path` will contain the prefix of the path up to the `>`,
53 // if any (e.g., `U` in the `<T as U>::*` examples
54 // above). `path_span` has the span of that path, or an empty
55 // span in the case of something like `<T>::Bar`.
56 let (mut path, path_span);
57 if self.eat_keyword(kw::As) {
58 let path_lo = self.token.span;
59 path = self.parse_path(PathStyle::Type)?;
60 path_span = path_lo.to(self.prev_span);
61 } else {
62 path_span = self.token.span.to(self.token.span);
63 path = ast::Path { segments: Vec::new(), span: path_span };
64 }
65
66 // See doc comment for `unmatched_angle_bracket_count`.
67 self.expect(&token::Gt)?;
68 if self.unmatched_angle_bracket_count > 0 {
69 self.unmatched_angle_bracket_count -= 1;
70 debug!("parse_qpath: (decrement) count={:?}", self.unmatched_angle_bracket_count);
71 }
72
73 self.expect(&token::ModSep)?;
74
75 let qself = QSelf { ty, path_span, position: path.segments.len() };
76 self.parse_path_segments(&mut path.segments, style)?;
77
78 Ok((qself, Path { segments: path.segments, span: lo.to(self.prev_span) }))
79 }
80
81 /// Parses simple paths.
82 ///
83 /// `path = [::] segment+`
84 /// `segment = ident | ident[::]<args> | ident[::](args) [-> type]`
85 ///
86 /// # Examples
87 /// `a::b::C<D>` (without disambiguator)
88 /// `a::b::C::<D>` (with disambiguator)
89 /// `Fn(Args)` (without disambiguator)
90 /// `Fn::(Args)` (with disambiguator)
91 pub fn parse_path(&mut self, style: PathStyle) -> PResult<'a, Path> {
92 maybe_whole!(self, NtPath, |path| {
93 if style == PathStyle::Mod &&
94 path.segments.iter().any(|segment| segment.args.is_some()) {
95 self.diagnostic().span_err(path.span, "unexpected generic arguments in path");
96 }
97 path
98 });
99
100 let lo = self.meta_var_span.unwrap_or(self.token.span);
101 let mut segments = Vec::new();
102 let mod_sep_ctxt = self.token.span.ctxt();
103 if self.eat(&token::ModSep) {
104 segments.push(PathSegment::path_root(lo.shrink_to_lo().with_ctxt(mod_sep_ctxt)));
105 }
106 self.parse_path_segments(&mut segments, style)?;
107
108 Ok(Path { segments, span: lo.to(self.prev_span) })
109 }
110
111 /// Like `parse_path`, but also supports parsing `Word` meta items into paths for
112 /// backwards-compatibility. This is used when parsing derive macro paths in `#[derive]`
113 /// attributes.
114 fn parse_path_allowing_meta(&mut self, style: PathStyle) -> PResult<'a, Path> {
115 let meta_ident = match self.token.kind {
116 token::Interpolated(ref nt) => match **nt {
117 token::NtMeta(ref item) => match item.tokens.is_empty() {
118 true => Some(item.path.clone()),
119 false => None,
120 },
121 _ => None,
122 },
123 _ => None,
124 };
125 if let Some(path) = meta_ident {
126 self.bump();
127 return Ok(path);
128 }
129 self.parse_path(style)
130 }
131
132 /// Parse a list of paths inside `#[derive(path_0, ..., path_n)]`.
133 pub fn parse_derive_paths(&mut self) -> PResult<'a, Vec<Path>> {
134 self.expect(&token::OpenDelim(token::Paren))?;
135 let mut list = Vec::new();
136 while !self.eat(&token::CloseDelim(token::Paren)) {
137 let path = self.parse_path_allowing_meta(PathStyle::Mod)?;
138 list.push(path);
139 if !self.eat(&token::Comma) {
140 self.expect(&token::CloseDelim(token::Paren))?;
141 break
142 }
143 }
144 Ok(list)
145 }
146
147 pub(super) fn parse_path_segments(
148 &mut self,
149 segments: &mut Vec<PathSegment>,
150 style: PathStyle,
151 ) -> PResult<'a, ()> {
152 loop {
153 let segment = self.parse_path_segment(style)?;
154 if style == PathStyle::Expr {
155 // In order to check for trailing angle brackets, we must have finished
156 // recursing (`parse_path_segment` can indirectly call this function),
157 // that is, the next token must be the highlighted part of the below example:
158 //
159 // `Foo::<Bar as Baz<T>>::Qux`
160 // ^ here
161 //
162 // As opposed to the below highlight (if we had only finished the first
163 // recursion):
164 //
165 // `Foo::<Bar as Baz<T>>::Qux`
166 // ^ here
167 //
168 // `PathStyle::Expr` is only provided at the root invocation and never in
169 // `parse_path_segment` to recurse and therefore can be checked to maintain
170 // this invariant.
