]> git.proxmox.com Git - rustc.git/blob - src/llvm/examples/Kaleidoscope/Chapter8/toy.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / examples / Kaleidoscope / Chapter8 / toy.cpp
1 #include "llvm/ADT/Triple.h"
2 #include "llvm/Analysis/Passes.h"
3 #include "llvm/ExecutionEngine/ExecutionEngine.h"
4 #include "llvm/ExecutionEngine/MCJIT.h"
5 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
6 #include "llvm/IR/DataLayout.h"
7 #include "llvm/IR/DerivedTypes.h"
8 #include "llvm/IR/DIBuilder.h"
9 #include "llvm/IR/IRBuilder.h"
10 #include "llvm/IR/LLVMContext.h"
11 #include "llvm/IR/Module.h"
12 #include "llvm/IR/Verifier.h"
13 #include "llvm/PassManager.h"
14 #include "llvm/Support/Host.h"
15 #include "llvm/Support/TargetSelect.h"
16 #include "llvm/Transforms/Scalar.h"
17 #include <cctype>
18 #include <cstdio>
19 #include <map>
20 #include <string>
21 #include <vector>
22 #include <iostream>
23 using namespace llvm;
24
25 //===----------------------------------------------------------------------===//
26 // Lexer
27 //===----------------------------------------------------------------------===//
28
29 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
30 // of these for known things.
31 enum Token {
32 tok_eof = -1,
33
34 // commands
35 tok_def = -2,
36 tok_extern = -3,
37
38 // primary
39 tok_identifier = -4,
40 tok_number = -5,
41
42 // control
43 tok_if = -6,
44 tok_then = -7,
45 tok_else = -8,
46 tok_for = -9,
47 tok_in = -10,
48
49 // operators
50 tok_binary = -11,
51 tok_unary = -12,
52
53 // var definition
54 tok_var = -13
55 };
56
57 std::string getTokName(int Tok) {
58 switch (Tok) {
59 case tok_eof:
60 return "eof";
61 case tok_def:
62 return "def";
63 case tok_extern:
64 return "extern";
65 case tok_identifier:
66 return "identifier";
67 case tok_number:
68 return "number";
69 case tok_if:
70 return "if";
71 case tok_then:
72 return "then";
73 case tok_else:
74 return "else";
75 case tok_for:
76 return "for";
77 case tok_in:
78 return "in";
79 case tok_binary:
80 return "binary";
81 case tok_unary:
82 return "unary";
83 case tok_var:
84 return "var";
85 }
86 return std::string(1, (char)Tok);
87 }
88
89 namespace {
90 class PrototypeAST;
91 class ExprAST;
92 }
93 static IRBuilder<> Builder(getGlobalContext());
94 struct DebugInfo {
95 DICompileUnit TheCU;
96 DIType DblTy;
97 std::vector<DIScope *> LexicalBlocks;
98 std::map<const PrototypeAST *, DIScope> FnScopeMap;
99
100 void emitLocation(ExprAST *AST);
101 DIType getDoubleTy();
102 } KSDbgInfo;
103
104 static std::string IdentifierStr; // Filled in if tok_identifier
105 static double NumVal; // Filled in if tok_number
106 struct SourceLocation {
107 int Line;
108 int Col;
109 };
110 static SourceLocation CurLoc;
111 static SourceLocation LexLoc = { 1, 0 };
112
113 static int advance() {
114 int LastChar = getchar();
115
116 if (LastChar == '\n' || LastChar == '\r') {
117 LexLoc.Line++;
118 LexLoc.Col = 0;
119 } else
120 LexLoc.Col++;
121 return LastChar;
122 }
123
124 /// gettok - Return the next token from standard input.
125 static int gettok() {
126 static int LastChar = ' ';
127
128 // Skip any whitespace.
129 while (isspace(LastChar))
130 LastChar = advance();
131
132 CurLoc = LexLoc;
133
134 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
135 IdentifierStr = LastChar;
136 while (isalnum((LastChar = advance())))
137 IdentifierStr += LastChar;
138
139 if (IdentifierStr == "def")
140 return tok_def;
141 if (IdentifierStr == "extern")
142 return tok_extern;
143 if (IdentifierStr == "if")
144 return tok_if;
145 if (IdentifierStr == "then")
146 return tok_then;
147 if (IdentifierStr == "else")
148 return tok_else;
149 if (IdentifierStr == "for")
150 return tok_for;
151 if (IdentifierStr == "in")
152 return tok_in;
153 if (IdentifierStr == "binary")
154 return tok_binary;
155 if (IdentifierStr == "unary")
156 return tok_unary;
157 if (IdentifierStr == "var")
158 return tok_var;
159 return tok_identifier;
160 }
161
162 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
163 std::string NumStr;
164 do {
165 NumStr += LastChar;
166 LastChar = advance();
167 } while (isdigit(LastChar) || LastChar == '.');
168
169 NumVal = strtod(NumStr.c_str(), 0);
170 return tok_number;
171 }
172
173 if (LastChar == '#') {
174 // Comment until end of line.
175 do
176 LastChar = advance();
177 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
178
179 if (LastChar != EOF)
180 return gettok();
181 }
182
183 // Check for end of file. Don't eat the EOF.
184 if (LastChar == EOF)
185 return tok_eof;
186
187 // Otherwise, just return the character as its ascii value.
188 int ThisChar = LastChar;
189 LastChar = advance();
190 return ThisChar;
191 }
192
193 //===----------------------------------------------------------------------===//
194 // Abstract Syntax Tree (aka Parse Tree)
195 //===----------------------------------------------------------------------===//
196 namespace {
197
198 std::ostream &indent(std::ostream &O, int size) {
199 return O << std::string(size, ' ');
200 }
201
202 /// ExprAST - Base class for all expression nodes.
203 class ExprAST {
204 SourceLocation Loc;
205
206 public:
207 int getLine() const { return Loc.Line; }
208 int getCol() const { return Loc.Col; }
209 ExprAST(SourceLocation Loc = CurLoc) : Loc(Loc) {}
210 virtual std::ostream &dump(std::ostream &out, int ind) {
211 return out << ':' << getLine() << ':' << getCol() << '\n';
212 }
213 virtual ~ExprAST() {}
214 virtual Value *Codegen() = 0;
215 };
216
217 /// NumberExprAST - Expression class for numeric literals like "1.0".