171 self.check_trailing_angle_brackets(&segment, token::ModSep);
172 }
173 segments.push(segment);
174
175 if self.is_import_coupler() || !self.eat(&token::ModSep) {
176 return Ok(());
177 }
178 }
179 }
180
181 pub(super) fn parse_path_segment(&mut self, style: PathStyle) -> PResult<'a, PathSegment> {
182 let ident = self.parse_path_segment_ident()?;
183
184 let is_args_start = |token: &Token| match token.kind {
185 token::Lt | token::BinOp(token::Shl) | token::OpenDelim(token::Paren)
186 | token::LArrow => true,
187 _ => false,
188 };
189 let check_args_start = |this: &mut Self| {
190 this.expected_tokens.extend_from_slice(
191 &[TokenType::Token(token::Lt), TokenType::Token(token::OpenDelim(token::Paren))]
192 );
193 is_args_start(&this.token)
194 };
195
196 Ok(if style == PathStyle::Type && check_args_start(self) ||
197 style != PathStyle::Mod && self.check(&token::ModSep)
198 && self.look_ahead(1, |t| is_args_start(t)) {
199 // We use `style == PathStyle::Expr` to check if this is in a recursion or not. If
200 // it isn't, then we reset the unmatched angle bracket count as we're about to start
201 // parsing a new path.
202 if style == PathStyle::Expr {
203 self.unmatched_angle_bracket_count = 0;
204 self.max_angle_bracket_count = 0;
205 }
206
207 // Generic arguments are found - `<`, `(`, `::<` or `::(`.
208 self.eat(&token::ModSep);
209 let lo = self.token.span;
210 let args = if self.eat_lt() {
211 // `<'a, T, A = U>`
212 let (args, constraints) =
213 self.parse_generic_args_with_leaning_angle_bracket_recovery(style, lo)?;
214 self.expect_gt()?;
215 let span = lo.to(self.prev_span);
216 AngleBracketedArgs { args, constraints, span }.into()
217 } else {
218 // `(T, U) -> R`
219 let (inputs, _) = self.parse_paren_comma_seq(|p| p.parse_ty())?;
220 let span = ident.span.to(self.prev_span);
221 let output = if self.eat(&token::RArrow) {
222 Some(self.parse_ty_common(false, false, false)?)
223 } else {
224 None
225 };
226 ParenthesizedArgs { inputs, output, span }.into()
227 };
228
229 PathSegment { ident, args, id: ast::DUMMY_NODE_ID }
230 } else {
231 // Generic arguments are not found.
232 PathSegment::from_ident(ident)
233 })
234 }
235
236 pub(super) fn parse_path_segment_ident(&mut self) -> PResult<'a, Ident> {
237 match self.token.kind {
238 token::Ident(name, _) if name.is_path_segment_keyword() => {
239 let span = self.token.span;
240 self.bump();
241 Ok(Ident::new(name, span))
242 }
243 _ => self.parse_ident(),
244 }
245 }
246
247 /// Parses generic args (within a path segment) with recovery for extra leading angle brackets.
248 /// For the purposes of understanding the parsing logic of generic arguments, this function
249 /// can be thought of being the same as just calling `self.parse_generic_args()` if the source
250 /// had the correct amount of leading angle brackets.
251 ///
252 /// ```ignore (diagnostics)
253 /// bar::<<<<T as Foo>::Output>();
254 /// ^^ help: remove extra angle brackets
255 /// ```
256 fn parse_generic_args_with_leaning_angle_bracket_recovery(
257 &mut self,
258 style: PathStyle,
259 lo: Span,
260 ) -> PResult<'a, (Vec<GenericArg>, Vec<AssocTyConstraint>)> {
261 // We need to detect whether there are extra leading left angle brackets and produce an
262 // appropriate error and suggestion. This cannot be implemented by looking ahead at
263 // upcoming tokens for a matching `>` character - if there are unmatched `<` tokens
264 // then there won't be matching `>` tokens to find.