218 class NumberExprAST : public ExprAST {
219 double Val;
220
221 public:
222 NumberExprAST(double val) : Val(val) {}
223 virtual std::ostream &dump(std::ostream &out, int ind) {
224 return ExprAST::dump(out << Val, ind);
225 }
226 virtual Value *Codegen();
227 };
228
229 /// VariableExprAST - Expression class for referencing a variable, like "a".
230 class VariableExprAST : public ExprAST {
231 std::string Name;
232
233 public:
234 VariableExprAST(SourceLocation Loc, const std::string &name)
235 : ExprAST(Loc), Name(name) {}
236 const std::string &getName() const { return Name; }
237 virtual std::ostream &dump(std::ostream &out, int ind) {
238 return ExprAST::dump(out << Name, ind);
239 }
240 virtual Value *Codegen();
241 };
242
243 /// UnaryExprAST - Expression class for a unary operator.
244 class UnaryExprAST : public ExprAST {
245 char Opcode;
246 ExprAST *Operand;
247
248 public:
249 UnaryExprAST(char opcode, ExprAST *operand)
250 : Opcode(opcode), Operand(operand) {}
251 virtual std::ostream &dump(std::ostream &out, int ind) {
252 ExprAST::dump(out << "unary" << Opcode, ind);
253 Operand->dump(out, ind + 1);
254 return out;
255 }
256 virtual Value *Codegen();
257 };
258
259 /// BinaryExprAST - Expression class for a binary operator.
260 class BinaryExprAST : public ExprAST {
261 char Op;
262 ExprAST *LHS, *RHS;
263
264 public:
265 BinaryExprAST(SourceLocation Loc, char op, ExprAST *lhs, ExprAST *rhs)
266 : ExprAST(Loc), Op(op), LHS(lhs), RHS(rhs) {}
267 virtual std::ostream &dump(std::ostream &out, int ind) {
268 ExprAST::dump(out << "binary" << Op, ind);
269 LHS->dump(indent(out, ind) << "LHS:", ind + 1);
270 RHS->dump(indent(out, ind) << "RHS:", ind + 1);
271 return out;
272 }
273 virtual Value *Codegen();
274 };
275
276 /// CallExprAST - Expression class for function calls.
277 class CallExprAST : public ExprAST {
278 std::string Callee;
279 std::vector<ExprAST *> Args;
280
281 public:
282 CallExprAST(SourceLocation Loc, const std::string &callee,
283 std::vector<ExprAST *> &args)
284 : ExprAST(Loc), Callee(callee), Args(args) {}
285 virtual std::ostream &dump(std::ostream &out, int ind) {
286 ExprAST::dump(out << "call " << Callee, ind);
287 for (ExprAST *Arg : Args)
288 Arg->dump(indent(out, ind + 1), ind + 1);
289 return out;
290 }
291 virtual Value *Codegen();
292 };
293
294 /// IfExprAST - Expression class for if/then/else.
295 class IfExprAST : public ExprAST {
296 ExprAST *Cond, *Then, *Else;
297
298 public:
299 IfExprAST(SourceLocation Loc, ExprAST *cond, ExprAST *then, ExprAST *_else)
300 : ExprAST(Loc), Cond(cond), Then(then), Else(_else) {}
301 virtual std::ostream &dump(std::ostream &out, int ind) {
302 ExprAST::dump(out << "if", ind);
303 Cond->dump(indent(out, ind) << "Cond:", ind + 1);
304 Then->dump(indent(out, ind) << "Then:", ind + 1);
305 Else->dump(indent(out, ind) << "Else:", ind + 1);
306 return out;
307 }
308 virtual Value *Codegen();
309 };
310
311 /// ForExprAST - Expression class for for/in.
312 class ForExprAST : public ExprAST {
313 std::string VarName;
314 ExprAST *Start, *End, *Step, *Body;
315
316 public:
317 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
318 ExprAST *step, ExprAST *body)
319 : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
320 virtual std::ostream &dump(std::ostream &out, int ind) {
321 ExprAST::dump(out << "for", ind);
322 Start->dump(indent(out, ind) << "Cond:", ind + 1);
323 End->dump(indent(out, ind) << "End:", ind + 1);
324 Step->dump(indent(out, ind) << "Step:", ind + 1);
325 Body->dump(indent(out, ind) << "Body:", ind + 1);
326 return out;
327 }
328 virtual Value *Codegen();
329 };
330
331 /// VarExprAST - Expression class for var/in
332 class VarExprAST : public ExprAST {
333 std::vector<std::pair<std::string, ExprAST *> > VarNames;
334 ExprAST *Body;
335
336 public:
337 VarExprAST(const std::vector<std::pair<std::string, ExprAST *> > &varnames,
338 ExprAST *body)
339 : VarNames(varnames), Body(body) {}
340
341 virtual std::ostream &dump(std::ostream &out, int ind) {
342 ExprAST::dump(out << "var", ind);
343 for (const auto &NamedVar : VarNames)
344 NamedVar.second->dump(indent(out, ind) << NamedVar.first << ':', ind + 1);
345 Body->dump(indent(out, ind) << "Body:", ind + 1);
346 return out;
347 }
348 virtual Value *Codegen();
349 };
350
351 /// PrototypeAST - This class represents the "prototype" for a function,
352 /// which captures its argument names as well as if it is an operator.
353 class PrototypeAST {
354 std::string Name;
355 std::vector<std::string> Args;
356 bool isOperator;
357 unsigned Precedence; // Precedence if a binary op.
358 int Line;
359
360 public:
361 PrototypeAST(SourceLocation Loc, const std::string &name,
362 const std::vector<std::string> &args, bool isoperator = false,
363 unsigned prec = 0)
364 : Name(name), Args(args), isOperator(isoperator), Precedence(prec),
365 Line(Loc.Line) {}
366
367 bool isUnaryOp() const { return isOperator && Args.size() == 1; }
368 bool isBinaryOp() const { return isOperator && Args.size() == 2; }
369
370 char getOperatorName() const {
371 assert(isUnaryOp() || isBinaryOp());
372 return Name[Name.size() - 1];
373 }
374
375 unsigned getBinaryPrecedence() const { return Precedence; }
376
377 Function *Codegen();
378
379 void CreateArgumentAllocas(Function *F);
380 const std::vector<std::string> &getArgs() const { return Args; }
381 };
382
383 /// FunctionAST - This class represents a function definition itself.
384 class FunctionAST {
385 PrototypeAST *Proto;
386 ExprAST *Body;
387
388 public:
389 FunctionAST(PrototypeAST *proto, ExprAST *body) : Proto(proto), Body(body) {}
390
391 std::ostream &dump(std::ostream &out, int ind) {
392 indent(out, ind) << "FunctionAST\n";
393 ++ind;
394 indent(out, ind) << "Body:";
395 return Body ? Body->dump(out, ind) : out << "null\n";
396 }
397
398 Function *Codegen();
399 };
400 } // end anonymous namespace
401
402 //===----------------------------------------------------------------------===//
403 // Parser
404 //===----------------------------------------------------------------------===//
405
406 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
407 /// token the parser is looking at. getNextToken reads another token from the
408 /// lexer and updates CurTok with its results.
409 static int CurTok;
410 static int getNextToken() { return CurTok = gettok(); }
411
412 /// BinopPrecedence - This holds the precedence for each binary operator that is
413 /// defined.
414 static std::map<char, int> BinopPrecedence;
415
416 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
417 static int GetTokPrecedence() {
418 if (!isascii(CurTok))
419 return -1;
420
421 // Make sure it's a declared binop.
422 int TokPrec = BinopPrecedence[CurTok];
423 if (TokPrec <= 0)
424 return -1;
425 return TokPrec;
426 }
427
428 /// Error* - These are little helper functions for error handling.
429 ExprAST *Error(const char *Str) {
430 fprintf(stderr, "Error: %s\n", Str);
431 return 0;
432 }
433 PrototypeAST *ErrorP(const char *Str) {
434 Error(Str);
435 return 0;
436 }
437 FunctionAST *ErrorF(const char *Str) {
438 Error(Str);
439 return 0;
440 }
441
442 static ExprAST *ParseExpression();
443
444 /// identifierexpr
445 /// ::= identifier
446 /// ::= identifier '(' expression* ')'
447 static ExprAST *ParseIdentifierExpr() {
448 std::string IdName = IdentifierStr;
449
450 SourceLocation LitLoc = CurLoc;
451
452 getNextToken(); // eat identifier.
453
454 if (CurTok != '(') // Simple variable ref.
455 return new VariableExprAST(LitLoc, IdName);
456
457 // Call.
458 getNextToken(); // eat (
459 std::vector<ExprAST *> Args;
460 if (CurTok != ')') {
461 while (1) {
462 ExprAST *Arg = ParseExpression();
463 if (!Arg)
464 return 0;
465 Args.push_back(Arg);
466
467 if (CurTok == ')')
468 break;
469
470 if (CurTok != ',')
471 return Error("Expected ')' or ',' in argument list");
472 getNextToken();
473 }
474 }
475
476 // Eat the ')'.
477 getNextToken();
478
479 return new CallExprAST(LitLoc, IdName, Args);
480 }
481
482 /// numberexpr ::= number
483 static ExprAST *ParseNumberExpr() {
484 ExprAST *Result = new NumberExprAST(NumVal);
485 getNextToken(); // consume the number
486 return Result;
487 }
488
489 /// parenexpr ::= '(' expression ')'
490 static ExprAST *ParseParenExpr() {
491 getNextToken(); // eat (.
492 ExprAST *V = ParseExpression();
493 if (!V)
494 return 0;
495
496 if (CurTok != ')')
497 return Error("expected ')'");
498 getNextToken(); // eat ).
499 return V;
500 }
501
502 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
503 static ExprAST *ParseIfExpr() {
504 SourceLocation IfLoc = CurLoc;
505
506 getNextToken(); // eat the if.
507
508 // condition.
509 ExprAST *Cond = ParseExpression();
510 if (!Cond)
511 return 0;
512
513 if (CurTok != tok_then)
514 return Error("expected then");
515 getNextToken(); // eat the then
516
517 ExprAST *Then = ParseExpression();
518 if (Then == 0)
519 return 0;
520
521 if (CurTok != tok_else)
522 return Error("expected else");
523
524 getNextToken();
525
526 ExprAST *Else = ParseExpression();
527 if (!Else)
528 return 0;
529
530 return new IfExprAST(IfLoc, Cond, Then, Else);
531 }
532
533 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
534 static ExprAST *ParseForExpr() {
535 getNextToken(); // eat the for.
536
537 if (CurTok != tok_identifier)
538 return Error("expected identifier after for");
539
540 std::string IdName = IdentifierStr;
541 getNextToken(); // eat identifier.
542
543 if (CurTok != '=')
544 return Error("expected '=' after for");
545 getNextToken(); // eat '='.
546
547 ExprAST *Start = ParseExpression();
548 if (Start == 0)
549 return 0;
550 if (CurTok != ',')
551 return Error("expected ',' after for start value");
552 getNextToken();
553
554 ExprAST *End = ParseExpression();
555 if (End == 0)
556 return 0;
557
558 // The step value is optional.
559 ExprAST *Step = 0;
560 if (CurTok == ',') {
561 getNextToken();
562 Step = ParseExpression();
563 if (Step == 0)
564 return 0;
565 }
566
567 if (CurTok != tok_in)
568 return Error("expected 'in' after for");
569 getNextToken(); // eat 'in'.
570
571 ExprAST *Body = ParseExpression();
572 if (Body == 0)
573 return 0;
574
575 return new ForExprAST(IdName, Start, End, Step, Body);
576 }
577
578 /// varexpr ::= 'var' identifier ('=' expression)?
579 // (',' identifier ('=' expression)?)* 'in' expression
580 static ExprAST *ParseVarExpr() {
581 getNextToken(); // eat the var.