265 //
266 // To explain how this detection works, consider the following example:
267 //
268 // ```ignore (diagnostics)
269 // bar::<<<<T as Foo>::Output>();
270 // ^^ help: remove extra angle brackets
271 // ```
272 //
273 // Parsing of the left angle brackets starts in this function. We start by parsing the
274 // `<` token (incrementing the counter of unmatched angle brackets on `Parser` via
275 // `eat_lt`):
276 //
277 // *Upcoming tokens:* `<<<<T as Foo>::Output>;`
278 // *Unmatched count:* 1
279 // *`parse_path_segment` calls deep:* 0
280 //
281 // This has the effect of recursing as this function is called if a `<` character
282 // is found within the expected generic arguments:
283 //
284 // *Upcoming tokens:* `<<<T as Foo>::Output>;`
285 // *Unmatched count:* 2
286 // *`parse_path_segment` calls deep:* 1
287 //
288 // Eventually we will have recursed until having consumed all of the `<` tokens and
289 // this will be reflected in the count:
290 //
291 // *Upcoming tokens:* `T as Foo>::Output>;`
292 // *Unmatched count:* 4
293 // `parse_path_segment` calls deep:* 3
294 //
295 // The parser will continue until reaching the first `>` - this will decrement the
296 // unmatched angle bracket count and return to the parent invocation of this function
297 // having succeeded in parsing:
298 //
299 // *Upcoming tokens:* `::Output>;`
300 // *Unmatched count:* 3
301 // *`parse_path_segment` calls deep:* 2
302 //
303 // This will continue until the next `>` character which will also return successfully
304 // to the parent invocation of this function and decrement the count:
305 //
306 // *Upcoming tokens:* `;`
307 // *Unmatched count:* 2
308 // *`parse_path_segment` calls deep:* 1
309 //
310 // At this point, this function will expect to find another matching `>` character but
311 // won't be able to and will return an error. This will continue all the way up the
312 // call stack until the first invocation:
313 //
314 // *Upcoming tokens:* `;`
315 // *Unmatched count:* 2
316 // *`parse_path_segment` calls deep:* 0
317 //
318 // In doing this, we have managed to work out how many unmatched leading left angle
319 // brackets there are, but we cannot recover as the unmatched angle brackets have
320 // already been consumed. To remedy this, we keep a snapshot of the parser state
321 // before we do the above. We can then inspect whether we ended up with a parsing error
322 // and unmatched left angle brackets and if so, restore the parser state before we
323 // consumed any `<` characters to emit an error and consume the erroneous tokens to
324 // recover by attempting to parse again.
325 //
326 // In practice, the recursion of this function is indirect and there will be other
327 // locations that consume some `<` characters - as long as we update the count when
328 // this happens, it isn't an issue.
329
330 let is_first_invocation = style == PathStyle::Expr;
331 // Take a snapshot before attempting to parse - we can restore this later.
332 let snapshot = if is_first_invocation {
333 Some(self.clone())
334 } else {
335 None
336 };
337
338 debug!("parse_generic_args_with_leading_angle_bracket_recovery: (snapshotting)");
339 match self.parse_generic_args() {
340 Ok(value) => Ok(value),
341 Err(ref mut e) if is_first_invocation && self.unmatched_angle_bracket_count > 0 => {
342 // Cancel error from being unable to find `>`. We know the error
343 // must have been this due to a non-zero unmatched angle bracket
344 // count.
345 e.cancel();
346
347 // Swap `self` with our backup of the parser state before attempting to parse
348 // generic arguments.
349 let snapshot = mem::replace(self, snapshot.unwrap());
350
351 debug!(
352 "parse_generic_args_with_leading_angle_bracket_recovery: (snapshot failure) \
353 snapshot.count={:?}",
354 snapshot.unmatched_angle_bracket_count,
355 );
356
357 // Eat the unmatched angle brackets.
358 for _ in 0..snapshot.unmatched_angle_bracket_count {
359 self.eat_lt();
360 }
361
362 // Make a span over ${unmatched angle bracket count} characters.
363 let span = lo.with_hi(
364 lo.lo() + BytePos(snapshot.unmatched_angle_bracket_count)
365 );
366 self.diagnostic()
367 .struct_span_err(
368 span,
369 &format!(
370 "unmatched angle bracket{}",
371 pluralise!(snapshot.unmatched_angle_bracket_count)
372 ),
373 )
374 .span_suggestion(
375 span,
376 &format!(
377 "remove extra angle bracket{}",
378 pluralise!(snapshot.unmatched_angle_bracket_count)
379 ),
380 String::new(),
381 Applicability::MachineApplicable,
382 )
383 .emit();
384
385 // Try again without unmatched angle bracket characters.