582
583 std::vector<std::pair<std::string, ExprAST *> > VarNames;
584
585 // At least one variable name is required.
586 if (CurTok != tok_identifier)
587 return Error("expected identifier after var");
588
589 while (1) {
590 std::string Name = IdentifierStr;
591 getNextToken(); // eat identifier.
592
593 // Read the optional initializer.
594 ExprAST *Init = 0;
595 if (CurTok == '=') {
596 getNextToken(); // eat the '='.
597
598 Init = ParseExpression();
599 if (Init == 0)
600 return 0;
601 }
602
603 VarNames.push_back(std::make_pair(Name, Init));
604
605 // End of var list, exit loop.
606 if (CurTok != ',')
607 break;
608 getNextToken(); // eat the ','.
609
610 if (CurTok != tok_identifier)
611 return Error("expected identifier list after var");
612 }
613
614 // At this point, we have to have 'in'.
615 if (CurTok != tok_in)
616 return Error("expected 'in' keyword after 'var'");
617 getNextToken(); // eat 'in'.
618
619 ExprAST *Body = ParseExpression();
620 if (Body == 0)
621 return 0;
622
623 return new VarExprAST(VarNames, Body);
624 }
625
626 /// primary
627 /// ::= identifierexpr
628 /// ::= numberexpr
629 /// ::= parenexpr
630 /// ::= ifexpr
631 /// ::= forexpr
632 /// ::= varexpr
633 static ExprAST *ParsePrimary() {
634 switch (CurTok) {
635 default:
636 return Error("unknown token when expecting an expression");
637 case tok_identifier:
638 return ParseIdentifierExpr();
639 case tok_number:
640 return ParseNumberExpr();
641 case '(':
642 return ParseParenExpr();
643 case tok_if:
644 return ParseIfExpr();
645 case tok_for:
646 return ParseForExpr();
647 case tok_var:
648 return ParseVarExpr();
649 }
650 }
651
652 /// unary
653 /// ::= primary
654 /// ::= '!' unary
655 static ExprAST *ParseUnary() {
656 // If the current token is not an operator, it must be a primary expr.
657 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
658 return ParsePrimary();
659
660 // If this is a unary operator, read it.
661 int Opc = CurTok;
662 getNextToken();
663 if (ExprAST *Operand = ParseUnary())
664 return new UnaryExprAST(Opc, Operand);
665 return 0;
666 }
667
668 /// binoprhs
669 /// ::= ('+' unary)*
670 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
671 // If this is a binop, find its precedence.
672 while (1) {
673 int TokPrec = GetTokPrecedence();
674
675 // If this is a binop that binds at least as tightly as the current binop,
676 // consume it, otherwise we are done.
677 if (TokPrec < ExprPrec)
678 return LHS;
679
680 // Okay, we know this is a binop.
681 int BinOp = CurTok;
682 SourceLocation BinLoc = CurLoc;
683 getNextToken(); // eat binop
684
685 // Parse the unary expression after the binary operator.
686 ExprAST *RHS = ParseUnary();
687 if (!RHS)
688 return 0;
689
690 // If BinOp binds less tightly with RHS than the operator after RHS, let
691 // the pending operator take RHS as its LHS.
692 int NextPrec = GetTokPrecedence();
693 if (TokPrec < NextPrec) {
694 RHS = ParseBinOpRHS(TokPrec + 1, RHS);
695 if (RHS == 0)
696 return 0;
697 }
698
699 // Merge LHS/RHS.
700 LHS = new BinaryExprAST(BinLoc, BinOp, LHS, RHS);
701 }
702 }
703
704 /// expression
705 /// ::= unary binoprhs
706 ///
707 static ExprAST *ParseExpression() {
708 ExprAST *LHS = ParseUnary();
709 if (!LHS)
710 return 0;
711
712 return ParseBinOpRHS(0, LHS);
713 }
714
715 /// prototype
716 /// ::= id '(' id* ')'
717 /// ::= binary LETTER number? (id, id)
718 /// ::= unary LETTER (id)
719 static PrototypeAST *ParsePrototype() {
720 std::string FnName;
721
722 SourceLocation FnLoc = CurLoc;
723
724 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
725 unsigned BinaryPrecedence = 30;
726
727 switch (CurTok) {
728 default:
729 return ErrorP("Expected function name in prototype");
730 case tok_identifier:
731 FnName = IdentifierStr;
732 Kind = 0;
733 getNextToken();
734 break;
735 case tok_unary:
736 getNextToken();
737 if (!isascii(CurTok))
738 return ErrorP("Expected unary operator");
739 FnName = "unary";
740 FnName += (char)CurTok;
741 Kind = 1;
742 getNextToken();
743 break;
744 case tok_binary:
745 getNextToken();
746 if (!isascii(CurTok))
747 return ErrorP("Expected binary operator");
748 FnName = "binary";
749 FnName += (char)CurTok;
750 Kind = 2;
751 getNextToken();
752
753 // Read the precedence if present.
754 if (CurTok == tok_number) {
755 if (NumVal < 1 || NumVal > 100)
756 return ErrorP("Invalid precedecnce: must be 1..100");
757 BinaryPrecedence = (unsigned)NumVal;
758 getNextToken();
759 }
760 break;
761 }
762
763 if (CurTok != '(')
764 return ErrorP("Expected '(' in prototype");
765
766 std::vector<std::string> ArgNames;
767 while (getNextToken() == tok_identifier)
768 ArgNames.push_back(IdentifierStr);
769 if (CurTok != ')')
770 return ErrorP("Expected ')' in prototype");
771
772 // success.
773 getNextToken(); // eat ')'.
774
775 // Verify right number of names for operator.
776 if (Kind && ArgNames.size() != Kind)
777 return ErrorP("Invalid number of operands for operator");
778
779 return new PrototypeAST(FnLoc, FnName, ArgNames, Kind != 0, BinaryPrecedence);
780 }
781
782 /// definition ::= 'def' prototype expression
783 static FunctionAST *ParseDefinition() {
784 getNextToken(); // eat def.
785 PrototypeAST *Proto = ParsePrototype();
786 if (Proto == 0)
787 return 0;
788
789 if (ExprAST *E = ParseExpression())
790 return new FunctionAST(Proto, E);
791 return 0;
792 }
793
794 /// toplevelexpr ::= expression
795 static FunctionAST *ParseTopLevelExpr() {
796 SourceLocation FnLoc = CurLoc;
797 if (ExprAST *E = ParseExpression()) {
798 // Make an anonymous proto.
799 PrototypeAST *Proto =
800 new PrototypeAST(FnLoc, "main", std::vector<std::string>());
801 return new FunctionAST(Proto, E);
802 }
803 return 0;
804 }
805
806 /// external ::= 'extern' prototype
807 static PrototypeAST *ParseExtern() {
808 getNextToken(); // eat extern.
809 return ParsePrototype();
810 }
811
812 //===----------------------------------------------------------------------===//
813 // Debug Info Support
814 //===----------------------------------------------------------------------===//
815
816 static DIBuilder *DBuilder;
817
818 DIType DebugInfo::getDoubleTy() {
819 if (DblTy.isValid())
820 return DblTy;
821
822 DblTy = DBuilder->createBasicType("double", 64, 64, dwarf::DW_ATE_float);
823 return DblTy;
824 }
825
826 void DebugInfo::emitLocation(ExprAST *AST) {
827 if (!AST)
828 return Builder.SetCurrentDebugLocation(DebugLoc());
829 DIScope *Scope;
830 if (LexicalBlocks.empty())
831 Scope = &TheCU;
832 else
833 Scope = LexicalBlocks.back();
834 Builder.SetCurrentDebugLocation(
835 DebugLoc::get(AST->getLine(), AST->getCol(), DIScope(*Scope)));
836 }
837
838 static DICompositeType CreateFunctionType(unsigned NumArgs, DIFile Unit) {
839 SmallVector<Metadata *, 8> EltTys;
840 DIType DblTy = KSDbgInfo.getDoubleTy();
841
842 // Add the result type.
843 EltTys.push_back(DblTy);
844
845 for (unsigned i = 0, e = NumArgs; i != e; ++i)
846 EltTys.push_back(DblTy);
847
848 DITypeArray EltTypeArray = DBuilder->getOrCreateTypeArray(EltTys);
849 return DBuilder->createSubroutineType(Unit, EltTypeArray);
850 }
851
852 //===----------------------------------------------------------------------===//
853 // Code Generation
854 //===----------------------------------------------------------------------===//
855
856 static Module *TheModule;
857 static std::map<std::string, AllocaInst *> NamedValues;
858 static FunctionPassManager *TheFPM;
859
860 Value *ErrorV(const char *Str) {
861 Error(Str);
862 return 0;
863 }
864
865 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
866 /// the function. This is used for mutable variables etc.
867 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
868 const std::string &VarName) {
869 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
870 TheFunction->getEntryBlock().begin());
871 return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
872 VarName.c_str());
873 }
874
875 Value *NumberExprAST::Codegen() {
876 KSDbgInfo.emitLocation(this);
877 return ConstantFP::get(getGlobalContext(), APFloat(Val));
878 }
879
880 Value *VariableExprAST::Codegen() {
881 // Look this variable up in the function.
882 Value *V = NamedValues[Name];
883 if (V == 0)
884 return ErrorV("Unknown variable name");
885
886 KSDbgInfo.emitLocation(this);
887 // Load the value.
888 return Builder.CreateLoad(V, Name.c_str());
889 }
890
891 Value *UnaryExprAST::Codegen() {
892 Value *OperandV = Operand->Codegen();
893 if (OperandV == 0)
894 return 0;
895
896 Function *F = TheModule->getFunction(std::string("unary") + Opcode);
897 if (F == 0)
898 return ErrorV("Unknown unary operator");
899
900 KSDbgInfo.emitLocation(this);
901 return Builder.CreateCall(F, OperandV, "unop");
902 }
903
904 Value *BinaryExprAST::Codegen() {
905 KSDbgInfo.emitLocation(this);
906
907 // Special case '=' because we don't want to emit the LHS as an expression.
908 if (Op == '=') {
909 // Assignment requires the LHS to be an identifier.
910 VariableExprAST *LHSE = dynamic_cast<VariableExprAST *>(LHS);
911 if (!LHSE)
912 return ErrorV("destination of '=' must be a variable");
913 // Codegen the RHS.
914 Value *Val = RHS->Codegen();
915 if (Val == 0)
916 return 0;
917
918 // Look up the name.
919 Value *Variable = NamedValues[LHSE->getName()];
920 if (Variable == 0)
921 return ErrorV("Unknown variable name");
922
923 Builder.CreateStore(Val, Variable);
924 return Val;
925 }
926
927 Value *L = LHS->Codegen();
928 Value *R = RHS->Codegen();
929 if (L == 0 || R == 0)
930 return 0;
931
932 switch (Op) {
933 case '+':
934 return Builder.CreateFAdd(L, R, "addtmp");
935 case '-':
936 return Builder.CreateFSub(L, R, "subtmp");
937 case '*':
938 return Builder.CreateFMul(L, R, "multmp");
939 case '<':
940 L = Builder.CreateFCmpULT(L, R, "cmptmp");
941 // Convert bool 0/1 to double 0.0 or 1.0
942 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
943 "booltmp");
944 default:
945 break;
946 }
947
948 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
949 // a call to it.
950 Function *F = TheModule->getFunction(std::string("binary") + Op);
951 assert(F && "binary operator not found!");
952
953 Value *Ops[] = { L, R };
954 return Builder.CreateCall(F, Ops, "binop");
955 }
956
957 Value *CallExprAST::Codegen() {
958 KSDbgInfo.emitLocation(this);
959
960 // Look up the name in the global module table.
961 Function *CalleeF = TheModule->getFunction(Callee);
962 if (CalleeF == 0)
963 return ErrorV("Unknown function referenced");
964
965 // If argument mismatch error.