386 self.parse_generic_args()
387 },
388 Err(e) => Err(e),
389 }
390 }
391
392 /// Parses (possibly empty) list of lifetime and type arguments and associated type bindings,
393 /// possibly including trailing comma.
394 fn parse_generic_args(&mut self) -> PResult<'a, (Vec<GenericArg>, Vec<AssocTyConstraint>)> {
395 let mut args = Vec::new();
396 let mut constraints = Vec::new();
397 let mut misplaced_assoc_ty_constraints: Vec<Span> = Vec::new();
398 let mut assoc_ty_constraints: Vec<Span> = Vec::new();
399
400 let args_lo = self.token.span;
401
402 loop {
403 if self.check_lifetime() && self.look_ahead(1, |t| !t.is_like_plus()) {
404 // Parse lifetime argument.
405 args.push(GenericArg::Lifetime(self.expect_lifetime()));
406 misplaced_assoc_ty_constraints.append(&mut assoc_ty_constraints);
407 } else if self.check_ident()
408 && self.look_ahead(1, |t| t == &token::Eq || t == &token::Colon)
409 {
410 // Parse associated type constraint.
411 let lo = self.token.span;
412 let ident = self.parse_ident()?;
413 let kind = if self.eat(&token::Eq) {
414 AssocTyConstraintKind::Equality {
415 ty: self.parse_ty()?,
416 }
417 } else if self.eat(&token::Colon) {
418 AssocTyConstraintKind::Bound {
419 bounds: self.parse_generic_bounds(Some(self.prev_span))?,
420 }
421 } else {
422 unreachable!();
423 };
424
425 let span = lo.to(self.prev_span);
426
427 // Gate associated type bounds, e.g., `Iterator<Item: Ord>`.
428 if let AssocTyConstraintKind::Bound { .. } = kind {
429 self.sess.gated_spans.associated_type_bounds.borrow_mut().push(span);
430 }
431
432 constraints.push(AssocTyConstraint {
433 id: ast::DUMMY_NODE_ID,
434 ident,
435 kind,
436 span,
437 });
438 assoc_ty_constraints.push(span);
439 } else if self.check_const_arg() {
440 // Parse const argument.
441 let expr = if let token::OpenDelim(token::Brace) = self.token.kind {
442 self.parse_block_expr(
443 None, self.token.span, BlockCheckMode::Default, ThinVec::new()
444 )?
445 } else if self.token.is_ident() {
446 // FIXME(const_generics): to distinguish between idents for types and consts,
447 // we should introduce a GenericArg::Ident in the AST and distinguish when
448 // lowering to the HIR. For now, idents for const args are not permitted.
449 if self.token.is_bool_lit() {
450 self.parse_literal_maybe_minus()?
451 } else {
452 return Err(
453 self.fatal("identifiers may currently not be used for const generics")
454 );
455 }
456 } else {
457 self.parse_literal_maybe_minus()?
458 };
459 let value = AnonConst {
460 id: ast::DUMMY_NODE_ID,
461 value: expr,
462 };
463 args.push(GenericArg::Const(value));
464 misplaced_assoc_ty_constraints.append(&mut assoc_ty_constraints);
465 } else if self.check_type() {
466 // Parse type argument.
467 args.push(GenericArg::Type(self.parse_ty()?));
468 misplaced_assoc_ty_constraints.append(&mut assoc_ty_constraints);
469 } else {
470 break
471 }
472
473 if !self.eat(&token::Comma) {
474 break
475 }
476 }
477
478 // FIXME: we would like to report this in ast_validation instead, but we currently do not
479 // preserve ordering of generic parameters with respect to associated type binding, so we
480 // lose that information after parsing.
481 if misplaced_assoc_ty_constraints.len() > 0 {
482 let mut err = self.struct_span_err(
483 args_lo.to(self.prev_span),
484 "associated type bindings must be declared after generic parameters",
485 );
486 for span in misplaced_assoc_ty_constraints {
487 err.span_label(
488 span,
489 "this associated type binding should be moved after the generic parameters",
490 );
491 }
492 err.emit();
493 }
494
495 Ok((args, constraints))
496 }
497 }