966 if (CalleeF->arg_size() != Args.size())
967 return ErrorV("Incorrect # arguments passed");
968
969 std::vector<Value *> ArgsV;
970 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
971 ArgsV.push_back(Args[i]->Codegen());
972 if (ArgsV.back() == 0)
973 return 0;
974 }
975
976 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
977 }
978
979 Value *IfExprAST::Codegen() {
980 KSDbgInfo.emitLocation(this);
981
982 Value *CondV = Cond->Codegen();
983 if (CondV == 0)
984 return 0;
985
986 // Convert condition to a bool by comparing equal to 0.0.
987 CondV = Builder.CreateFCmpONE(
988 CondV, ConstantFP::get(getGlobalContext(), APFloat(0.0)), "ifcond");
989
990 Function *TheFunction = Builder.GetInsertBlock()->getParent();
991
992 // Create blocks for the then and else cases. Insert the 'then' block at the
993 // end of the function.
994 BasicBlock *ThenBB =
995 BasicBlock::Create(getGlobalContext(), "then", TheFunction);
996 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
997 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
998
999 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
1000
1001 // Emit then value.
1002 Builder.SetInsertPoint(ThenBB);
1003
1004 Value *ThenV = Then->Codegen();
1005 if (ThenV == 0)
1006 return 0;
1007
1008 Builder.CreateBr(MergeBB);
1009 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
1010 ThenBB = Builder.GetInsertBlock();
1011
1012 // Emit else block.
1013 TheFunction->getBasicBlockList().push_back(ElseBB);
1014 Builder.SetInsertPoint(ElseBB);
1015
1016 Value *ElseV = Else->Codegen();
1017 if (ElseV == 0)
1018 return 0;
1019
1020 Builder.CreateBr(MergeBB);
1021 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
1022 ElseBB = Builder.GetInsertBlock();
1023
1024 // Emit merge block.
1025 TheFunction->getBasicBlockList().push_back(MergeBB);
1026 Builder.SetInsertPoint(MergeBB);
1027 PHINode *PN =
1028 Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, "iftmp");
1029
1030 PN->addIncoming(ThenV, ThenBB);
1031 PN->addIncoming(ElseV, ElseBB);
1032 return PN;
1033 }
1034
1035 Value *ForExprAST::Codegen() {
1036 // Output this as:
1037 // var = alloca double
1038 // ...
1039 // start = startexpr
1040 // store start -> var
1041 // goto loop
1042 // loop:
1043 // ...
1044 // bodyexpr
1045 // ...
1046 // loopend:
1047 // step = stepexpr
1048 // endcond = endexpr
1049 //
1050 // curvar = load var
1051 // nextvar = curvar + step
1052 // store nextvar -> var
1053 // br endcond, loop, endloop
1054 // outloop:
1055
1056 Function *TheFunction = Builder.GetInsertBlock()->getParent();
1057
1058 // Create an alloca for the variable in the entry block.
1059 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1060
1061 KSDbgInfo.emitLocation(this);
1062
1063 // Emit the start code first, without 'variable' in scope.
1064 Value *StartVal = Start->Codegen();
1065 if (StartVal == 0)
1066 return 0;
1067
1068 // Store the value into the alloca.
1069 Builder.CreateStore(StartVal, Alloca);
1070
1071 // Make the new basic block for the loop header, inserting after current
1072 // block.
1073 BasicBlock *LoopBB =
1074 BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
1075
1076 // Insert an explicit fall through from the current block to the LoopBB.
1077 Builder.CreateBr(LoopBB);
1078
1079 // Start insertion in LoopBB.
1080 Builder.SetInsertPoint(LoopBB);
1081
1082 // Within the loop, the variable is defined equal to the PHI node. If it
1083 // shadows an existing variable, we have to restore it, so save it now.
1084 AllocaInst *OldVal = NamedValues[VarName];
1085 NamedValues[VarName] = Alloca;
1086
1087 // Emit the body of the loop. This, like any other expr, can change the
1088 // current BB. Note that we ignore the value computed by the body, but don't
1089 // allow an error.
1090 if (Body->Codegen() == 0)
1091 return 0;
1092
1093 // Emit the step value.
1094 Value *StepVal;
1095 if (Step) {
1096 StepVal = Step->Codegen();
1097 if (StepVal == 0)
1098 return 0;
1099 } else {
1100 // If not specified, use 1.0.
1101 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
1102 }
1103
1104 // Compute the end condition.
1105 Value *EndCond = End->Codegen();
1106 if (EndCond == 0)
1107 return EndCond;
1108
1109 // Reload, increment, and restore the alloca. This handles the case where
1110 // the body of the loop mutates the variable.
1111 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
1112 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
1113 Builder.CreateStore(NextVar, Alloca);
1114
1115 // Convert condition to a bool by comparing equal to 0.0.
1116 EndCond = Builder.CreateFCmpONE(
1117 EndCond, ConstantFP::get(getGlobalContext(), APFloat(0.0)), "loopcond");
1118
1119 // Create the "after loop" block and insert it.
1120 BasicBlock *AfterBB =
1121 BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
1122
1123 // Insert the conditional branch into the end of LoopEndBB.
1124 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
1125
1126 // Any new code will be inserted in AfterBB.
1127 Builder.SetInsertPoint(AfterBB);
1128
1129 // Restore the unshadowed variable.
1130 if (OldVal)
1131 NamedValues[VarName] = OldVal;
1132 else
1133 NamedValues.erase(VarName);
1134
1135 // for expr always returns 0.0.
1136 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
1137 }
1138
1139 Value *VarExprAST::Codegen() {
1140 std::vector<AllocaInst *> OldBindings;
1141
1142 Function *TheFunction = Builder.GetInsertBlock()->getParent();
1143
1144 // Register all variables and emit their initializer.
1145 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
1146 const std::string &VarName = VarNames[i].first;
1147 ExprAST *Init = VarNames[i].second;
1148
1149 // Emit the initializer before adding the variable to scope, this prevents
1150 // the initializer from referencing the variable itself, and permits stuff
1151 // like this:
1152 // var a = 1 in
1153 // var a = a in ... # refers to outer 'a'.
1154 Value *InitVal;
1155 if (Init) {
1156 InitVal = Init->Codegen();
1157 if (InitVal == 0)
1158 return 0;
1159 } else { // If not specified, use 0.0.
1160 InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
1161 }
1162
1163 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1164 Builder.CreateStore(InitVal, Alloca);
1165
1166 // Remember the old variable binding so that we can restore the binding when
1167 // we unrecurse.
1168 OldBindings.push_back(NamedValues[VarName]);
1169
1170 // Remember this binding.
1171 NamedValues[VarName] = Alloca;
1172 }
1173
1174 KSDbgInfo.emitLocation(this);
1175
1176 // Codegen the body, now that all vars are in scope.
1177 Value *BodyVal = Body->Codegen();
1178 if (BodyVal == 0)
1179 return 0;
1180
1181 // Pop all our variables from scope.
1182 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1183 NamedValues[VarNames[i].first] = OldBindings[i];
1184
1185 // Return the body computation.
1186 return BodyVal;
1187 }
1188
1189 Function *PrototypeAST::Codegen() {
1190 // Make the function type: double(double,double) etc.
1191 std::vector<Type *> Doubles(Args.size(),
1192 Type::getDoubleTy(getGlobalContext()));
1193 FunctionType *FT =
1194 FunctionType::get(Type::getDoubleTy(getGlobalContext()), Doubles, false);
1195
1196 Function *F =
1197 Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
1198
1199 // If F conflicted, there was already something named 'Name'. If it has a
1200 // body, don't allow redefinition or reextern.
1201 if (F->getName() != Name) {
1202 // Delete the one we just made and get the existing one.
1203 F->eraseFromParent();
1204 F = TheModule->getFunction(Name);
1205
1206 // If F already has a body, reject this.
1207 if (!F->empty()) {
1208 ErrorF("redefinition of function");
1209 return 0;
1210 }
1211
1212 // If F took a different number of args, reject.
1213 if (F->arg_size() != Args.size()) {
1214 ErrorF("redefinition of function with different # args");
1215 return 0;
1216 }
1217 }
1218
1219 // Set names for all arguments.
1220 unsigned Idx = 0;
1221 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
1222 ++AI, ++Idx)
1223 AI->setName(Args[Idx]);
1224
1225 // Create a subprogram DIE for this function.
1226 DIFile Unit = DBuilder->createFile(KSDbgInfo.TheCU.getFilename(),
1227 KSDbgInfo.TheCU.getDirectory());
1228 DIDescriptor FContext(Unit);
1229 unsigned LineNo = Line;
1230 unsigned ScopeLine = Line;
1231 DISubprogram SP = DBuilder->createFunction(
1232 FContext, Name, StringRef(), Unit, LineNo,
1233 CreateFunctionType(Args.size(), Unit), false /* internal linkage */,
1234 true /* definition */, ScopeLine, DIDescriptor::FlagPrototyped, false, F);
1235
1236 KSDbgInfo.FnScopeMap[this] = SP;
1237 return F;
1238 }
1239
1240 /// CreateArgumentAllocas - Create an alloca for each argument and register the
1241 /// argument in the symbol table so that references to it will succeed.
1242 void PrototypeAST::CreateArgumentAllocas(Function *F) {
1243 Function::arg_iterator AI = F->arg_begin();
1244 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
1245 // Create an alloca for this variable.
1246 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
1247
1248 // Create a debug descriptor for the variable.
1249 DIScope *Scope = KSDbgInfo.LexicalBlocks.back();
1250 DIFile Unit = DBuilder->createFile(KSDbgInfo.TheCU.getFilename(),
1251 KSDbgInfo.TheCU.getDirectory());
1252 DIVariable D = DBuilder->createLocalVariable(dwarf::DW_TAG_arg_variable,
1253 *Scope, Args[Idx], Unit, Line,
1254 KSDbgInfo.getDoubleTy(), Idx);
1255
1256 Instruction *Call = DBuilder->insertDeclare(
1257 Alloca, D, DBuilder->createExpression(), Builder.GetInsertBlock());
1258 Call->setDebugLoc(DebugLoc::get(Line, 0, *Scope));
1259
1260 // Store the initial value into the alloca.
1261 Builder.CreateStore(AI, Alloca);
1262
1263 // Add arguments to variable symbol table.
1264 NamedValues[Args[Idx]] = Alloca;
1265 }
1266 }
1267
1268 Function *FunctionAST::Codegen() {
1269 NamedValues.clear();
1270
1271 Function *TheFunction = Proto->Codegen();
1272 if (TheFunction == 0)
1273 return 0;
1274
1275 // Push the current scope.
1276 KSDbgInfo.LexicalBlocks.push_back(&KSDbgInfo.FnScopeMap[Proto]);
1277
1278 // Unset the location for the prologue emission (leading instructions with no
1279 // location in a function are considered part of the prologue and the debugger
1280 // will run past them when breaking on a function)
1281 KSDbgInfo.emitLocation(nullptr);
1282
1283 // If this is an operator, install it.
1284 if (Proto->isBinaryOp())
1285 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
1286
1287 // Create a new basic block to start insertion into.
1288 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
1289 Builder.SetInsertPoint(BB);
1290
1291 // Add all arguments to the symbol table and create their allocas.
1292 Proto->CreateArgumentAllocas(TheFunction);
1293
1294 KSDbgInfo.emitLocation(Body);
1295
1296 if (Value *RetVal = Body->Codegen()) {
1297 // Finish off the function.
1298 Builder.CreateRet(RetVal);
1299
1300 // Pop off the lexical block for the function.
1301 KSDbgInfo.LexicalBlocks.pop_back();
1302
1303 // Validate the generated code, checking for consistency.
1304 verifyFunction(*TheFunction);
1305
1306 // Optimize the function.
1307 TheFPM->run(*TheFunction);
1308
1309 return TheFunction;
1310 }
1311
1312 // Error reading body, remove function.
1313 TheFunction->eraseFromParent();
1314
1315 if (Proto->isBinaryOp())
1316 BinopPrecedence.erase(Proto->getOperatorName());
1317
1318 // Pop off the lexical block for the function since we added it
1319 // unconditionally.
1320 KSDbgInfo.LexicalBlocks.pop_back();
1321
1322 return 0;
1323 }
1324
1325 //===----------------------------------------------------------------------===//
1326 // Top-Level parsing and JIT Driver
1327 //===----------------------------------------------------------------------===//
1328
1329 static ExecutionEngine *TheExecutionEngine;
1330
1331 static void HandleDefinition() {
1332 if (FunctionAST *F = ParseDefinition()) {
1333 if (!F->Codegen()) {
1334 fprintf(stderr, "Error reading function definition:");
1335 }
1336 } else {
1337 // Skip token for error recovery.
1338 getNextToken();
1339 }
1340 }
1341
1342 static void HandleExtern() {
1343 if (PrototypeAST *P = ParseExtern()) {
1344 if (!P->Codegen()) {
1345 fprintf(stderr, "Error reading extern");
1346 }
1347 } else {
1348 // Skip token for error recovery.
1349 getNextToken();
1350 }
1351 }
1352
1353 static void HandleTopLevelExpression() {
1354 // Evaluate a top-level expression into an anonymous function.
1355 if (FunctionAST *F = ParseTopLevelExpr()) {
1356 if (!F->Codegen()) {
1357 fprintf(stderr, "Error generating code for top level expr");
1358 }
1359 } else {
1360 // Skip token for error recovery.
1361 getNextToken();
1362 }
1363 }
1364
1365 /// top ::= definition | external | expression | ';'
1366 static void MainLoop() {
1367 while (1) {
1368 switch (CurTok) {
1369 case tok_eof:
1370 return;
1371 case ';':
1372 getNextToken();
1373 break; // ignore top-level semicolons.
1374 case tok_def:
1375 HandleDefinition();
1376 break;
1377 case tok_extern:
1378 HandleExtern();
1379 break;
1380 default:
1381 HandleTopLevelExpression();
1382 break;
1383 }
1384 }
1385 }
1386
1387 //===----------------------------------------------------------------------===//
1388 // "Library" functions that can be "extern'd" from user code.
1389 //===----------------------------------------------------------------------===//
1390
1391 /// putchard - putchar that takes a double and returns 0.
1392 extern "C" double putchard(double X) {
1393 putchar((char)X);
1394 return 0;
1395 }
1396
1397 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1398 extern "C" double printd(double X) {
1399 printf("%f\n", X);
1400 return 0;
1401 }
1402
1403 //===----------------------------------------------------------------------===//
1404 // Main driver code.
1405 //===----------------------------------------------------------------------===//
1406
1407 int main() {
1408 InitializeNativeTarget();
1409 InitializeNativeTargetAsmPrinter();
1410 InitializeNativeTargetAsmParser();
1411 LLVMContext &Context = getGlobalContext();
1412
1413 // Install standard binary operators.
1414 // 1 is lowest precedence.
1415 BinopPrecedence['='] = 2;
1416 BinopPrecedence['<'] = 10;
1417 BinopPrecedence['+'] = 20;
1418 BinopPrecedence['-'] = 20;
1419 BinopPrecedence['*'] = 40; // highest.
1420
1421 // Prime the first token.
1422 getNextToken();
1423
1424 // Make the module, which holds all the code.
1425 std::unique_ptr<Module> Owner = make_unique<Module>("my cool jit", Context);
1426 TheModule = Owner.get();
1427
1428 // Add the current debug info version into the module.
1429 TheModule->addModuleFlag(Module::Warning, "Debug Info Version",
1430 DEBUG_METADATA_VERSION);
1431
1432 // Darwin only supports dwarf2.
1433 if (Triple(sys::getProcessTriple()).isOSDarwin())
1434 TheModule->addModuleFlag(llvm::Module::Warning, "Dwarf Version", 2);
1435
1436 // Construct the DIBuilder, we do this here because we need the module.
1437 DBuilder = new DIBuilder(*TheModule);
1438
1439 // Create the compile unit for the module.
1440 // Currently down as "fib.ks" as a filename since we're redirecting stdin
1441 // but we'd like actual source locations.
1442 KSDbgInfo.TheCU = DBuilder->createCompileUnit(
1443 dwarf::DW_LANG_C, "fib.ks", ".", "Kaleidoscope Compiler", 0, "", 0);
1444
1445 // Create the JIT. This takes ownership of the module.
1446 std::string ErrStr;
1447 TheExecutionEngine =
1448 EngineBuilder(std::move(Owner))
1449 .setErrorStr(&ErrStr)
1450 .setMCJITMemoryManager(llvm::make_unique<SectionMemoryManager>())
1451 .create();
1452 if (!TheExecutionEngine) {
1453 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
1454 exit(1);
1455 }
1456
1457 FunctionPassManager OurFPM(TheModule);
1458
1459 // Set up the optimizer pipeline. Start with registering info about how the
1460 // target lays out data structures.
1461 TheModule->setDataLayout(TheExecutionEngine->getDataLayout());
1462 OurFPM.add(new DataLayoutPass());
1463 #if 0
1464 // Provide basic AliasAnalysis support for GVN.
1465 OurFPM.add(createBasicAliasAnalysisPass());
1466 // Promote allocas to registers.
1467 OurFPM.add(createPromoteMemoryToRegisterPass());
1468 // Do simple "peephole" optimizations and bit-twiddling optzns.
1469 OurFPM.add(createInstructionCombiningPass());
1470 // Reassociate expressions.
1471 OurFPM.add(createReassociatePass());
1472 // Eliminate Common SubExpressions.
1473 OurFPM.add(createGVNPass());
1474 // Simplify the control flow graph (deleting unreachable blocks, etc).
1475 OurFPM.add(createCFGSimplificationPass());
1476 #endif
1477 OurFPM.doInitialization();
1478
1479 // Set the global so the code gen can use this.
1480 TheFPM = &OurFPM;
1481
1482 // Run the main "interpreter loop" now.
1483 MainLoop();
1484
1485 TheFPM = 0;
1486
1487 // Finalize the debug info.
1488 DBuilder->finalize();
1489
1490 // Print out all of the generated code.
1491 TheModule->dump();
1492
1493 return 0;
1494 }